

Cosmological non-Gaussianity from Neutrino Seesaw Mechanism

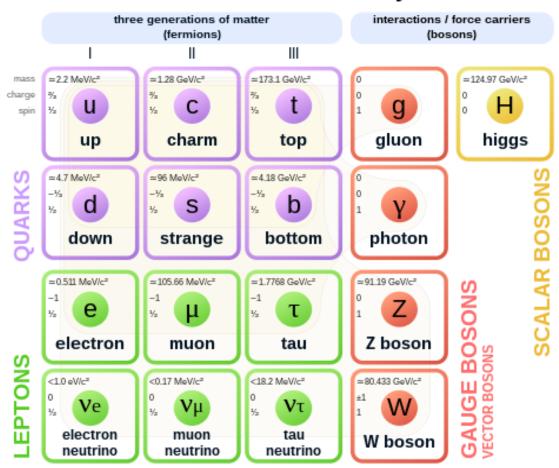
Jingtao You Shanghai Jiao Tong University

With Hong-Jian He, Chengcheng Han and Linghao Song arXiv: 2412.21045, 2412.16033

International Conference on the Physics of the Two Infinities

Background

Standard Model of Elementary Particles



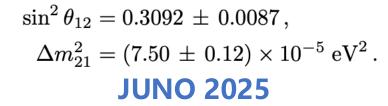
$$\mathcal{L}_{\text{Yukawa}} \supset -\left[y_e \bar{e}_R \Phi^{\dagger} L_L + y_e^* \bar{L}_L \Phi e_R\right]$$

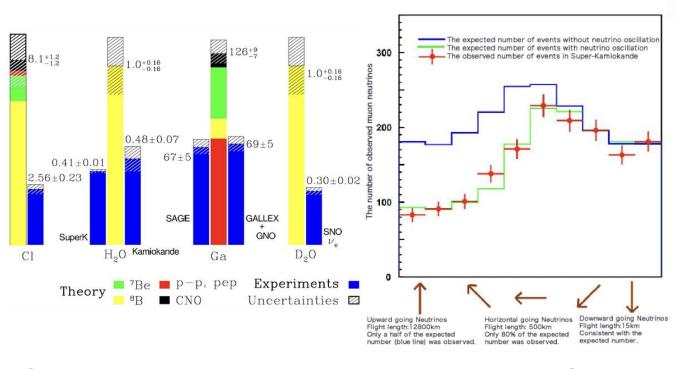
$$\Phi = \left(\begin{array}{c} 0\\ (v+h)/\sqrt{2} \end{array}\right),\,$$

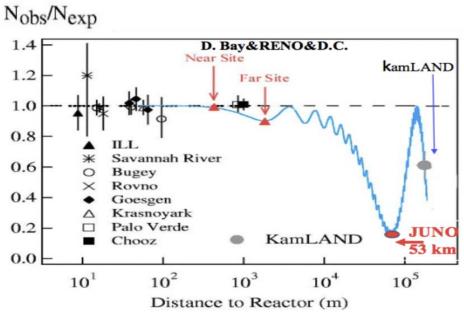
$$\Phi^{\dagger}L_L = \left(0, \frac{v+h}{\sqrt{2}}\right) \left(\begin{array}{c} \nu_e \\ e \end{array}\right)_L = \frac{v+h}{\sqrt{2}}e_L,$$

Neutrino masses

Neutrino oscillation indicates massive neutrinos







Solar Neutrino oscillations

Atmospheric Neutrino Oscillations

 θ_{23}

Reactor Neutrino Oscillations

 θ_{13}

$$\Delta m_{21}^2 \simeq 7.42 \times 10^{-5} \text{ eV}^2$$

$$|\Delta m_{13}^2| \approx |\Delta m_{23}^2| \simeq 2.5 \times 10^{-3} \text{ eV}^2$$

Cosmological limit

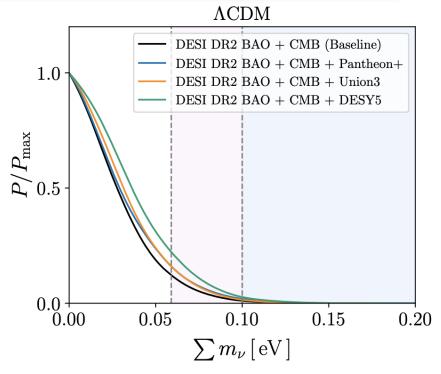
Particle Data Group Collaboration, S. Navas et al., Review of particle physics, Phys. Rev.D 110 (2024), no. 3 030001

Table 26.2: Summary of $\sum m_{\nu}$ constraints.

