Precision predictions for hadroproduction processes beyond the Standard Model

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg)

In collaboration with G. Bozzi, J. Debove, M. Klasen, F. Ledroit, Q. Li & J. Morel

Physics seminar @ Centre de Physique des Particules de Marseille November 2, 2009

Outline

Models and motivation

Motivation for resummation calculations

2

Parton showers and resummation

- Parton showers
- Transverse-momentum, threshold and joint resummation formalisms
- Matching to the fixed order

3

Numerical results, with uncertainties

- The Drell-Yan and the Tevatron
- Grand Unified Theories and Z' bosons
- The Minimal Supersymmetric Standard Model (MSSM)

4 Summary - conclusions

Outline

Models and motivation

Motivation for resummation calculations

2

Parton showers and resummation

- Parton showers
- Transverse-momentum, threshold and joint resummation formalisms
- Matching to the fixed order

³ Numerical results, with uncertainties

- The Drell-Yan and the Tevatron
- Grand Unified Theories and Z' bosons
- The Minimal Supersymmetric Standard Model (MSSM)

Summary - conclusions

Simple questions... and a proposal for answers

• One of the LHC purposes: which model of new physics is the correct one?

- * We need data [which are hopefully coming this next year].
- * We need theoretical predictions.
- * Reliable predictions seem reasonnable. [that's the aim of this talk].

Confront data and theory.

Simple questions... and a proposal for answers

• One of the LHC purposes: which model of new physics is the correct one?

- * We need data [which are hopefully coming this next year].
- * We need theoretical predictions.
- * Reliable predictions seem reasonnable. [that's the aim of this talk].

Confront data and theory.

- How to make reliable predictions? toy case
 - * Process: Drell-Yan lepton pair production at the Tevatron.
 - * Considered observables:
 - \diamond the lepton-pair invariant-mass distribution $\frac{d\sigma}{dM}$.
 - \diamond the lepton-pair transverse-momentum distribution $\frac{d\sigma}{d\sigma_{\tau}}$.
 - * No new physics [for the moment, the talk's topic is not changed...].

Showers/resummatio

Fixed-order perturbative theory

• QCD factorization theorem.

$$\sigma = \sum_{ab} \int \mathrm{d}x_a \, \mathrm{d}x_b \, f_{a/\rho_1}(x_a;\mu_F) \, f_{b/\rho_2}(x_b;\mu_F) \, \hat{\sigma}_{ab}$$

- * Long-distance and short-distance physics factorize.
- * Long-distance physics: parton densities f_a , f_b .
- * Short-distance physics: hard scattering matrix-element $\hat{\sigma}_{ab}$.
- * Introduction of the unphysical factorization scale μ_F .

Showers/resummatio

Fixed-order perturbative theory

• QCD factorization theorem.

$$\sigma = \sum_{ab} \int \mathrm{d}x_a \, \mathrm{d}x_b \, f_{a/p_1}(x_a;\mu_F) \, f_{b/p_2}(x_b;\mu_F) \, \hat{\sigma}_{ab}$$

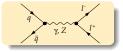
- * Long-distance and short-distance physics factorize.
- * Long-distance physics: parton densities f_a , f_b .
- * Short-distance physics: hard scattering matrix-element $\hat{\sigma}_{ab}$.
- * Introduction of the unphysical factorization scale μ_F .
- Partonic cross section: QCD parturbation theory.

$$\hat{\sigma} = \hat{\sigma}^{(0)} + \alpha_s \hat{\sigma}^{(1)} + \dots$$

Introduction 00●0000000		

First guess: leading order predictions

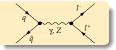
• Easy naive approach: matrix element calculation at leading order:



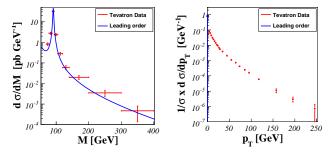
Introduction 00●00000000		

First guess: leading order predictions

• Easy naive approach: matrix element calculation at leading order:



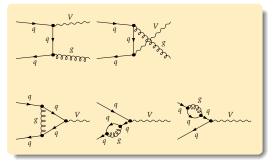
• Confrontation between theory and Tevatron data. [D\$\$\varphi\$ collaboration (2005, 2008)]



Disagreement between theory and experiment.

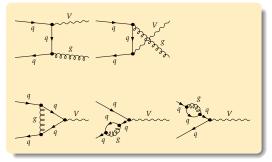
Second try: next-to-leading order predictions (1)

• Improvement of the predictions: next-to-leading order calculation.



Second try: next-to-leading order predictions (1)

• Improvement of the predictions: next-to-leading order calculation.



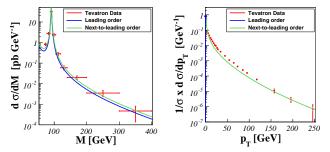
• Partonic invariant-mass and transverse-momentum distributions at $\mathcal{O}(\alpha_s)$,

$$\begin{aligned} \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}M} &= \hat{\sigma}^{(0)}(M)\,\delta(1-z) + \alpha_s\,\hat{\sigma}^{(1)}(M,z) + \mathcal{O}(\alpha_s^2),\\ \frac{\mathrm{d}^2\hat{\sigma}}{\mathrm{d}M\,\mathrm{d}p_T} &= \hat{\sigma}^{(0)}(M)\,\delta(p_T)\delta(1-z) + \alpha_s\,\hat{\sigma}^{(1)}(M,z,p_T) + \mathcal{O}(\alpha_s^2), \end{aligned}$$
where $z = M^2/s$.

