Second International Conference on the Physics of the Two Infinities

17 November 2025 to 21 November 2025 Hongo Campus, University of Tokyo, Japan

Probing Lepton Number Violation with Same-Sign Muon Colliders

Abhik Sarkar

Indian Institute of Technology Guwahati

[2505.20936]

Subhaditya Bhattacharya, Soumyajit Datta, Abhik Sarkar

Lepton Number

$$\Delta L = N_{\ell} - N_{\overline{\ell}}$$

- Accidental symmetry in the Standard Model
- Conserved within individual generations

$$\Delta L_e = \Delta L_\mu = \Delta L_\tau = 0$$

No experimental observation of LNV yet

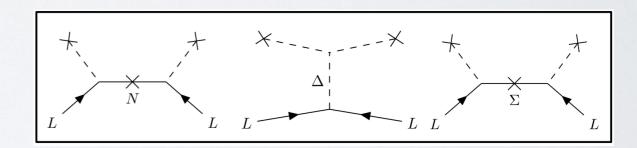
Lepton Number

$$\Delta L = N_{\ell} - N_{\overline{\ell}}$$

- Accidental symmetry in the Standard Model
- Conserved within individual generations

$$\Delta L_e = \Delta L_\mu = \Delta L_\tau = 0$$

No experimental observation of LNV yet


Neutrino Mass

No neutrino mass in the Standard Model

$$\overline{\nu_L}\nu_R(\times)$$
 $\overline{\nu_L^c}\nu_L(\times)$

- Neutrino oscillation measurements indicate neutrinos have non-zero mass
- Simplest way to generate neutrino mass is through the dim-5 Weinberg operator

$$(\overline{\ell_{L_{\alpha}}^{c}}\tilde{H}^{*})(\tilde{H}^{\dagger}\,\ell_{L_{\beta}}) \longrightarrow (\overline{\nu_{L_{\alpha}}^{c}}\,\nu_{L_{\beta}})$$

• Seesaw models: LNV via following terms $\overline{\nu_R^c} \, \nu_R \, (\mathrm{I}) \, \tilde{H}^\dagger \Delta H \, (\mathrm{II}) \, \mathrm{Tr}(\overline{\Sigma^c} \, \Sigma) \, (\mathrm{III})$

Lepton Number

$$\Delta L = N_{\ell} - N_{\overline{\ell}}$$

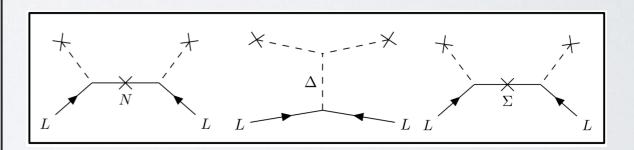
- Accidental symmetry in the Standard Model
- Conserved within individual generations

$$\Delta L_e = \Delta L_\mu = \Delta L_\tau = 0$$

No experimental observation of LNV yet

Leptogenesis

BAU:
$$\eta_B = (n_B - n_{\overline{B}}) / n_{\gamma} \sim 6 \times 10^{-10}$$

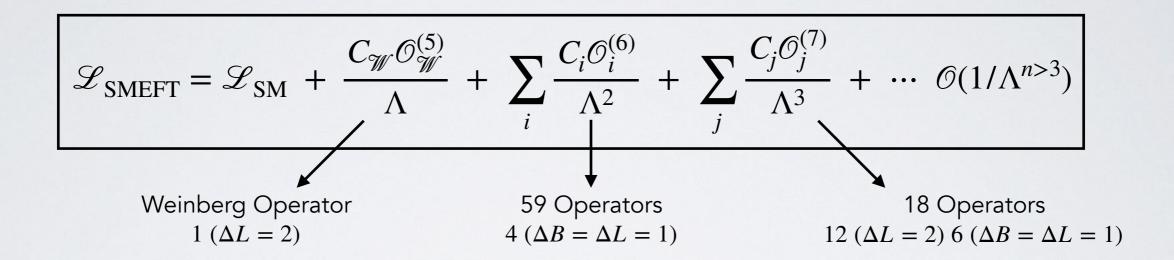

- Necessary (Sakharov's) conditions for BAU:
 - Baryon/Lepton number violation
 - C and CP violation
 - Departure from thermal equilibrium
- In leptogenesis, asymmetry in lepton number converted to baryon number via sphalerons

Neutrino Mass

No neutrino mass in the Standard Model

- Neutrino oscillation measurements indicate neutrinos have non-zero mass
- Simplest way to generate neutrino mass is through the dim-5 Weinberg operator

$$(\overline{\ell_{L_{\alpha}}^{c}}\tilde{H}^{*})(\tilde{H}^{\dagger}\,\ell_{L_{\beta}}) \longrightarrow (\overline{\nu_{L_{\alpha}}^{c}}\,\nu_{L_{\beta}})$$



• Seesaw models: LNV via following terms $\overline{\nu_R^c} \, \nu_R \, (\mathrm{I}) \, \tilde{H}^\dagger \Delta H \, (\mathrm{II}) \, \mathrm{Tr}(\overline{\Sigma^c} \, \Sigma) \, (\mathrm{III})$

Incorporating LNV in a Model Independent Framework

Incorporating LNV in a Model Independent Framework

Standard Model Effective Field Theory (SMEFT): Extension of the Standard Model (SM) with higher dimensional operators constructed out of SM fields.

Incorporating LNV in a Model Independent Framework

Standard Model Effective Field Theory (SMEFT): Extension of the Standard Model (SM) with higher dimensional operators constructed out of SM fields.