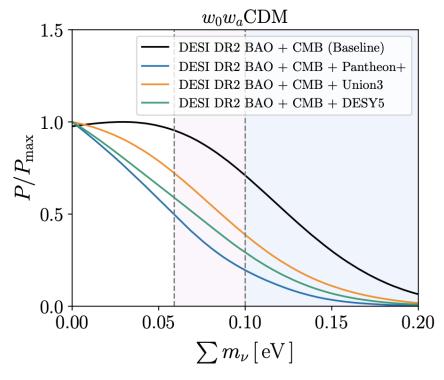
	Model	95% CL (eV)	Ref.		
CMB alone					
$\overline{ ext{Pl18}[ext{TT+lowE}]}$	$\Lambda { m CDM} + \sum m_{ u}$	< 0.54	$\overline{[24]}$		
Pl18[TT,TE,EE+lowE]	$\Lambda { m CDM} + \sum m_ u$	< 0.26	[24]		
CMB + probes of background evolution					
$\overline{\text{Pl18}[\text{TT,TE,EE+lowE}] + \text{BAO}}$	$\Lambda { m CDM} + \sum m_{ u}$	< 0.13	[49]		
$Pl18[TT,TE,EE+lowE] + BAO$ ΛO	$CDM + \sum m_{\nu} + 5$ params.	< 0.515	[25]		
$\overline{ ext{CMB} + ext{LSS}}$					
Pl18[TT+lowE+lensing]	$\Lambda { m CDM} + \sum m_{ u}$	< 0.44	$\overline{[24]}$		
Pl18[TT,TE,EE+lowE+lensing]	$\Lambda { m CDM} + \sum m_ u$	< 0.24	[24]		
Pl18[TT,TE,EE+lowE] + ACT[lensing]	$\Lambda { m CDM} + \sum m_ u$	< 0.12	[50]		
$\overline{ ext{CMB} + ext{probes of background evolution} + ext{LSS}}$					
$\overline{\text{Pl18}[\text{TT,TE,EE+lowE}] + \text{BAO} + \text{RSD}}$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.10	[49]		
Pl18[TT,TE,EE+lowE+lensing] + BAO + RSD + SO	Shape $\Lambda \text{CDM} + \sum m_{\nu}$	< 0.082	[51]		
$Pl18[TT+lowE+lensing] + BAO + Lyman-\alpha$	$\Lambda { m CDM} + \sum m_ u$	< 0.087	[52]		
Pl18[TT,TE,EE+lowE] + BAO + RSD + SN + DE	ES-Y1 $\Lambda \text{CDM} + \sum m_{\nu}$	< 0.12	[49]		
$\frac{\text{Pl18[TT,TE,EE+lowE]} + \text{BAO} + \text{RSD} + \text{SN} + \text{DB}}{\text{Pl18[TT,TE,EE+lowE]}}$	ES-Y3 $\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	[53]		

Cosmological limit

DESI 2025



W. Elbers et al., Constraints on neutrino physics from DESI DR2 BAO and DR1 full shape, Phys. Rev. D 112 (2025), no. 8 083513, [arXiv:2503.14744].



 Λ CDM: DESI DR2 BAO + CMB:

$$\sum m_{\nu} < 0.0642 \,\text{eV} \quad (95\%),$$

 w_0w_a CDM: DESI DR2 BAO + CMB + DESY5:

$$\begin{cases} \sum m_{\nu} < 0.129 \,\text{eV} \\ w_0 = -0.76^{+0.12}_{-0.11} \\ w_a = -0.82^{+0.46}_{-0.48} \end{cases}$$
(95%).

Seesaw mechanism

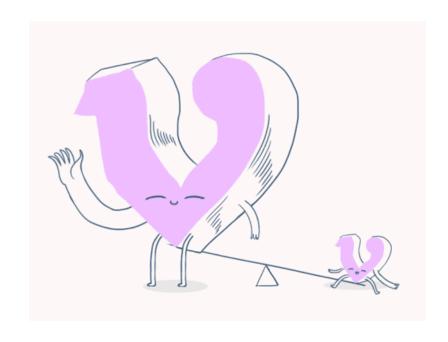
P. Minkowski; T. Yanagida; S. L. Glashow; M. Gell-Mann, P. Ramond and R. Slansky