Precision predictions for BSM processes

Second try: next-to-leading order predictions (2)

● Confrontation between theory and Tevatron data. [DØ collaboration (2005, 2008)]

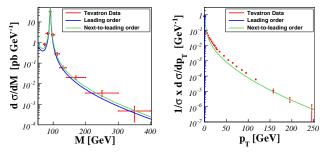


* Invariant-mass distribution: good agreement.

- p_-distribution:
 - ♦ good agreement in the large- p_T region.
 - \diamond diverges in the small- p_T region.

Second try: next-to-leading order predictions (2)

● Confrontation between theory and Tevatron data. [DØ collaboration (2005, 2008)]



* Invariant-mass distribution: good agreement.

- p_T -distribution:
 - ♦ good agreement in the large- p_T region.
 - ♦ diverges in the small- p_T region.

• How to improve NLO predictions? [in particular for the small-p_T region.]

• Partonic invariant-mass and transverse-momentum distributions at $\mathcal{O}(\alpha_s)$,

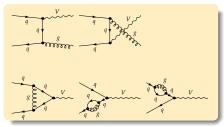
$$\begin{split} \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}M} &= \hat{\sigma}^{(0)}(M)\,\delta(1-z) + \alpha_s\,\hat{\sigma}^{(1)}(M,z) + \mathcal{O}(\alpha_s^2),\\ \frac{\mathrm{d}^2\hat{\sigma}}{\mathrm{d}M\,\mathrm{d}p_T} &= \hat{\sigma}^{(0)}(M)\,\delta(p_T)\delta(1-z) + \alpha_s\,\hat{\sigma}^{(1)}(M,z,p_T) + \mathcal{O}(\alpha_s^2),\\ \end{split}$$
 where $z = M^2/s.$

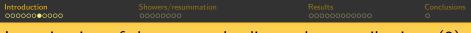
• Partonic invariant-mass and transverse-momentum distributions at $\mathcal{O}(\alpha_s)$,

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}M} = \hat{\sigma}^{(0)}(M)\,\delta(1-z) + \alpha_s\,\hat{\sigma}^{(1)}(M,z) + \mathcal{O}(\alpha_s^2),$$
$$\frac{\mathrm{d}^2\hat{\sigma}}{\mathrm{d}M\,\mathrm{d}p_T} = \hat{\sigma}^{(0)}(M)\,\delta(p_T)\delta(1-z) + \alpha_s\,\hat{\sigma}^{(1)}(M,z,p_T) + \mathcal{O}(\alpha_s^2),$$

where $z = M^2/s$.

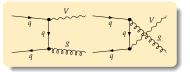
- $\hat{\sigma}^{(1)}$ contains two different pieces.
 - * Real gluon emission diagrams.
 - * Virtual loop contributions.



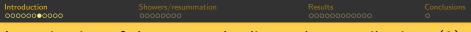


Investigation of the next-to-leading order contributions (2)

• Amplitude for soft real gluon emission.

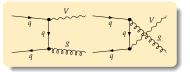


$$\begin{split} iM &= g_s T^a \ \bar{v}(k_2) \left[\frac{\not(k_g) \ \left(k_g + k_2 \right) \ \Gamma^{\mu}_{qqV}}{2k_2 \cdot k_g} - \frac{\Gamma^{\mu}_{qqV} \ \left(k_g + k_1 \right) \ \not(k_g)}{2k_1 \cdot k_g} \right] u(k_1) \\ &\approx g_s T^a \left[\frac{\epsilon \cdot k_2}{k_2 \cdot k_g} - \frac{k_1 \cdot \epsilon}{k_1 \cdot k_g} \right] \bar{v}(k_2) \ \Gamma^{\mu}_{qqV} u(k_1) \\ &= g_s T^a \left[\frac{\epsilon \cdot k_2}{k_0^2 \mathbf{k}_0^2 (1 + \cos \theta)} - \frac{k_1 \cdot \epsilon}{k_0^2 \mathbf{k}_0^2 (1 - \cos \theta)} \right] \mathbf{iM}^{\mathrm{Born}} \end{split}$$



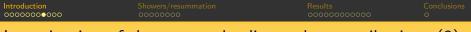
Investigation of the next-to-leading order contributions (2)

• Amplitude for soft real gluon emission.



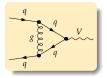
$$\begin{split} iM &= g_s T^a \ \bar{v}(k_2) \left[\frac{\not(k_g) \ \left(\not k_g + \not k_2 \right) \ \Gamma^{\mu}_{qqV}}{2k_2 \cdot k_g} - \frac{\Gamma^{\mu}_{qqV} \ \left(\not k_g + \not k_1 \right) \ \not(k_g)}{2k_1 \cdot k_g} \right] u(k_1) \\ &\approx g_s T^a \left[\frac{\epsilon \cdot k_2}{k_2 \cdot k_g} - \frac{k_1 \cdot \epsilon}{k_1 \cdot k_g} \right] \bar{v}(k_2) \ \Gamma^{\mu}_{qqV} u(k_1) \\ &= g_s T^a \left[\frac{\epsilon \cdot k_2}{k_0^2 \mathbf{k}_g^0 (1 + \cos \theta)} - \frac{k_1 \cdot \epsilon}{k_0^2 \mathbf{k}_g^0 (1 - \cos \theta)} \right] \mathbf{iM}^{\mathrm{Born}} \end{split}$$

Soft and collinear radiation diverges and factorizes.