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{C_{\mathcal{W}}\mathcal{O}_{\mathcal{W}}^{(5)}}{\Lambda} + \sum_{i} \frac{C_{i}\mathcal{O}_{i}^{(6)}}{\Lambda^{2}} + \sum_{j} \frac{C_{j}\mathcal{O}_{j}^{(7)}}{\Lambda^{3}} + \cdots \mathcal{O}(1/\Lambda^{n>3})$$
Weinberg Operator
$$1 (\Delta L = 2)$$

$$4 (\Delta B = \Delta L = 1)$$
18 Operators
$$12 (\Delta L = 2) 6 (\Delta B = \Delta L = 1)$$

Dimension 5 Operator

- We focus our study on pure LNV operators, starting with Weinberg operator
- Absolute neutrino mass measurement constrain the electron flavor significantly

$$m_{ee} < 0.8 \text{ eV} \implies \Lambda_{ee} = (v^2/m_{ee}) \gtrsim 10^{12} \text{ TeV}$$

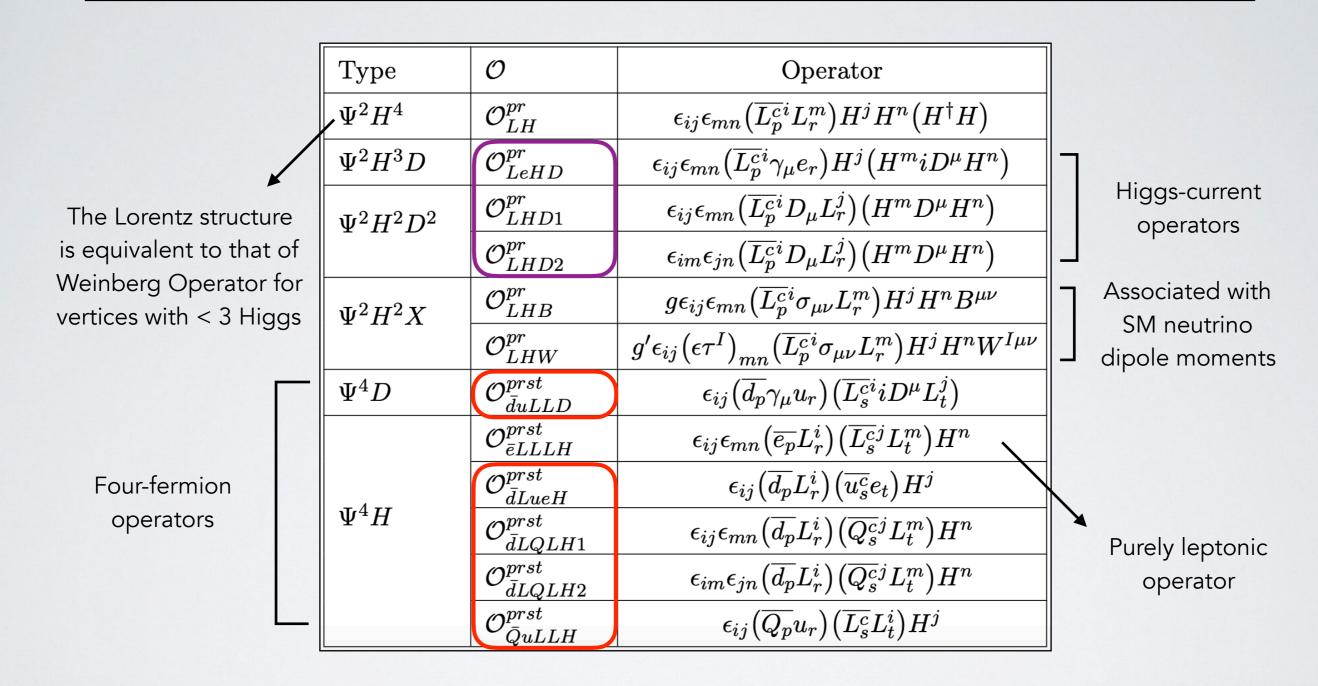
[KATRIN, Nature Phys. 18 (2022) 2, 160-166]

Other flavors relatively less constrained and can be probed at future colliders

Dimension 7 Operators

• 12 operators violating lepton number by 2 units, divided into 6 classes based on fields

 \mathcal{O} Operator Type Ψ^2H^4 \mathcal{O}^{pr}_{LH} $\epsilon_{ij}\epsilon_{mn}ig(\overline{L^c_p}^iL^m_rig)H^jH^nig(H^\dagger Hig)$ $\Psi^2 H^3 D$ \mathcal{O}^{pr}_{LeHD} $\epsilon_{ij}\epsilon_{mn}ig(\overline{L^c_p}^i\gamma_\mu e_rig)H^jig(H^miD^\mu H^nig)$ $\epsilon_{ij}\epsilon_{mn} \left(\overline{L_p^c}^i D_\mu L_r^j\right) \left(H^m D^\mu H^n\right)$ \mathcal{O}^{pr}_{LHD1} The Lorentz structure $\Psi^2 H^2 D^2$ is equivalent to that of $\epsilon_{im}\epsilon_{jn} \left(\overline{L_p^c}^i D_\mu L_r^j\right) \left(H^m D^\mu H^n\right)$ \mathcal{O}^{pr}_{LHD2} Weinberg Operator for \mathcal{O}^{pr}_{LHB} $g\epsilon_{ij}\epsilon_{mn}\left(\overline{L_p^c}{}^i\sigma_{\mu\nu}L_r^m\right)H^jH^nB^{\mu\nu}$ $\Psi^2 H^2 X$ vertices with < 3 Higgs $g'\epsilon_{ij}\left(\epsilon\tau^I\right)_{mn}\left(\overline{L^c_p}{}^i\sigma_{\mu\nu}L^m_r\right)H^jH^nW^{I\mu\nu}$ \mathcal{O}^{pr}_{LHW} ${\cal O}^{prst}_{ar{d}uLLD}$ $\Psi^4 D$ $\epsilon_{ij} ig(\overline{d_p} \gamma_\mu u_r ig) ig(\overline{L_s^c}{}^i i D^\mu L_t^j ig)$ $\mathcal{O}^{prst}_{ar{e}LLLH}$ $\epsilon_{ij}\epsilon_{mn}\left(\overline{e_p}L_r^i\right)\left(\overline{L_s^c}^jL_t^m\right)H^n$ $\mathcal{O}_{ar{d}LueH}^{prst}$ $\epsilon_{ij}(\overline{d_p}L_r^i)(\overline{u_s^c}e_t)H^j$ Four-fermion $\Psi^4 H$ operators \mathcal{O}^{prst} $\epsilon_{ij}\epsilon_{mn}ig(\overline{Q_p^c}L_r^iig)ig(\overline{Q_s^c}^jL_t^mig)H^n$ dLQLH1 \mathcal{O}^{prst}_{-} $\epsilon_{im}\epsilon_{jn} \left(\overline{d_p}L_r^i\right) \left(\overline{Q_s^c}^j L_t^m\right) H^n$ $ar{d}LQLH2$ $\mathcal{O}_{\bar{Q}uLLH}^{prst}$ $\epsilon_{ij}(\overline{Q_p}u_r)(\overline{L_s^c}L_t^i)H^j$