Origin of neutrino masses: seesaw mechanism

Type I seesaw mechanism

$${\cal L} = {\cal L}_{
m SM} + y_
u ilde{H} ar{L} N_{\!\! R} - rac{1}{2} M_R ar{N}_{\!\! R}^c N_{\!\! R} + h.c.$$

$$M = \left(egin{array}{cc} 0 & m_D \ m_D^T & M_R \end{array}
ight) \qquad m_
u \sim rac{m_D^2}{M_R} = rac{y_
u^2 \langle h
angle^2}{2 M_R} \, .$$

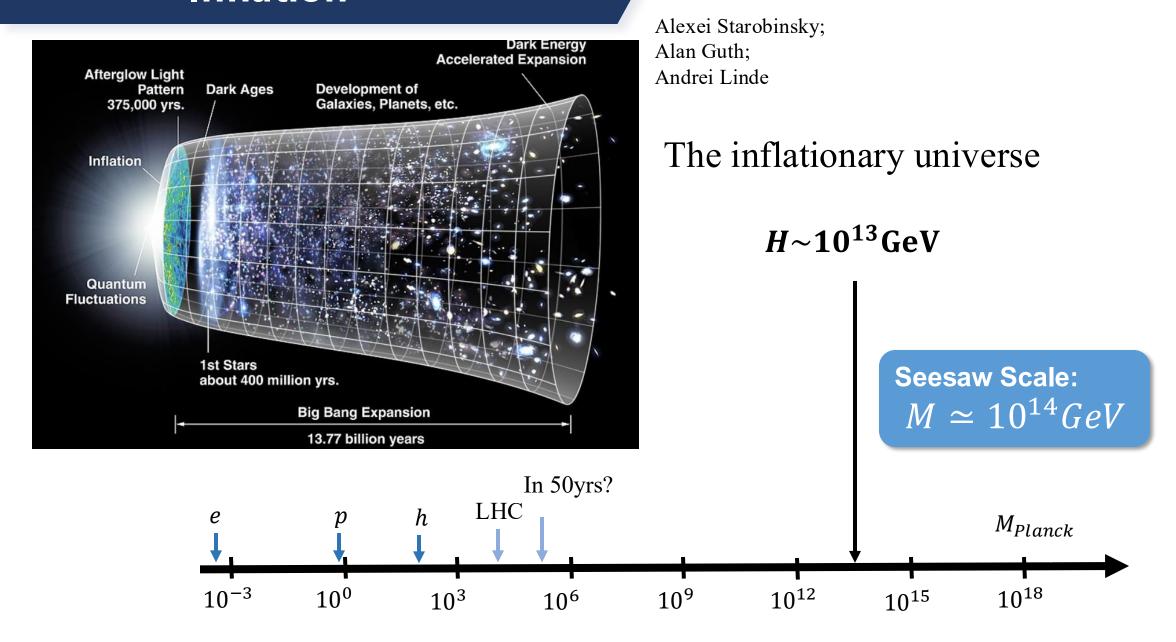


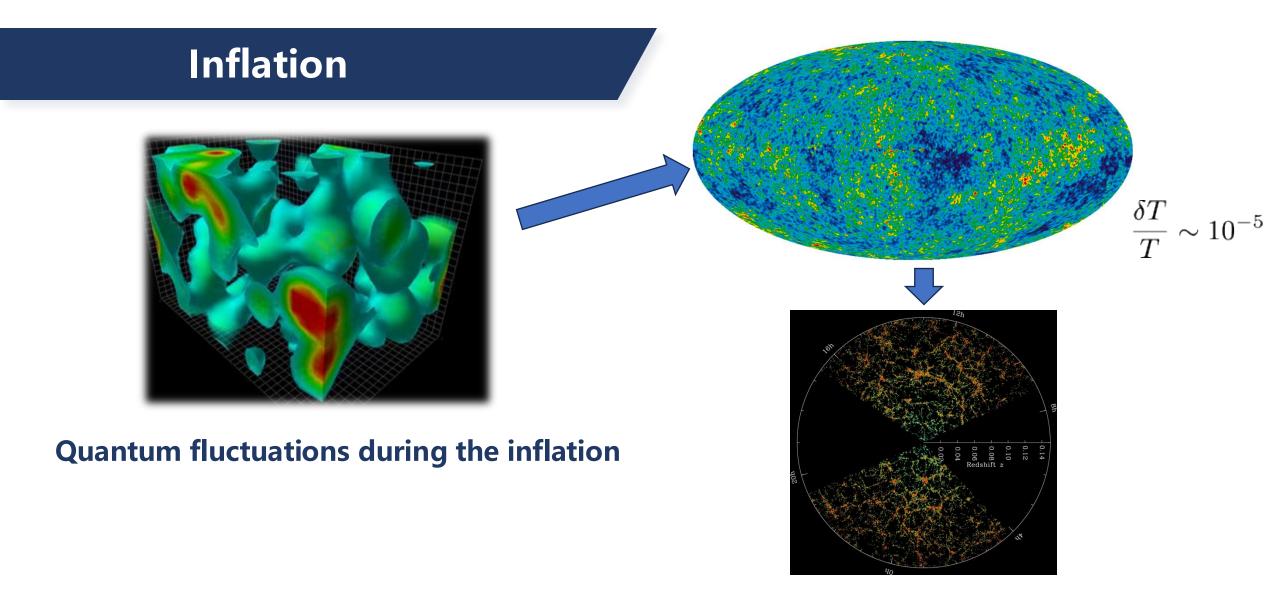
If the Yukawa coupling is O(1) (as predicted by the GUT), the seesaw scale M_R should be around 10^{13-14} GeV, which is much beyond the reach of particle experiments.