Investigation of the next-to-leading order contributions (3)

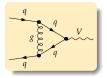
• Amplitude for the virtual contribution (soft gluons in the loop).



$$\begin{split} iM &= (i\,g_s^2)\bar{\nu}(k_2) \int \mathrm{d}k_g \frac{\gamma_{\nu}\left(k_2 + k_g\right)\Gamma^{\mu}_{qqV}\left(k_1 - k_g\right)\gamma^{\nu}}{k_g^2\left(2k_1 \cdot k_g\right)\left(2k_2 \cdot k_g\right)} u(k_1) \\ &\approx (i\,g_s^2) \int \mathrm{d}k_g \frac{k_1 \cdot k_2}{k_g^2\left(k_1 \cdot k_g\right)\left(k_2 \cdot k_g\right)} iM^{\mathrm{Born}} \\ &= (i\,g_s^2) \int \mathrm{d}k_g \frac{k_1 \cdot k_2}{k_g^2\left(k_1^0 \mathbf{k}_g^0(1 - \cos\theta)\right)\left(k_2^0 \mathbf{k}_g^0(1 + \cos\theta)\right)} \mathbf{i} \mathbf{M}^{\mathrm{Born}} \end{split}$$

Investigation of the next-to-leading order contributions (3)

• Amplitude for the virtual contribution (soft gluons in the loop).



$$\begin{split} iM &= (i\,g_s^2)\bar{\nu}(k_2) \int \mathrm{d}k_g \frac{\gamma_\nu \left(k_2 + k_g\right)\Gamma^{\mu}_{qqV}\left(k_1 - k_g\right)\gamma^\nu}{k_g^2\left(2k_1 \cdot k_g\right)\left(2k_2 \cdot k_g\right)} u(k_1) \\ &\approx (i\,g_s^2) \int \mathrm{d}k_g \frac{k_1 \cdot k_2}{k_g^2\left(k_1 \cdot k_g\right)\left(k_2 \cdot k_g\right)} iM^{\mathrm{Born}} \\ &= (i\,g_s^2) \int \mathrm{d}k_g \frac{k_1 \cdot k_2}{k_g^2\left(k_1^0 \mathbf{k}_g^0(1 - \cos\theta)\right)\left(k_2^0 \mathbf{k}_g^0(1 + \cos\theta)\right)} \mathbf{i} \mathbf{M}^{\mathrm{Born}} \end{split}$$

The virtual contributions diverge and factorize.

• Sum of the two contributions.

$$\hat{\sigma}^{(1)} = \hat{\sigma}^{(1,\text{loop})} + \hat{\sigma}^{(1,\text{real})}$$

- * Cancellation of the poles.
- * Infrared behaviour: logarithmic terms in the distributions,

$$\alpha_s \left(\frac{\ln(1-z)}{1-z} \right)_+$$
 and $\frac{\alpha_s}{p_T^2} \ln \frac{M^2}{p_T^2}$

* Problems at $z \leq 1$ or small p_T .

• Sum of the two contributions.

$$\hat{\sigma}^{(1)} = \hat{\sigma}^{(1,\text{loop})} + \hat{\sigma}^{(1,\text{real})}$$

- * Cancellation of the poles.
- * Infrared behaviour: logarithmic terms in the distributions,

$$\alpha_s \left(\frac{\ln(1-z)}{1-z} \right)_+$$
 and $\frac{\alpha_s}{p_T^2} \ln \frac{M^2}{p_T^2}$

* Problems at $z \leq 1$ or small p_T .

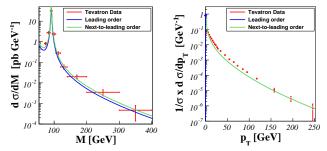
The fixed-order theory is unreliable in these kinematical regions.

 Introduction
 Showers/resummation
 Results
 Conclusions

 0000000000
 0000000000
 0
 0
 0

The problem of the soft and collinear radiation (2)

• Confrontation between theory and Tevatron data. [D\$\varphi\$ collaboration (2005, 2008)]

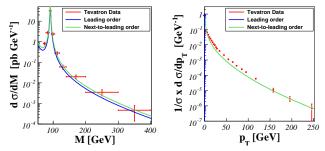


- * Invariant-mass distribution:
 - \diamond Convolution with the steeply falling parton densities at large z.
 - ♦ Next-to-leading order calculation reliable.

Introduction Showers/resummation Results Conclusions

The problem of the soft and collinear radiation (2)

• Confrontation between theory and Tevatron data. [DØ collaboration (2005, 2008)]



- * Invariant-mass distribution:
 - \diamond Convolution with the steeply falling parton densities at large z.
 - ♦ Next-to-leading order calculation reliable.
- * *p*_T-distribution:
 - $\diamond~$ Next-to-leading order calculation reliable for the large $p_T.$
 - ♦ Behaviour in the small- p_T region: $\propto \frac{\alpha_s}{p_T^2} \ln \frac{M^2}{p_T^2}$.

Improvements

Improvements of the next-to-leading order calculation.

- Matching with a resummation calculation.
 - * Correct treatment of the soft and collinear radiation.
 - * Perturbative method.
 - * Soft and collinear radiation taken into account to all orders.
 - * Parton-level calculation.
- Matching with a parton shower algorithm.
 - * Approximation of the resummation calculation.
 - * Suitable for a proper description of the collision.