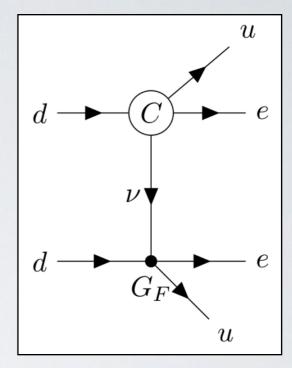

Higgs-current operators

Associated with SM neutrino dipole moments

Purely leptonic operator

Dimension 7 Operators

• 12 operators violating lepton number by 2 units, divided into 6 classes based on fields



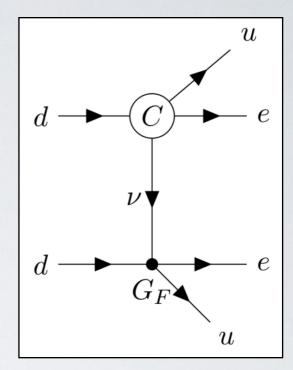
Our study focuses on 8 operators: 3 Higgs-current type and 5 four-fermion type.

$$(Z, A) \to (Z + 2, A) + 2e^{-}$$

- Absent in SM, LNV by 2 units
- Lowest energy manifestation of LNV, no observation yet
- Existing bound on half life: $T_{1/2} > 10^{26} \text{ years}$

[KamLAND-Zen PRL 130 (2023) 5, 051801]

SMEFT Wilson	Value	$\Lambda_{ m NP}$
Coefficient	$[\text{TeV}^{-3}]$	[TeV]
$C_{ar{d}LQLH1}$	$7.06\cdot10^{-8}$	242
$C_{ar{Q}uLLH}$	$3.62\cdot10^{-8}$	302
C_{LeHD}	$1.55\cdot 10^{-7}$	186
$C_{ar{d}LueH}$	$1.12\cdot 10^{-5}$	44.7
$C_{ar{d}LQLH1}$	$6.83\cdot10^{-7}$	114
$C_{ar{d}LQLH2}$	$3.41\cdot 10^{-7}$	143
C_{LHD1}	$1.36\cdot10^{-3}$	9.03
C_{LHD2}	$2.71\cdot 10^{-3}$	7.17
C_{LHW}	$3.39\cdot 10^{-4}$	14.3
$C_{ar{d}uLLD}$	$1.32\cdot 10^{-3}$	9.11
C_{LHD1}	$9.91\cdot 10^{-4}$	10.0
C_{LHW}	$2.48\cdot 10^{-4}$	15.9
$C_{ar{d}uLLD}$	$1.83\cdot 10^{-6}$	81.7


[Fridell et. al. JHEP 05 (2024) 154] [Scholer et. al. JHEP 08 (2023) 043]

$$(Z, A) \rightarrow (Z + 2, A) + 2e^{-}$$

- Absent in SM, LNV by 2 units
- Lowest energy manifestation of LNV, no observation yet
- Existing bound on half life:

$$T_{1/2} > 10^{26} \text{ years}$$

[KamLAND-Zen PRL 130 (2023) 5, 051801]

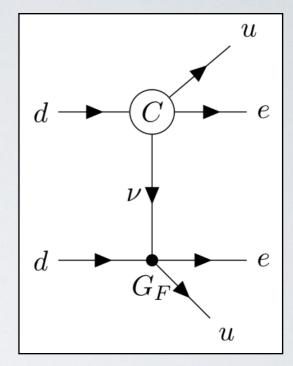
Strongest constraints on LNV operators

$$T_{1/2}^{-1} = g_A^4 \sum_k G_{0k} |\mathcal{A}_k(C_i)|^2$$
Atomic phase space factors

Subamplitudes

vDoBe calculates the limits on SMEFT/LEFT operators

SMEFT Wilson	Value	$\Lambda_{ m NP}$
Coefficient	$[\text{TeV}^{-3}]$	[TeV]
$C_{ar{d}LQLH1}$	$7.06\cdot10^{-8}$	242
$C_{ar{Q}uLLH}$	$3.62\cdot10^{-8}$	302
C_{LeHD}	$1.55\cdot 10^{-7}$	186
$C_{ar{d}LueH}$	$1.12\cdot 10^{-5}$	44.7
$C_{ar{d}LQLH1}$	$6.83\cdot10^{-7}$	114
$C_{ar{d}LQLH2}$	$3.41\cdot 10^{-7}$	143
C_{LHD1}	$1.36\cdot10^{-3}$	9.03
C_{LHD2}	$2.71\cdot 10^{-3}$	7.17
C_{LHW}	$3.39\cdot 10^{-4}$	14.3
$C_{ar{d}uLLD}$	$1.32\cdot 10^{-3}$	9.11
C_{LHD1}	$9.91\cdot 10^{-4}$	10.0
C_{LHW}	$2.48\cdot 10^{-4}$	15.9
$C_{ar{d}uLLD}$	$1.83\cdot 10^{-6}$	81.7