$$y_{\nu} \sim O(1) \Longrightarrow M \sim 10^{14} \text{GeV}$$

How to test such high scale seesaw?

Inflation

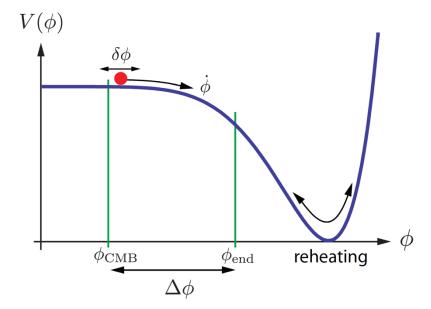




 Seeding the primordial anisotropies in CMB, finally develop into the large scale structure of our universe

Slow-roll Inflation

Inflaton: $\phi(x, \tau)$



- Quantum fluctuation of inflaton induces
 CMB anisotropies(or curvature perturbations)
- The fluctuations should be nearly gaussian, adiabatic and scale invariant

• Slow roll condition: $\epsilon, \eta \ll 1$

$$\epsilon \equiv -rac{\dot{H}}{H^2} \; , \qquad \eta \equiv rac{\dot{\epsilon}}{H\epsilon} \ \epsilon_V = rac{M_p^2}{2} (rac{V'}{V})^2 \ll 1 \; , \qquad \eta_V = M_p^2 rac{V''}{V}$$

 $H(t) \simeq \text{const.}$ (de Sitter universe)

• $\phi(x, \tau)$ get quantum fluctuation:

$$\delta\phi(x,\tau) = \int \frac{\mathrm{d}^3\mathbf{k}}{(2\pi)^3} \Big[u_a(\tau,\mathbf{k}) b_a(\mathbf{k}) + u_a^*(\tau,-\mathbf{k}) b_a^{\dagger}(-\mathbf{k}) \Big] e^{i\mathbf{k}\cdot\mathbf{x}}$$

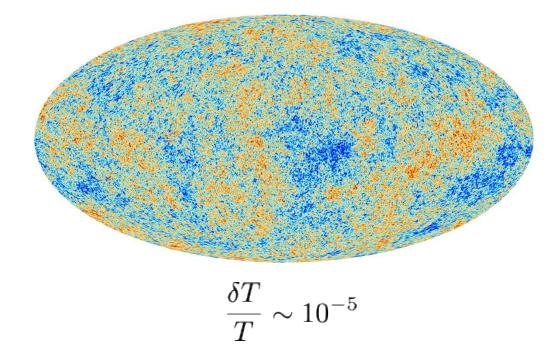
$$u_{\mathbf{k}}(\tau) = \frac{H}{\sqrt{2k^3}} \left[1 + ik\tau \right] e^{-ik\tau}$$

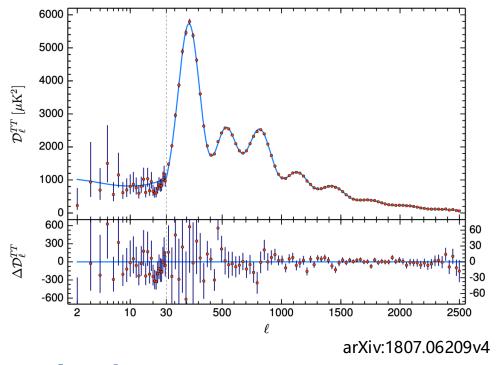
Curvature perturbation $\zeta = -\frac{H}{\dot{\phi}}\delta\phi$

$$\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \rangle = (2\pi)^3 \delta^3(\mathbf{k} + \mathbf{k}') \frac{2\pi^2}{k^3} P_{\zeta}(k)$$

$$P_{\zeta}(k) = \frac{H^4}{4\pi^2 \dot{\phi}^2} = \frac{H^2}{8\pi^2 \epsilon M_p^2}$$