Outline

Models and motivation

Motivation for resummation calculations

2

Parton showers and resummation

- Parton showers
- Transverse-momentum, threshold and joint resummation formalisms
- Matching to the fixed order

Numerical results, with uncertainties

- The Drell-Yan and the Tevatron
- Grand Unified Theories and Z' bosons
- The Minimal Supersymmetric Standard Model (MSSM)

Summary - conclusions

	Showers/resummation ●0000000	
Parton showers	(1)	

• The parton splitting factorizes \Rightarrow iterative splitting.

where t is the ordering variable and z the momentum fraction.

Showers/resummation

Conclusions o

Parton showers (1)

• The parton splitting factorizes \Rightarrow iterative splitting.

where t is the ordering variable and z the momentum fraction.

- No emission probability the Sudakov form factor.
 - * Conservation of probability for the branching of a parton:

$$\begin{split} 1 &= P_{\rm no\ emis}(t+{\rm d}t,t) + P_{\rm emis}(t+{\rm d}t,t) \\ &= P_{\rm no\ emis}(t+{\rm d}t,t) + \frac{{\rm d}t}{t}\sum_b \int {\rm d}z \frac{\alpha_s(t)}{4\pi} P_{ab}(z) \end{split}$$

Showers/resummation

Conclusions o

Parton showers (1)

• The parton splitting factorizes \Rightarrow iterative splitting.

where t is the ordering variable and z the momentum fraction.

- No emission probability the Sudakov form factor.
 - * Conservation of probability for the branching of a parton:

$$\begin{split} \mathbf{1} &= P_{\mathrm{no} \ \mathrm{emis}}(t + \mathrm{d}t, t) + P_{\mathrm{emis}}(t + \mathrm{d}t, t) \\ &= P_{\mathrm{no} \ \mathrm{emis}}(t + \mathrm{d}t, t) + \frac{\mathrm{d}t}{t} \sum_{b} \int \mathrm{d}z \frac{\alpha_{\mathsf{s}}(t)}{4\pi} P_{\mathsf{ab}}(z) \end{split}$$

* Solving the equation defines the Sudakov form factor,

$$\mathbf{\Delta}(\mathbf{t}_1, \mathbf{t}_2) = P_{\text{no emis}}(t_1, t_2) = \exp\left[-\int_{t_1}^{t_2} \frac{\mathrm{d}t}{t} \sum_b \int \mathrm{d}z \frac{\alpha_s}{4\pi} P_{ba}(z)\right]$$

Showers/resummation

Conclusions

Parton showers (1)

• The parton splitting factorizes \Rightarrow iterative splitting.

where t is the ordering variable and z the momentum fraction.

- No emission probability the Sudakov form factor.
 - * Conservation of probability for the branching of a parton:

$$\begin{split} 1 &= P_{\rm no\ emis}(t+{\rm d}t,t) + P_{\rm emis}(t+{\rm d}t,t) \\ &= P_{\rm no\ emis}(t+{\rm d}t,t) + \frac{{\rm d}t}{t}\sum_b \int {\rm d}z \frac{\alpha_s(t)}{4\pi} P_{ab}(z) \end{split}$$

* Solving the equation defines the Sudakov form factor,

$$\Delta(\mathbf{t}_1, \mathbf{t}_2) = P_{\text{no emis}}(t_1, t_2) = \exp\left[-\int_{t_1}^{t_2} \frac{\mathrm{d}t}{t} \sum_b \int \mathrm{d}z \frac{\alpha_s}{4\pi} P_{ba}(z)\right]$$

* Logarithmic dependence \Leftrightarrow leading-log approximation.

Showers/resummation ⊙●○○○○○○	
$\langle 0 \rangle$	

Evolution equation for the parton a to the cut-off scale t_0

$$\phi_{a}(t,E) = \Delta_{a}(t,t_{0}) + \sum_{b} \int_{t_{0}}^{t} \frac{\alpha_{s}(t')}{4\pi} \frac{\mathrm{d}t'}{t'} \mathrm{d}z \,\Delta_{a}(t,t') \,P_{ab}(z) \,\phi_{b}(t',zE) \,\phi_{c}(t',(1-z)E)$$

Showers/resummation ⊙●○○○○○○	
$\langle 0 \rangle$	

Evolution equation for the parton a to the cut-off scale t_0

$$\phi_{a}(t,E) = \Delta_{a}(t,t_{0}) + \sum_{b} \int_{t_{0}}^{t} \frac{\alpha_{s}(t')}{4\pi} \frac{\mathrm{d}t'}{t'} \mathrm{d}z \,\Delta_{a}(t,t') \,P_{ab}(z) \,\phi_{b}(t',zE) \,\phi_{c}(t',(1-z)E)$$

• Derivation of a parton shower algorithm

* Ordered Markov chain (t-variable)

$$Q_0^2 \ll t_1 \ll t_2 \ll \ldots \ll t_N \ll Q^2$$

* Choice of *t*: different shower algorithms.

Showers/resummation ⊙●○○○○○○	

Evolution equation for the parton a to the cut-off scale t_0

$$\phi_{a}(t,E) = \Delta_{a}(t,t_{0}) + \sum_{b} \int_{t_{0}}^{t} \frac{\alpha_{s}(t')}{4\pi} \frac{\mathrm{d}t'}{t'} \mathrm{d}z \,\Delta_{a}(t,t') \,P_{ab}(z) \,\phi_{b}(t',zE) \,\phi_{c}(t',(1-z)E)$$

• Derivation of a parton shower algorithm

* Ordered Markov chain (t-variable)

$$Q_0^2 \ll t_1 \ll t_2 \ll \ldots \ll t_N \ll Q^2$$

- * Choice of t: different shower algorithms.
- Limitations.
 - * Leading logarithms,
 - * Large number of colors,
 - * Collinear and/or soft-collinear radiation.