[Fridell et. al. JHEP 05 (2024) 154] [Scholer et. al. JHEP 08 (2023) 043]

$$(Z, A) \rightarrow (Z + 2, A) + 2e^{-}$$

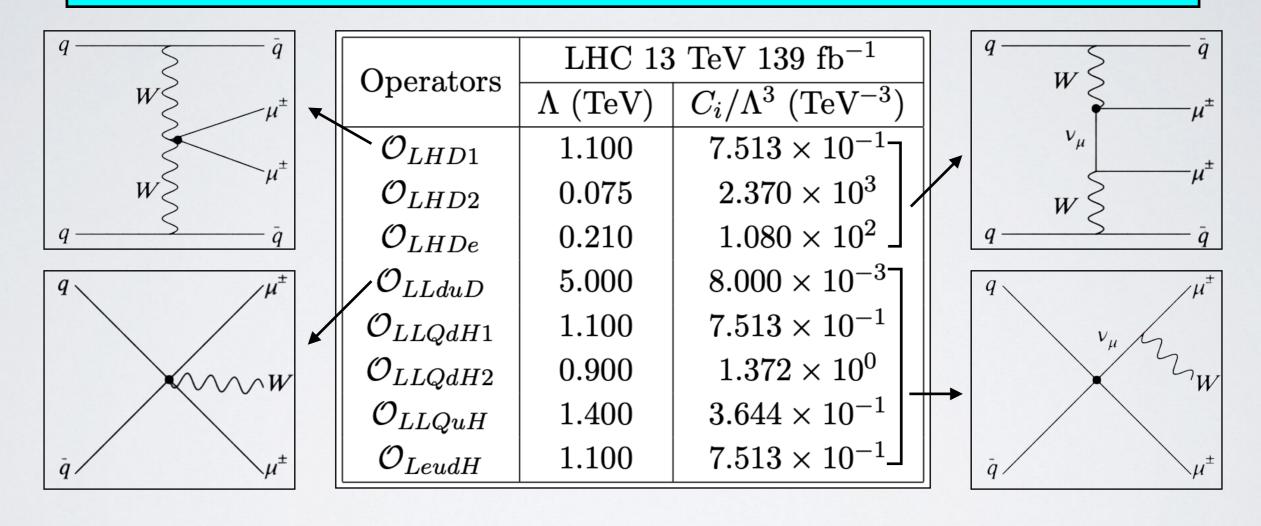
- Absent in SM, LNV by 2 units
- Lowest energy manifestation of LNV, no observation yet
- Existing bound on half life:

$$T_{1/2} > 10^{26} \text{ years}$$

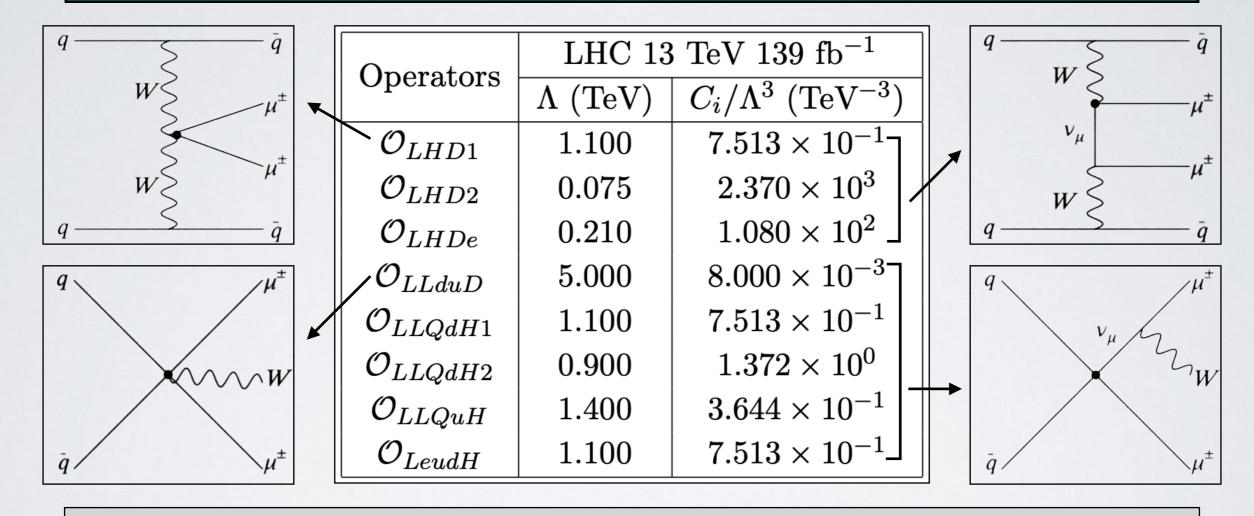
[KamLAND-Zen PRL 130 (2023) 5, 051801]

Strongest constraints on LNV operators

$$T_{1/2}^{-1} = g_A^4 \sum_k G_{0k} |\mathcal{A}_k(C_i)|^2$$
Atomic phase space factors


Subamplitudes

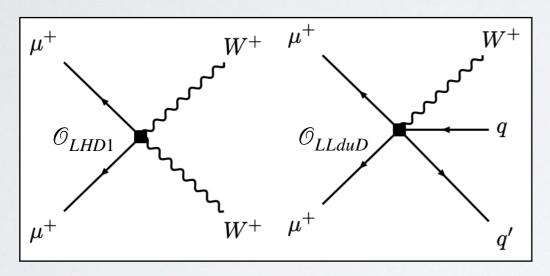
vDoBe calculates the limits on SMEFT/LEFT operators

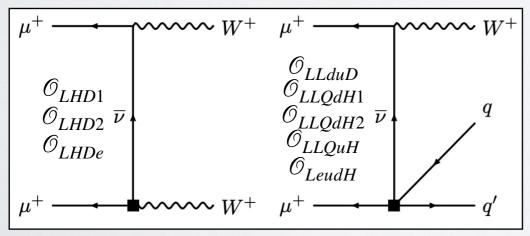

These limits apply to electron sector, muon and tau flavors are still unconstrained.