Measurements from Planck





From Planck 2018

$$\epsilon_V < 0.0097$$

$$\frac{H_*}{M_{\rm Pl}} < 2.5 \times 10^{-5}$$
 $\eta_V = -0.010^{+0.007}_{-0.011}$

- Inflaton potential should be flat enough(shift-symmetry?)
- Hubble scale could be as high as 10¹³ GeV(close to seesaw scale), providing a circumstance to interplay with high scale physics

Non-Gaussianity

Non-Gaussianity is sensitive to new physics

$$\langle \Phi_{\mathbf{k_1}} \Phi_{\mathbf{k_2}} \Phi_{\mathbf{k_3}} \rangle'_{\text{local}} = 2A^2 f_{\text{NL}}^{\text{local}} \left\{ \frac{1}{k_1^3 k_2^3} + \frac{1}{k_2^3 k_3^3} + \frac{1}$$

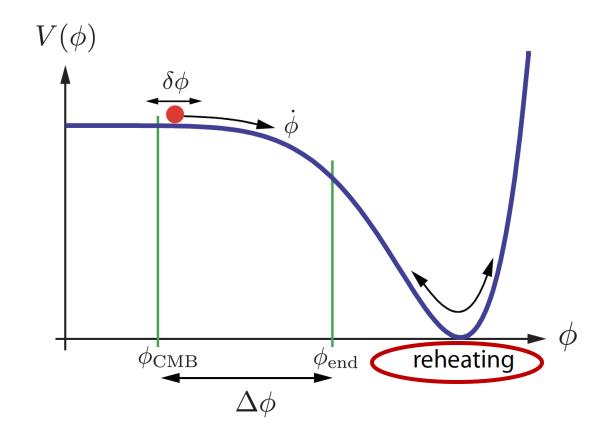
S				N
$\frac{1}{k_3^3}$	$+\left.rac{1}{k_{3}^{3}k_{1}^{3}} ight\}$	Ga	я aussian	моп-Gaussian

Shape		Independent	Lensing subtracted		
		SMICA T			
	Local	6.7 ± 5.6	-0.5 ± 5.6		
	Equilateral	4 ± 67	5 ± 67		
	Orthogonal	-38 ± 37	-15 ± 37		
		SMICA $T+E$			
	Local	4.1 ± 5.1	-0.9 ± 5.1		
,	Equilateral	-25 ± 47	-26 ± 47		
	Orthogonal	-47 ± 24	-38 ± 24		

Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys. 641 (2020) A9, [arXiv:1905.05697].

• future CMB observations (CMB-S4, LiteBIRD ...), large scale structure observations (DESI,

Reheating



 After inflation, inflaton oscillates at the bottom of the potential and finally decays into SM particles, then reheats the universe(still no clear how it occurs)

A minimal model

Minimal model incorporates inflation and seesaw

$$\Delta \mathcal{L} = \sqrt{-g} \left[-\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - V(\phi) + \overline{N}_{R} i \partial N_{R} + \frac{1}{\Lambda} \partial_{\mu} \phi \overline{N}_{R} \gamma^{\mu} \gamma^{5} N_{R} \right. \\ \left. + \left(-\frac{1}{2} M \overline{N_{R}^{c}} N_{R} - y_{\nu} \overline{L}_{L} \tilde{\mathbb{H}} N_{R} + \text{H.c.} \right) \right],$$

After inflation, the inflaton decays into the neutrinos and thus reheating the universe.

• Both light and heavy neutrino mass are h dependent

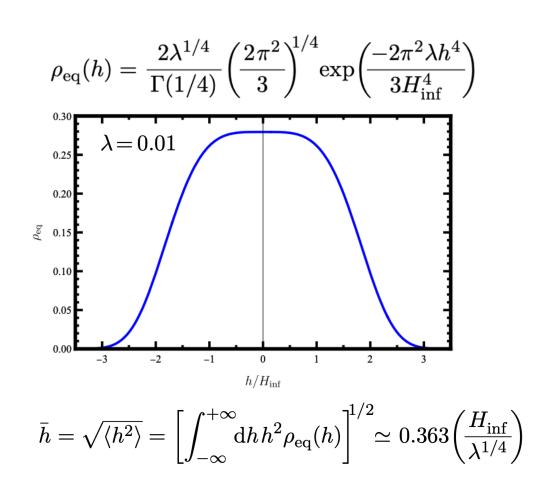
$$m_
u \simeq -rac{y_
u^2 h^2}{2M}, ~~ M_N \simeq M + rac{y_
u^2 h^2}{2M}$$