Showers/resummation ⊙●○○○○○○	

Evolution equation for the parton a to the cut-off scale t_0

$$\phi_{a}(t,E) = \Delta_{a}(t,t_{0}) + \sum_{b} \int_{t_{0}}^{t} \frac{\alpha_{s}(t')}{4\pi} \frac{\mathrm{d}t'}{t'} \mathrm{d}z \,\Delta_{a}(t,t') \,P_{ab}(z) \,\phi_{b}(t',zE) \,\phi_{c}(t',(1-z)E)$$

• Derivation of a parton shower algorithm

* Ordered Markov chain (t-variable)

$$Q_0^2 \ll t_1 \ll t_2 \ll \ldots \ll t_N \ll Q^2$$

- * Choice of t: different shower algorithms.
- Limitations.
 - * Leading logarithms,
 - * Large number of colors,
 - * Collinear and/or soft-collinear radiation.
- Improvements require matrix exponentiation \Rightarrow soft-gluon resummation.

Main features of the resummation

• Reorganization of the cross section:

$$\mathrm{d}\sigma = \mathrm{d}\sigma^{(\mathrm{res})} + \mathrm{d}\sigma^{(\mathrm{fin})} \; .$$

• $d\sigma^{(res)}$:

- * Contains all the logarithmic terms.
- * Resummed to all orders in α_s .
- * Exponentiation (Sudakov form factor).
- $d\sigma^{(fin)}$:
 - * Remaining (regular) contributions.

The resummed component (1)

• Based on factorization properties.

- * Holds in non-physical conjugate spaces.
- * Mellin N-space (N conjugate to M^2/S_h).
- * Impact parameter b (conjugate to p_T).

$$\begin{split} \mathrm{d}\sigma^{(\mathrm{res})}(N,b) &= \sum_{a,b} f_{a/h_1}(N+1) f_{b/h_2}(N+1) \mathcal{W}_{ab}(N,b), \\ \mathcal{W}_{ab}(N,b) &= \mathcal{H}_{ab}(N) \exp\Big\{\mathcal{G}(N,b)\Big\}. \end{split}$$

The resummed component (1)

• Based on factorization properties.

- * Holds in non-physical conjugate spaces.
- * Mellin N-space (N conjugate to M^2/S_h).
- * Impact parameter b (conjugate to p_T).

$$\begin{split} \mathrm{d}\sigma^{(\mathrm{res})}(N,b) &= \sum_{a,b} f_{a/h_1}(N+1) f_{b/h_2}(N+1) \mathcal{W}_{ab}(N,b), \\ \mathcal{W}_{ab}(N,b) &= \mathcal{H}_{ab}(N) \exp\left\{\mathcal{G}(N,b)\right\}. \end{split}$$

- The *H*-coefficient:
 - * Contains real and virtual collinear radiation, hard contributions.
- The Sudakov form factor \mathcal{G} :
 - * Contains the soft-collinear radiation.

Showers/resummation

The resummed component (2)

$$\mathcal{W}_{ab}(N,b) = \mathcal{H}_{ab}(N) \exp \left\{ \mathcal{G}(N,b) \right\}.$$

- The *H*-coefficient:
 - * Contains real and virtual collinear radiation, hard contributions.
 - * Can be computed perturbatively as series in α_s , from fixed-order results.
 - * Is process-dependent.

Showers/resummation

The resummed component (2)

$$\mathcal{W}_{ab}(N,b) = \mathcal{H}_{ab}(N) \exp \left\{ \mathcal{G}(N,b) \right\}.$$

- The *H*-coefficient:
 - * Contains real and virtual collinear radiation, hard contributions.
 - * Can be computed perturbatively as series in α_s , from fixed-order results.
 - * Is process-dependent.
- The Sudakov form factor \mathcal{G} :
 - * Contains the soft-collinear radiation.
 - * Can be computed perturbatively as series in $\alpha_s \log$.
 - * Is process-independent (universal).
 - * Contains the full color and spin structure.

References

- p_T-resummation [Catani, de Florian, Grazzini (2001); Bozzi, Catani, de Florian, Grazzini (2006)]
 - * Universal formalism \equiv process-independent Sudakov form factor.
 - * Resums $\frac{\alpha_s}{p_T^2} \ln \frac{M^2}{p_T^2}$.
- Threshold resummation [Sterman (1987); Catani, Trentadue (1989,1991)]

* Resums
$$\left(\frac{\ln(1-z)}{1-z}\right)_+$$

- Joint resummation [Bozzi, BenjF, Klasen (2008)]
 - * Universal formalism \equiv process-independent Sudakov form factor.
 - * Resums both types of logarithms.

- Fixed-order calculations.
 - * Reliable far from the critical kinematical regions.
 - * Spoiled in the critical regions.

- Fixed-order calculations.
 - * Reliable far from the critical kinematical regions.
 - * Spoiled in the critical regions.
- Resummation (parton showers).
 - * Needed in the critical regions.
 - * Not justified far from the critical regions.

- Fixed-order calculations.
 - * Reliable far from the critical kinematical regions.
 - * Spoiled in the critical regions.
- Resummation (parton showers).
 - * Needed in the critical regions.
 - * Not justified far from the critical regions.
- Intermediate kinematical regions:
 - * Both fixed order and resummation / parton showers contribute.

- Fixed-order calculations.
 - * Reliable far from the critical kinematical regions.
 - * Spoiled in the critical regions.
- Resummation (parton showers).
 - * Needed in the critical regions.
 - * Not justified far from the critical regions.
- Intermediate kinematical regions:
 - * Both fixed order and resummation / parton showers contribute.