- With same-sign muon collider in mind, we focus on muon-flavored operators
- Bounds from LHC → Recast of same-sign muons + jets search (ATLAS, 2019)

- With same-sign muon collider in mind, we focus on muon-flavored operators
- Bounds from LHC → Recast of same-sign muons + jets search (ATLAS, 2019)

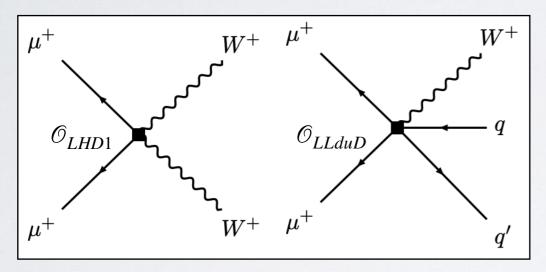
- With same-sign muon collider in mind, we focus on muon-flavored operators
- Bounds from LHC → Recast of same-sign muons + jets search (ATLAS, 2019)

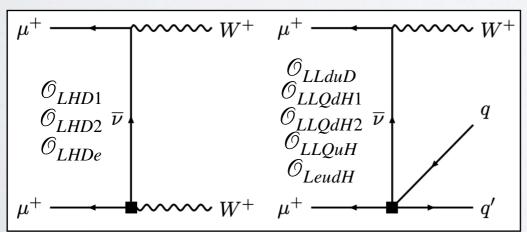


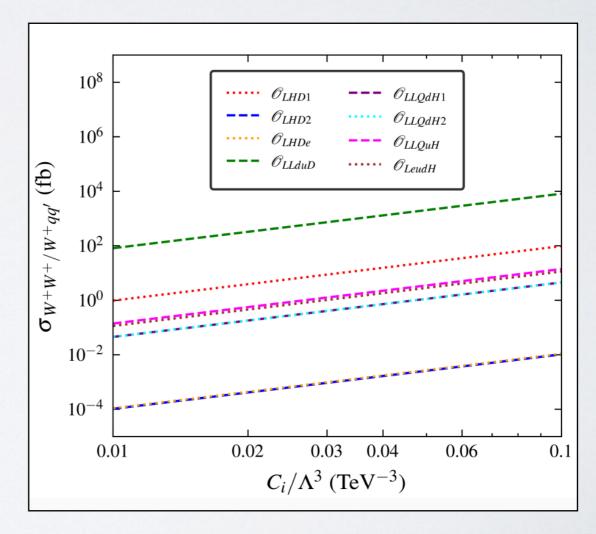

- Signature: Initial state ($\Delta L = 0$, hadronic); Final state ($\Delta L = 2$; SS muons + no MET)
- Four-fermion operators strongly constrained at the LHC due to contact vertices

- Same-sign muon colliders invert the strategy, we start with an LNV initial state $(\Delta L = 2)$ and look for final state with no leptons $(\Delta L = 0)$ and no missing energy
- Proposed μ TRISTAN collider $\rightarrow \mu^{+}\mu^{+}$ collision stage with CoM energy of 2 TeV

- Same-sign muon colliders invert the strategy, we start with an LNV initial state $(\Delta L = 2)$ and look for final state with no leptons $(\Delta L = 0)$ and no missing energy
- Proposed μ TRISTAN collider $\rightarrow \mu^{+}\mu^{+}$ collision stage with CoM energy of 2 TeV

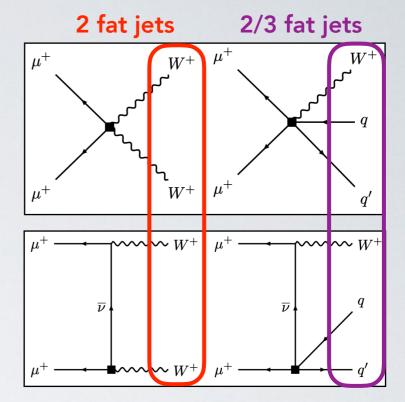

We study the process: $\mu^+\mu^+ \rightarrow W^+W^+/W^+qq'$, induced by D7 $\Delta L = 2$ SMEFT





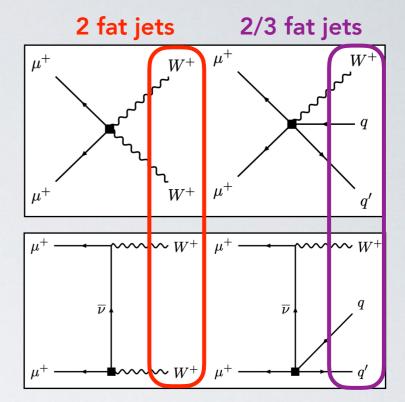
- Same-sign muon colliders invert the strategy, we start with an LNV initial state $(\Delta L = 2)$ and look for final state with no leptons $(\Delta L = 0)$ and no missing energy
- Proposed μ TRISTAN collider $\rightarrow \mu^{+}\mu^{+}$ collision stage with CoM energy of 2 TeV

We study the process: $\mu^+\mu^+ \rightarrow W^+W^+/W^+qq'$, induced by D7 $\Delta L = 2$ SMEFT