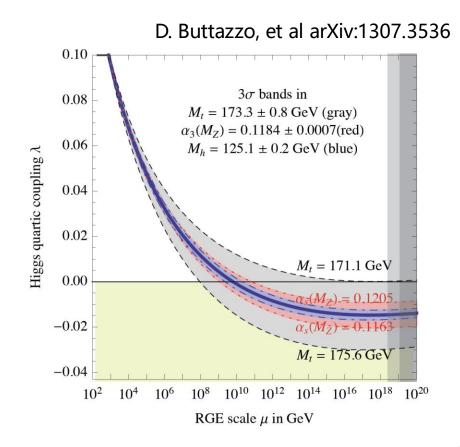
Decay rate of the inflaton is "h" dependent:

$$\Gamma \simeq rac{m_\phi M^2}{4\pi\Lambda^2} \Biggl[1 + rac{1}{4} \Biggl(rac{y_
u h}{M} \Biggr)^{\!2} \Biggr]$$

Higgs during inflation

- During inflation(de-Sitter universe), Higgs also gets quantum fluctuations
- If inflation lasts long enough, super-horizon fluctuations reach a equilibrium state

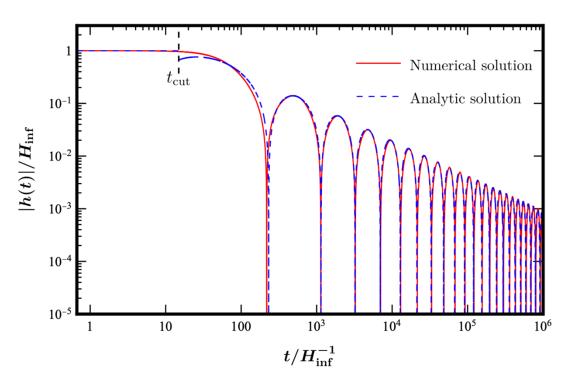




Higgs after inflation

Inflaton oscillates at the bottom potential. If the inflaton potential is dominated by the mass term, the Universe is matter-dominated: w = 0, $a \sim t^{2/3}$

$$\ddot{h}(t) + \frac{2}{t}\dot{h}(t) + \lambda h^{3}(t) = 0$$



Numerical solution Analytic solution
$$h(t) = \begin{cases} h_{\inf}, & t \leq t_{\text{cut}} \\ AH_{\inf}(\frac{h_{\inf}}{H_{\inf}\lambda})^{\frac{1}{3}} (H_{\inf}t)^{-\frac{2}{3}} \cos\left(\lambda^{\frac{1}{6}}|h_{\inf}|^{\frac{1}{3}} \omega t^{\frac{1}{3}} + \theta\right), & t > t_{\text{cut}} \end{cases}$$

$$t_{\rm cut} = \frac{\sqrt{2}}{3\sqrt{\lambda}\,h_{\rm inf}} \qquad \begin{array}{ll} A & = 2^{1/3}3^{-2/3}5^{1/4} \simeq 0.9 \\ & = \frac{\Gamma^2(3/4)}{\sqrt{\pi}}2^{1/3}3^{1/3}5^{1/4} \simeq 2.3 \\ & \theta & = -3^{-1/3}2^{1/6}\omega - \arctan 2 \simeq -2.9 \end{array}$$

Higgs modulated reheating

Considering decay rate of the inflaton is h dependent

$$\Gamma \simeq rac{m_\phi M^2}{4\pi\Lambda^2} \Biggl[1 + rac{1}{4} \Biggl(rac{y_
u h}{M} \Biggr)^2 \Biggr]$$

Gia Dvali, Andrei Gruzinov, Matias Zaldarriaga, Phys.Rev. D69 (2004) 023505

- Different patches of the universe reheat differently (modulated reheating)
- The curvature perturbation is generated by Higgs field
- Delta N formalism (from the end of inflation to the time after reheating completed)

$$N(\mathbf{x}) = -\frac{1}{3(1+w_1)} \ln \frac{\rho_{\text{reh}}(h(\mathbf{x}))}{\rho_{\text{inf}}} - \frac{1}{3(1+w_2)} \ln \frac{\rho_f}{\rho_{\text{reh}}(h(\mathbf{x}))} = -\frac{1}{6} \ln(\Gamma_{\text{reh}}) \qquad \qquad \mathbf{w}_1 = \mathbf{0}$$

$$\mathbf{w}_2 = \frac{1}{3}$$

$$\zeta_h(\delta h_{\text{inf}}(\mathbf{x})) = \delta N(\delta h_{\text{inf}}(\mathbf{x})) = N' \delta h_{\text{inf}} + \frac{1}{2} N'' (\delta h_{\text{inf}})^2 + \cdots$$