Information from both fixed order and resummation (parton showers) is required. \Rightarrow consistent matching procedure.

• Matching procedure:

- * Addition of both resummation and fixed-order results.
- * Subtracting the expansion in α_s of the resummed result.
- * No double-counting of the logarithms.

$$\mathrm{d}\sigma = \mathrm{d}\sigma^{(\mathrm{F.O.})} + \mathrm{d}\sigma^{(\mathrm{res})} - \mathrm{d}\sigma^{(\mathrm{exp})}.$$

• Matching procedure:

- * Addition of both resummation and fixed-order results.
- * Subtracting the expansion in α_s of the resummed result.
- * No double-counting of the logarithms.

$$d\sigma = d\sigma^{(F.O.)} + d\sigma^{(res)} - d\sigma^{(exp)}.$$

• Effects of the matching procedure:

- * Far from the critical regions, $d\sigma^{(res)} \approx d\sigma^{(exp)} \equiv$ perturbative theory.
- * In the critical regions, $d\sigma^{(F.O.)} \approx d\sigma^{(exp)} \equiv$ pure resummation.
- * In the intermediate regions: **both contribute**.

Outline

Models and motivation

Motivation for resummation calculations

2

Parton showers and resummation

- Parton showers
- Transverse-momentum, threshold and joint resummation formalisms
- Matching to the fixed order

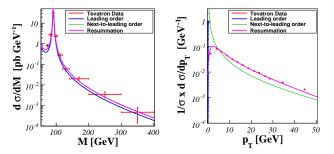
Numerical results, with uncertainties

- The Drell-Yan and the Tevatron
- Grand Unified Theories and Z' bosons
- The Minimal Supersymmetric Standard Model (MSSM)

4 Summary - conclusions

Resummation vs. Tevatron data

● Confrontation between theory and Tevatron data. [DØ collaboration (2005, 2008)]



- Invariant-mass distribution: good agreement. (no change with respect to next-to-leading order).
- *p_T*-distribution: good agreement. (improvement with respect to next-to-leading order).

Showers/resummation

Grand Unified Theories and Z' bosons

- Generalities of the Grand Unified Theories.
 - * Unification of the Standard Model gauge groups:

 $G \supset SU(3)_{\mathsf{C}} \times SU(2)_{\mathsf{L}} \times U(1)_{\mathsf{Y}}.$

Grand Unified Theories and Z' bosons

- Generalities of the Grand Unified Theories.
 - * Unification of the Standard Model gauge groups:

 $\label{eq:G_states} G \supset SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}.$

- * Breaking to the SM at high energy scale:
 - \diamond Appearance of additional U(1) symmetries.
 - ♦ Extra neutral gauge bosons Z'.

Grand Unified Theories and Z' bosons

- Generalities of the Grand Unified Theories.
 - * Unification of the Standard Model gauge groups:

 $\label{eq:G_states} G \supset SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}.$

- * Breaking to the SM at high energy scale:
 - \diamond Appearance of additional U(1) symmetries.
 - ♦ Extra neutral gauge bosons Z'.
- Considered theoretical model. [Green, Schwarz (1984); Hewett, Rizzo (1989)]
 - * Ten-dimensional string theories $E_8 \times E_8$:
 - ♦ Anomaly-free and contains chiral fermions.
 - \diamond Compactified to E_6 .

Grand Unified Theories and Z' bosons

- Generalities of the Grand Unified Theories.
 - * Unification of the Standard Model gauge groups:

 $\label{eq:G_states} G \supset SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}.$

- * Breaking to the SM at high energy scale:
 - \diamond Appearance of additional U(1) symmetries.
 - ♦ Extra neutral gauge bosons Z'.

• Considered theoretical model. [Green, Schwarz (1984); Hewett, Rizzo (1989)]

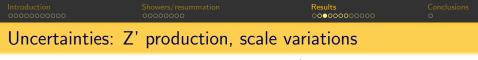
* Ten-dimensional string theories $E_8 \times E_8$:

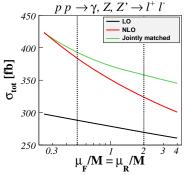
- ♦ Anomaly-free and contains chiral fermions.
- \diamond Compactified to E_6 .
- * Breaking to the SM gauge groups

$$E_6
ightarrow SO(10) imes {f U(1)}_\psi$$

- ightarrow *SU*(5) imes U(1) $_{\chi}$ imes U(1) $_{\psi}$
- ightarrow SU(3)_C imes SU(2)_L imes U(1)_Y imes U(1)_{χ} imes U(1)_{ψ}.

Additional bosons Z_{ψ} and $Z' \equiv Z_{\chi}$.



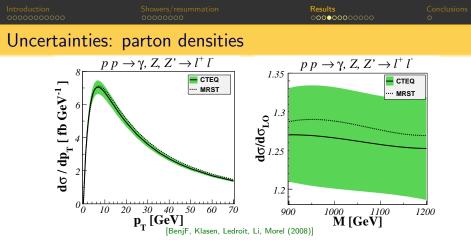


[BenjF, Klasen, Ledroit, Li, Morel (2008)]

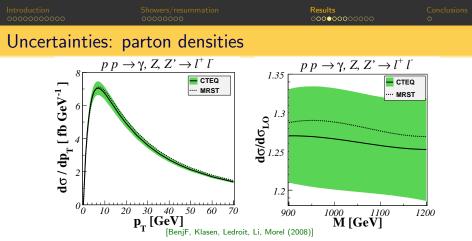
• Scenario.