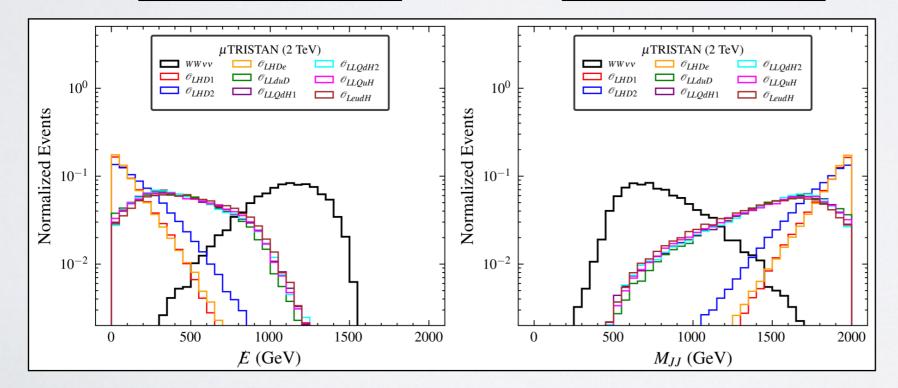


Collider Analysis

- Signal Selection: 2 fat jets with masses > 10 GeV
- 2 fat jets favorable for Higgs-current operators
- 3 fat jets may improve four-fermion operators
- We veto leptons in final state, signature of LNV
- SM backgrounds:

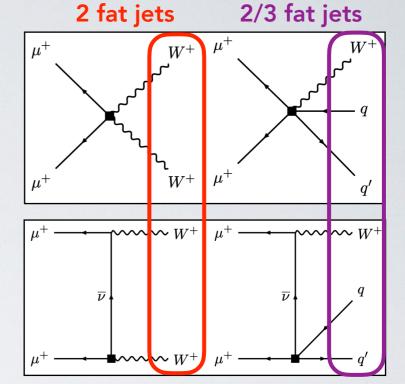

$$\overline{\nu}\overline{\nu}W^{+}W^{+}, \ \mu^{+}\overline{\nu}W^{+}, \ \mu^{+}\mu^{+}Z, \ \mu^{+}\overline{\nu}W^{+}Z$$

Collider Analysis

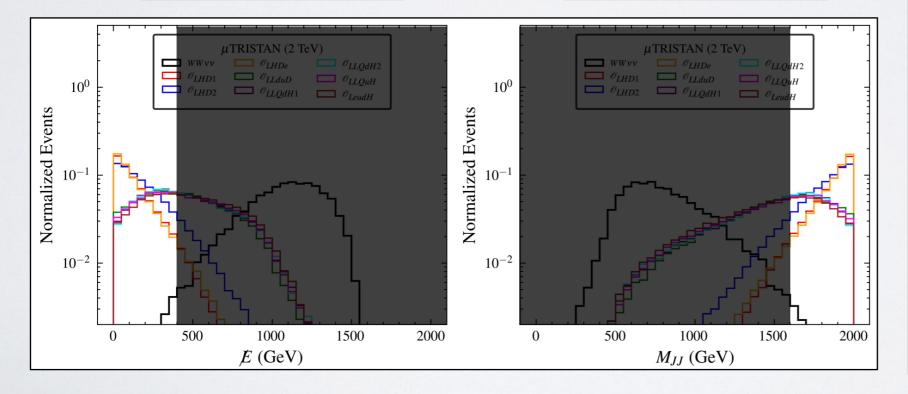

- Signal Selection: 2 fat jets with masses > 10 GeV
- 2 fat jets favorable for Higgs-current operators
- 3 fat jets may improve four-fermion operators
- We veto leptons in final state, signature of LNV
- SM backgrounds:

$$\overline{\nu}\overline{\nu}W^+W^+, \ \mu^+\overline{\nu}W^+, \ \mu^+\mu^+Z, \ \mu^+\overline{\nu}W^+Z$$

$$ME = \sqrt{s} - \sum E$$


$$M_{JJ} = \sqrt{\left(p_{J_1} + p_{J_2}\right)^2}$$

Collider Analysis


- Signal Selection: 2 fat jets with masses > 10 GeV
- 2 fat jets favorable for Higgs-current operators
- 3 fat jets may improve four-fermion operators
- We veto leptons in final state, signature of LNV
- SM backgrounds:

$$\overline{\nu}\overline{\nu}W^+W^+, \ \mu^+\overline{\nu}W^+, \ \mu^+\mu^+Z, \ \mu^+\overline{\nu}W^+Z$$