Higgs modulated reheating

Curvature perturbation contains two parts

$$\zeta \, = \, \zeta_\phi + \zeta_h$$

$$\mathcal{P}_{\zeta}^{(\phi)} = \left(\frac{H}{\dot{\phi}}\right)^2 \mathcal{P}_{\phi} = \left(\frac{H}{\dot{\phi}}\right)^2 \frac{H^2}{4\pi^2}$$

Taylor expansion of the curvature perturbations

$$\zeta_h(\mathbf{x}) = -\frac{1}{6} \left[\frac{\Gamma_0'}{\Gamma_0} \delta h_{\text{inf}}(\mathbf{x}) + \frac{\Gamma_0 \Gamma_0'' - \Gamma_0' \Gamma_0'}{2\Gamma_0^2} \delta h_{\text{inf}}^2(\mathbf{x}) \right] \equiv z_1 \delta h_{\text{inf}}(\mathbf{x}) + \frac{1}{2} z_2 \delta h_{\text{inf}}^2(\mathbf{x})$$

$$\Gamma_0' = \left. rac{\mathrm{d}\Gamma_{\mathrm{reh}}}{\mathrm{d}h_{\mathrm{inf}}} \right|_{h_{\mathrm{inf}}(\mathbf{x}) = ar{h}} = \left. rac{\mathrm{d}\Gamma_{\mathrm{reh}}}{\mathrm{d}h_{\mathrm{reh}}} rac{\partial h_{\mathrm{reh}}}{\partial h_{\mathrm{inf}}} \right|_{h_{\mathrm{inf}}(\mathbf{x}) = ar{h}},$$

$$\Gamma_0'' = \left. \frac{\mathrm{d}^2 \Gamma_{\mathrm{reh}}}{\mathrm{d} h_{\mathrm{inf}}^2} \right|_{h_{\mathrm{inf}}(\mathbf{x}) = \bar{h}} = \left. \frac{\mathrm{d}^2 \Gamma_{\mathrm{reh}}}{\mathrm{d} h_{\mathrm{reh}}^2} \left(\frac{\partial h_{\mathrm{reh}}}{\partial h_{\mathrm{inf}}} \right)^2 \right|_{h_{\mathrm{inf}}(\mathbf{x}) = \bar{h}} + \left. \frac{\mathrm{d} \Gamma_{\mathrm{reh}}}{\mathrm{d} h_{\mathrm{reh}}} \left(\frac{\partial^2 h_{\mathrm{reh}}}{\partial h_{\mathrm{inf}}^2} \right) \right|_{h_{\mathrm{inf}}(\mathbf{x}) = \bar{h}}$$

$$\mathcal{P}_{\zeta}^{(h)}=z_1^2\mathcal{P}_{\delta h}=z_1^2rac{H^2}{4\pi^2}$$
 $R=\left(rac{\mathcal{P}_{\zeta}^{(h)}}{\mathcal{P}_{\zeta}}
ight)^{1/2}=|z_1|\left(rac{\mathcal{P}_{\delta h}}{\mathcal{P}_{\zeta}}
ight)^{1/2}$ R should be less than 1

Bispectrum of ζ

$$\zeta_h = z_1 \delta h + \frac{1}{2} z_2 \delta h^2$$

Considering the three point correlation function

$$\langle \zeta_{\mathbf{k}_1} \zeta_{\mathbf{k}_2} \zeta_{\mathbf{k}_3} \rangle_h = z_1^3 \langle \delta h_{\mathbf{k}_1} \delta h_{\mathbf{k}_2} \delta h_{\mathbf{k}_3} \rangle + z_1^2 z_2 \langle \delta h^4 \rangle (\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$$

Higgs self-coupling

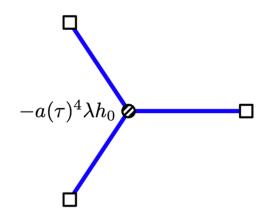
$$\Delta \mathcal{L} = -\sqrt{-g} [(\lambda \bar{h}) \delta h^3]$$