' 1 TeV Z'.

- * LHC collider @ 14 TeV.
- Total cross section (900 GeV $\leq M \leq 1200$ GeV).
 - * Leading order: full dependence related to μ_F (~ 7%).
 - * Next-to-leading order: introduction of μ_R and the qg channel ($\sim 17\%$).
 - * Resummation: reduction of scale dependence (\sim 9%).



- Scenario: 1 TeV Z'; LHC collider.
- CTEQ vs. MRST.
 - * p_T-spectrum: similar shapes but a bit harder for MRST.
 - * Mass-spectrum: different shapes.



- Scenario: 1 TeV Z'; LHC collider.
- CTEQ vs. MRST.
 - * p_T-spectrum: similar shapes but a bit harder for MRST.
 - * Mass-spectrum: different shapes.
- Variations along 20 directions for the CTEQ densities.
 - * Variations along the PDF fits: modest uncertainties ($\sim 10\%$).
 - * Similar to scale dependence.

	Results ○000●00○○○○○	

Non-perturbative effects

- Important non-perturbative effects in the p_T -distributions.
 - * Intrinsic p_T of the partons inside the hadrons.
 - * Modification of the Sudakov form factor,

$$\mathcal{G}(N,b) \rightarrow \mathcal{G}(N,b) + \mathcal{F}_{ab}^{\mathrm{NP}}.$$

	Results ○000●000000	

Non-perturbative effects

- Important non-perturbative effects in the p_T -distributions.
 - * Intrinsic p_T of the partons inside the hadrons.
 - * Modification of the Sudakov form factor,

$$\mathcal{G}(N,b) \rightarrow \mathcal{G}(N,b) + \mathbf{F}_{ab}^{\mathrm{NP}}.$$

- Form factors [Ladinsky, Yuan (94); Landry, Brock, Nadolsky, Yuan (03); Konyshev, Nadolsky (06)].
 - * Obtained from experimental data (fits) and assumed universal.

	Results ○ ○○○ ○○○○○○○	

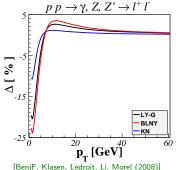
Non-perturbative effects

- Important non-perturbative effects in the p_T -distributions.
 - * Intrinsic p_T of the partons inside the hadrons.
 - * Modification of the Sudakov form factor,

$$\mathcal{G}(N,b) \rightarrow \mathcal{G}(N,b) + \mathbf{F}_{ab}^{\mathrm{NP}}.$$

• Form factors [Ladinsky, Yuan (94); Landry, Brock, Nadolsky, Yuan (03); Konyshev, Nadolsky (06)].

* Obtained from experimental data (fits) and assumed universal.



• Non-perturbative effects under good control for p_T > 5 GeV.

Monte Carlo and resummation for BSM processes

• Soft and collinear radiation \equiv Sudakov form factor.

- * Parton showers in general: leading logarithms, color,...
- * Momentum conservation at each branching: (leading logs)+, e.g. PYTHIA.
- * Resummation: next-to-leading logarithms.

Monte Carlo and resummation for BSM processes

• Soft and collinear radiation \equiv Sudakov form factor.

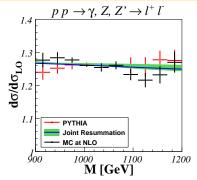
- * Parton showers in general: leading logarithms, color,...
- * Momentum conservation at each branching: (leading logs)+, e.g. PYTHIA.
- * Resummation: next-to-leading logarithms.
- Matched with matrix elements.
 - * Monte Carlo codes in general: leading order.
 - * Sometimes next-to-leading order: e.g. MC@NLO and POWHEG.
 - * Resummation: next-to-leading order.

Monte Carlo and resummation for BSM processes

• Soft and collinear radiation \equiv Sudakov form factor.

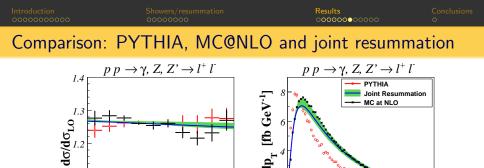
- * Parton showers in general: leading logarithms, color,...
- * Momentum conservation at each branching: (leading logs)+, e.g. PYTHIA.
- * Resummation: next-to-leading logarithms.
- Matched with matrix elements.
 - * Monte Carlo codes in general: leading order.
 - * Sometimes next-to-leading order: e.g. MC@NLO and POWHEG.
 - * Resummation: next-to-leading order.
- Comparison: resummation vs. PYTHIA vs. MC@NLO.
 - * **PYTHIA**: virtuality-ordered showers; nice process library.
 - * MC@NLO: angular-ordered showers; precision MC generator.
 - * Resummation: best precision.

Comparison: PYTHIA, MC@NLO and joint resummation



[BenjF, Klasen, Ledroit, Li, Morel (2008)]

- 1 TeV Z'; PYTHIA (LO/LL+), MC@NLO (NLO/LL), resummation (NLO/NLL).
- Mass-spectrum normalized to leading order:
 - * PYTHIA (power shower): mass-spectrum multiplied by a K-factor of 1.26.
 - * Good agreement between MC@NLO and resummation.



 $d \, \sigma / dp_{_{\rm T}}$

* PYTHIA (*power shower*): mass-spectrum multiplied by a K-factor of 1.26.

10 20

 p_{T}^{30} [GeV]

* PYTHIA spectrum much too soft, peak not well predicted.