$$ME = \sqrt{s} - \sum E$$

$$M_{JJ} = \sqrt{\left(p_{J_1} + p_{J_2}\right)^2}$$

Cuts

ME < 400 GeV $M_{JJ} > 1600 \text{ GeV}$ Efficiency

Higgs-current 78% - 58%Four-fermion 19% - 16%Backgrounds $\sim 0.06\%$

Projected Sensitivity of LNV Effective Operators

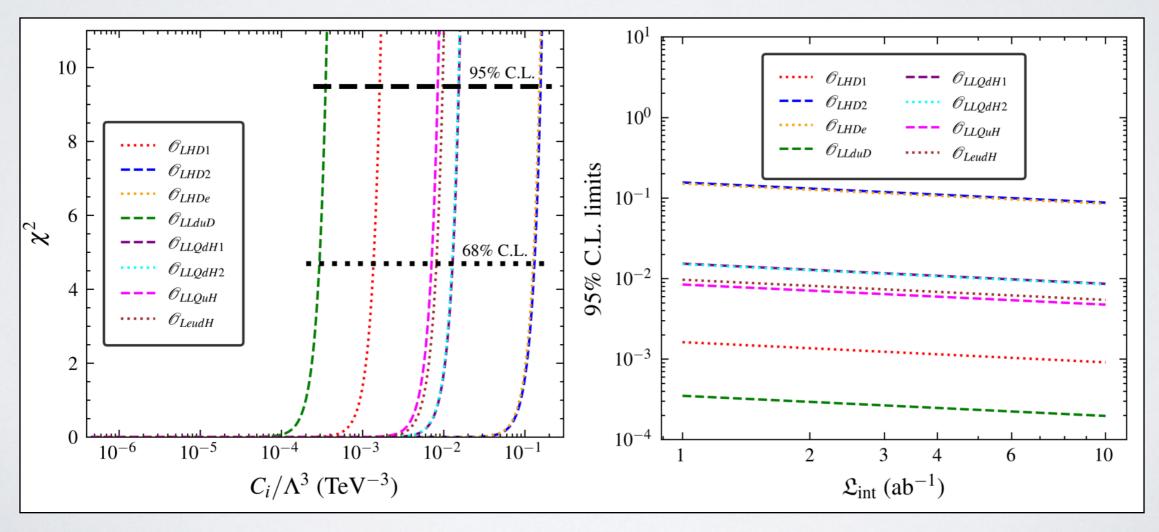
Projected Sensitivity of LNV Effective Operators

We perform a binned Chi-Squared analysis to obtain the 95% exclusion limits.

$$\chi^{2} = \sum_{r}^{\text{bins}} \left(\frac{\mathcal{Q}_{r}(C_{i}) - \mathcal{Q}_{r}(0)}{\sqrt{\mathcal{Q}_{r}(0)}} \right)^{2}$$

$$\chi^{2} = \sum_{r}^{\text{bins}} \left(\frac{\mathcal{Q}_{r}(C_{i}) - \mathcal{Q}_{r}(0)}{\sqrt{\mathcal{Q}_{r}(0)}} \right)^{2} \qquad \mathcal{Q}_{r} = \int_{r} \mathfrak{Q}_{\text{int}} \left(\frac{d\sigma(C_{i})}{d\cos\theta} \right) d\cos\theta$$

Cosine of angle between two fat jets


Projected Sensitivity of LNV Effective Operators

We perform a binned Chi-Squared analysis to obtain the 95% exclusion limits.

$$\chi^{2} = \sum_{r}^{\text{bins}} \left(\frac{\mathcal{Q}_{r}(C_{i}) - \mathcal{Q}_{r}(0)}{\sqrt{\mathcal{Q}_{r}(0)}} \right)^{2}$$

$$Q_r = \int_r \mathfrak{Q}_{int} \left(\frac{d\sigma(C_i)}{d\cos\theta} \right) d\cos\theta$$

Cosine of angle between two fat jets

Higgs-current operators more sensitivite than at the FCC-hh	Operators	FCC-hh 100 TeV 30 ab^{-1}		μ TRISTAN 2 TeV 1 ab ⁻¹	
		$\Lambda \ ({ m TeV})$	$C_i/\Lambda^3 \ ({ m TeV}^{-3})$	$\Lambda \ ({ m TeV})$	$C_i/\Lambda^3 \; ({ m TeV}^{-3})$
	Γ \mathcal{O}_{LHD1}	4.90	8.500×10^{-3}	8.50	1.627×10^{-3}
	\mathcal{O}_{LHD2}	0.18	1.715×10^2	1.86	1.563×10^{-1}
	$dash \mathcal{O}_{LHDe}$	0.44	1.174×10^1	1.88	1.511×10^{-1}
Four-fermion operators have sensitivities comparable to the FCC-hh	$igcup_{LLduD}$	19.0	1.458×10^{-4}	14.2	3.507×10^{-4}
	\mathcal{O}_{LLQdH1}	4.30	1.258×10^{-2}	4.02	1.534×10^{-2}
	\mathcal{O}_{LLQdH2}	3.10	3.357×10^{-2}	4.04	1.510×10^{-2}
	\mathcal{O}_{LLQuH}	5.40	6.351×10^{-3}	4.92	8.451×10^{-3}
	$^{flack}\mathcal{O}_{LeudH}$	4.50	1.097×10^{-2}	4.69	9.693×10^{-3}

[Fridell et. al. JHEP 05 (2024) 154]

Higgs-current operators more sensitivite than at the FCC-hh Four-fermion operators have sensitivities comparable to the FCC-hh	Operators	FCC-hh 100 TeV 30 ab^{-1}		μ TRISTAN 2 TeV 1 ab ⁻¹	
		$\Lambda \ ({ m TeV})$	$C_i/\Lambda^3 \ ({ m TeV^{-3}})$	$\Lambda \ ({ m TeV})$	$C_i/\Lambda^3 \; ({ m TeV}^{-3})$
	Γ \mathcal{O}_{LHD1}	4.90	8.500×10^{-3}	8.50	1.627×10^{-3}
	\mathcal{O}_{LHD2}	0.18	1.715×10^2	1.86	1.563×10^{-1}
	$lacksquare$ \mathcal{O}_{LHDe}	0.44	1.174×10^1	1.88	1.511×10^{-1}
	$igcup_{CLLduD}$	19.0	1.458×10^{-4}	14.2	3.507×10^{-4}
	$oxedsymbol{\mathcal{O}_{LLQdH1}}$	4.30	1.258×10^{-2}	4.02	1.534×10^{-2}
	$oxedsymbol{\mathcal{O}_{LLQdH2}}$	3.10	3.357×10^{-2}	4.04	1.510×10^{-2}
	$oxedsymbol{\mathcal{O}_{LLQuH}}$	5.40	6.351×10^{-3}	4.92	8.451×10^{-3}
	${}^{ldash}\mathcal{O}_{LeudH}$	4.50	1.097×10^{-2}	4.69	9.693×10^{-3}