Non-linear Evolution

$$\frac{1}{2}z_2\delta h^2$$

Bispectrum of ζ

First term is from Higgs self-coupling (in-in formalism/Schwinger-Keldysh formalism)



$$\begin{split} \langle \delta h_{\mathbf{k}_1} \delta h_{\mathbf{k}_2} \delta h_{\mathbf{k}_3} \rangle' &= \frac{1}{2} \lambda \bar{h} H^2 \bigg\{ \! \bigg(\! \frac{1}{k_1^3 k_2^3} \! + \! 2 \, \mathrm{perm.} \! \bigg) \! \bigg(\! - \! N_e \! + \! \gamma \! - \! \frac{4}{3} \! \bigg) \\ &+ \! \frac{1}{k_1^2 k_2^2 k_3^2} \! - \! \bigg(\! \frac{1}{k_1 k_2^2 k_3^3} \! + \! 5 \, \mathrm{perm.} \! \bigg) \! \bigg\} \,, \end{split}$$

$$N_e = \log(\frac{a_{\text{end}}}{a_k}) = \log(\frac{-\frac{1}{H\tau_f}}{\frac{k_t}{H}}) = -\log(k_t|\tau_f|) \sim 60$$

Steven Weinberg, Phys.Rev.D 72 (2005) 043514, Phys.Rev.D 74 (2006) 023508

Xingang Chen, Yi Wang, Zhong-Zhi Xianyu, JCAP 1712 (2017) 006

Second term is from non-linear evolution of the Higgs

$$z_1^2 z_2 \langle \delta h^4 \rangle (\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = (2\pi)^3 \delta^3 (\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) z_1^2 z_2 \left[\frac{H^4}{4k_1^3 k_2^3} + (2 \text{ perm.}) \right].$$

Local type non-Gaussianity

The local type non-Gaussianity(NG) which is defined by Bardeen Poten $\Phi\equiv {3\over 5}\zeta$

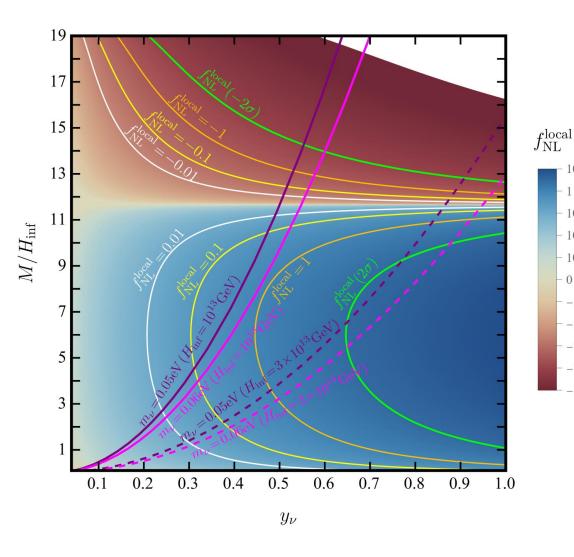
$$\langle \Phi_{\mathbf{k_1}} \Phi_{\mathbf{k_2}} \Phi_{\mathbf{k_3}} \rangle_{\text{local}}' = 2A^2 f_{\text{NL}}^{\text{local}} \left\{ \frac{1}{k_1^3 k_2^3} + \frac{1}{k_2^3 k_3^3} + \frac{1}{k_3^3 k_1^3} \right\}$$

The local NG from our scenario is

$$f_{\rm NL}^{\rm local} \sim -\frac{10}{3} \frac{z_1^3 H^3}{(2\pi)^4 \mathcal{P}_{\zeta}^2} \cdot \left(\frac{\lambda \bar{h}}{2H} N_e - \frac{H \cdot z_2}{4z_1}\right)$$

$$f_{
m NL}^{
m local} = -0.9 \pm 5.1 \quad (68\% \ {
m C.L., \ Planck \ 2018})$$

Local type non-gaussianity



Parameters	\mathcal{P}_{ζ}	N_e	$H_{ m inf}$	m_{ϕ}	Λ	λ
Values	2.1×10^{-9}	60	$(1,3) \times 10^{13} \text{GeV}$	$40H_{ m inf}$	$60H_{ m inf}$	0.01

- Parameter space with Yukawa O(1) could be probed by future observations
- H and neutrino masses are relevant

 -10^{-2}

 10^{-4} 10^{-6}

 -10^{-3} -10^{-1}

-10

Interplaying with neutrino experiments(JUNO, DUNE for neutrino ordering)

Summary

- High Scale inflation could be a good platform to probe new physics
- We propose a minimal model incorporating inflation and seesaw
- Seesaw generated non-Gaussianity could be probed in near future CMB or large-scale structure observations

Thanks!