Development of an ultra fast x-ray camera using hybrid pixel detetor

Arkadiusz Dawiec

Director of the thesis : Christian Morel Co-encadrant : Bernard Dinkespiler

16 November 2009

Plan of the presentation

Introduction

- Principle and applications of hybrid pixel detectors
- XPAD3 chip
- Overview of the XPAD detector
 - Architecture
- Performance and first results of the prototype camera
- Conclusions and perspectives

Introduction Hybrid pixel detector - principles

The sensor is connected to the electronic readout circuit using flip-chip and bump bonding technologies. The two parts are pixelized with the same pitch.

- ability to count single photons
- possibility to chose material depending on the application
- analog and digital processing on each pixel

XPAD3 – x-ray photon counting imaging chip

 \triangleright

 \triangleright

>

Chip and pixel layout

- designed in submicronic technology (IBM 0,25 μm)
 - pixel size : $130 \times 130 \ \mu m^2$
 - 9600 pixels (120 rows x 80 columns)
 - programmable energy tresholds (minimum treshold < 4 keV)
 - no dead time for readout
 - no limit for the dynamic (12 bits counter and overflow)
 - Maximum count rate 10⁶ photons/pixel/s internal temperature sensor
 - on the fly readout (less than 2 ms)

Introduction

Hybrid pixel detector vs CCD / MAPS

Hybrid pixels	CCD	MAPS
single photon counting (energy windowing)	charge integration (no energy selection)	charge integration (no energy selection)
high readout speed	low readout speed	high readout speed
high radiation tolerant	pure radiation tolerant	need to use radiation hard electronics

Introduction

Applications

High energy physic :

The ATLAS pixel detector is composed of 86 millions of hybrid pixels.

Synchrotron source experiments :

High count rates, large counter dynamics, adjustable energy treshold and fast readout are the features which makes hybrid pixel detectors best choise to meet requirments for the experiments on high flux and high brilliance third generation synchrotron X-ray sources.

Diffraction rings an teflon with 14 keV X-ray beam.

Introduction

Applications

Biomedical imaging :

Each pixel is independent of the others and its adaptable dynamics will make it possible to optimising contrast agent detection while reducing the dose exposure.

A. Dawiec

Architecture

Detector architecture is organized in multi-stage system which ensures required speed of data collection.

Detector :

- 8 modules working in parallel
- each module equipped with local processing electronics
- local storage (DDR2 and SRAM)

Hub board :

- dispatches messages for the modules
- gathers, reformats and transfer data from the modules to the DAQ
- distributes gate signal and detector's bias voltage

DAQ software :

- > module selection
- ≻ test
- calibration
- acquisition
- image display
- read/load configuration

Architecture – PCI express upgrade

Change :

- PCI-express board instead of USB-opto
- > Two optical fibers instead of one

Benefits :

- image rate increased from 3 images/s up to > 500 images/s
- long data acquisition limited only by size of the PC's storage

Architecture

Module with processing electronics

USB-opto board

Acquisition PC with PC express board

A. Dawiec

Architecture

- detection area : $75 \times 120 \text{ mm}^2$
- 8 tiled modules (7° tilt) of 7 chips
- 537600 pixels (1 chip = 80 x 120 px)
- 500 µm silicon sensor

Detector installed on the diffractometer at Soleil synchrotron

PET/CT imaging system

Alignment of the modules

Spatial resolution

Detector covered lead bar pattern

E = 14 keV, diffusion on 5mm of water

A. Dawiec

Working at low energies

Raw data

16.11.09

XPAD detector - results Crystallography

A. Dawiec

XPAD detector - results Biomedical imaging

E = 17 keV with Nb/Mo filtration, 720 projection, 1s exposition time, 10000 photons per pixel

Reconstructed data

Conclusions

Summary of the properties of the first protoype :

- \succ counting rate 10⁶ photons/pixel/s
- readout speed 3 images/s
- Iocal storage of 800 images (module's local memory) for fast acquisitions
- unlimited dynamic with overflow bit scan
- 3 detectors operational

Short term improvement :

- readout speed will increase up to > 500 images/s
- image storage in the PC's memory
- contrast media detection studies pixels becames intelligent

Perspectives and long term improvement :

- new XPAD3.2 chip
- new architecture of the detector (readout speed increasing > 1000 images/s, lower weight and smaller dimensions)
- possible to scale up the detector by assembling smaller ones (no reduction on the redout speed)
- > writing of the thesis