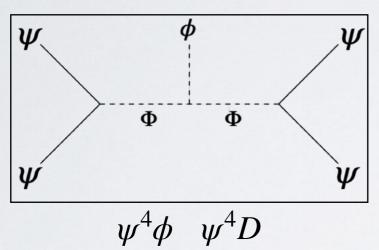
[Fridell et. al. JHEP 05 (2024) 154]

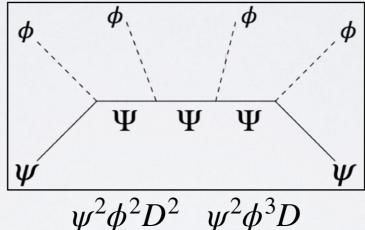
Weinberg Operator at µTRISTAN

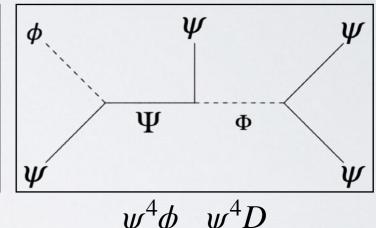
- \bullet The sensitivity of muon-flavored Weinberg operator can be studied at $\mu TRISTAN$
- Absolute muon neutrino mass measurement constrain the muon flavor EFT scale

$$m_{\mu\mu} < 0.17 \text{ MeV} \implies \Lambda_{\mu\mu} = (v^2/m_{\mu\mu}) \gtrsim 10^5 \text{ TeV}$$

[Assamagan et. al. PRD 53 (1996) 6065-6077]

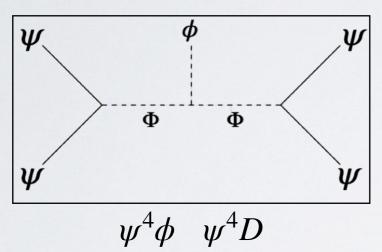

- Bounds from existing and future colliders:
 - \wedge \wedge 1.42 TeV (LHC); \wedge > 21.8 TeV (FCC-hh); \wedge > 399 TeV (μ TRISTAN)
- $\mu TRISTAN$ most sensitive among future colliders, still around O(100) below $\Lambda_{\mu\mu}$

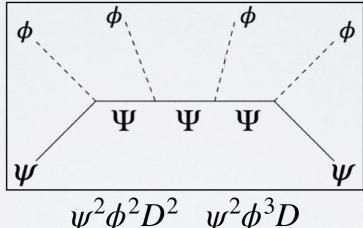

Implications for New Physics (NP) Models

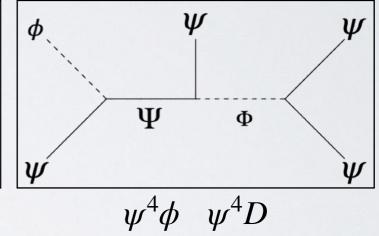

Implications for New Physics (NP) Models

These effective operators can be systematically mapped onto a large set of UV completions. We present simplified field embeddings for these classes.

Heavy Fields: Ψ (Fermion), Φ (Boson). Light Fields: ψ (Fermion), ϕ (Boson).

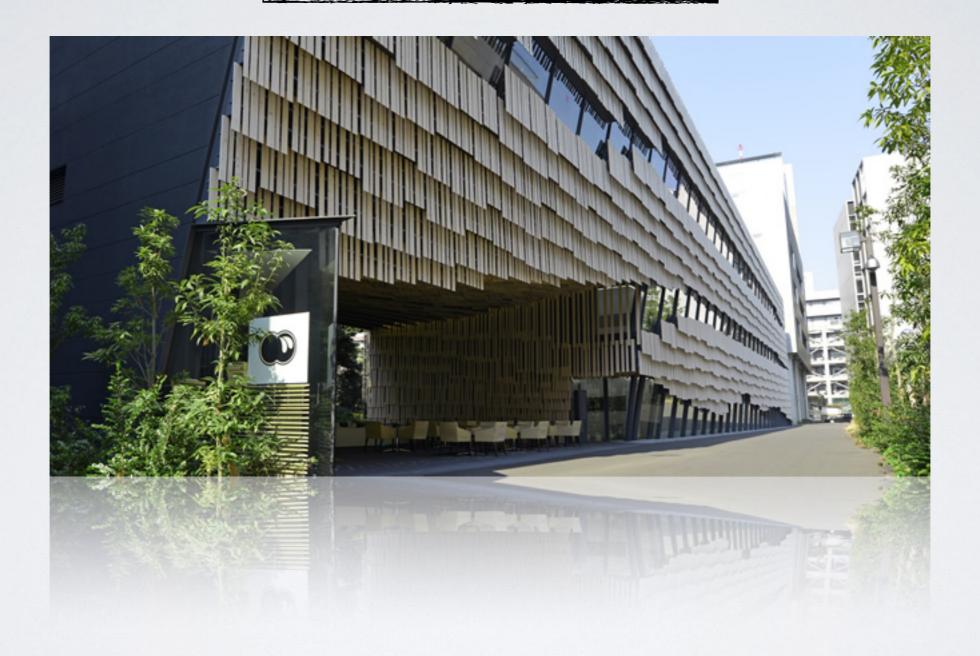





Implications for New Physics (NP) Models

These effective operators can be systematically mapped onto a large set of UV completions. We present simplified field embeddings for these classes.

Heavy Fields : Ψ (Fermion), Φ (Boson). Light Fields : ψ (Fermion), ϕ (Boson).



- LNV operators beyond electron flavor still accessible, can be probed at colliders
- Same-sign muon collider provides a unique, clean environment to probe LNV
- UV completions beyond RHNs can induce LNV effective operators, emphasizing that the observable LNV need not be tied solely to neutrino mass generation

THANK YOU

[ImageCredit: The University of Tokyo]