1100

M [GeV]

• Mass-spectrum normalized to leading order:

* Good agreement between MC@NLO and resummation.

* Good agreement between MC@NLO and resummation.

1200

[BenjF, Klasen, Ledroit, Li, Morel (2008)] ● 1 TeV Z'; PYTHIA (LO/LL+), MC@NLO (NLO/LL), resummation (NLO/NLL).

1.1

φυυ

PYTHIA Joint Resummation MC at NLO

1000

Transverse-momentum distribution:

60 70

The Minimal Supersymmetric Standard Model (MSSM)

- High energy extension to Standard Model.
- Symmetry between fermions and bosons.

$$\begin{split} & Q|\text{Boson}\rangle = |\text{Fermion}\rangle \\ & Q|\text{Fermion}\rangle = |\text{Boson}\rangle \quad \text{where } Q \text{ is a SUSY generator.} \end{split}$$

The Minimal Supersymmetric Standard Model (MSSM)

- High energy extension to Standard Model.
- Symmetry between fermions and bosons.

 $Q|Boson\rangle = |Fermion\rangle$ $Q|Fermion\rangle = |Boson\rangle$ where Q is a SUSY generator.

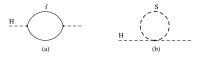
• The MSSM: one single supersymmetric (SUSY) generator Q.

The MSSM: one SUSY partner for each SM particle.

- * Quarks \Leftrightarrow squarks.
- * Leptons \Leftrightarrow sleptons.
- * Gauge/Higgs bosons ⇔ gauginos/higgsinos ⇔ charginos/neutralinos.
- * Gluon ⇔ gluino.

Some features of the MSSM

- Introduction of the SUSY particles in the theory.
 - * Solution to the hierarchy problem (stabilization of the Higgs mass).



◊ Fermionic loop (Fig. a):

$$\Delta M_{H}^{(a)} = -\frac{y_{f}^{2}}{16 \pi^{2}} \left[2 \Lambda^{2} + 6 m_{f}^{2} \ln \frac{\Lambda}{m_{f}} + \dots \right]$$

◊ Scalar loop (Fig. b):

$$\Delta M_H^{(b)} = \frac{\lambda_s}{16 \, \pi^2} \left[\Lambda^2 - 2 \, m_s^2 \ln \frac{\Lambda}{m_s} + \dots \right]$$

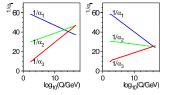
- ♦ MSSM: two scalars per fermion and $\lambda_S = y_f^2$.
- ♦ Sum: logarithmic divergences.

Showers/resummatic

Results	
000000000000000000000000000000000000000	

Some features of the MSSM

- Introduction of the SUSY particles in the theory.
 - * Solution to the hierarchy problem (stabilization of the Higgs mass).
 - * Gauge coupling unification at high energy.



[Fig. from de Boer, Sander (2004)].

- $\diamond~$ SUSY particles added in the RGE.
- $\diamond~$ Gauge couplings unify at $Q\sim 10^{16}~{\rm GeV}.$

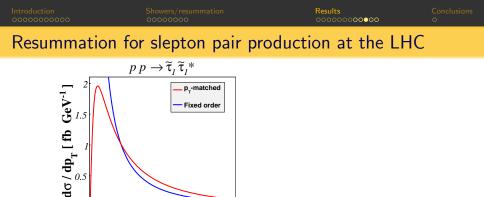
Some features of the MSSM

- Introduction of the SUSY particles in the theory.
 - * Solution to the hierarchy problem (stabilization of the Higgs mass).
 - * Gauge coupling unification at high energy.
 - * **Dark matter candidate** \Leftrightarrow lightest SUSY particle stable and neutral.

Results

Some features of the MSSM

- Introduction of the SUSY particles in the theory.
 - * Solution to the hierarchy problem (stabilization of the Higgs mass).
 - * Gauge coupling unification at high energy.
 - * **Dark matter candidate** ⇔ lightest SUSY particle stable and neutral.
- No SUSY discovery until now!
 - * SUSY must be broken.
 - * SUSY masses at a higher scale than Standard Model (SM) masses.
 - * More than 100 new free parameters.
 - * Simplified benchmark scenarios:
 - ♦ Minimal supergravity (mSUGRA).
 - ◊ Gauge-mediated SUSY-breaking (GMSB).
 - ۰...



[Bozzi, BenjF, Klasen (2006, 2007)]

100

• SUSY scenario: slepton masses \approx 100-200 GeV.

60

• Resummation effects:

20

* Finite results at small p_T .

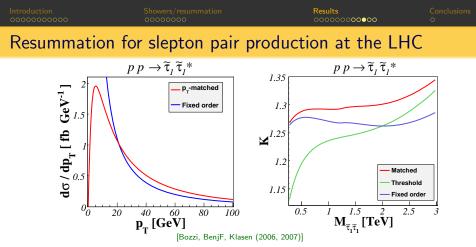
40

р_т [GeV]

* Matching: important effects at intermediate p_T.

80

00

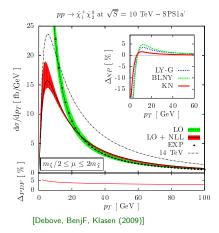


• SUSY scenario: slepton masses \approx 100-200 GeV.

• Resummation effects:

- * Finite results at small p_T .
- * Matching: important effects at intermediate p_T .
- * Small M: $d\sigma^{(res)} \approx d\sigma^{(exp)} \equiv$ perturbative theory.
- * Large *M*: $d\sigma^{(F.O.)} \approx d\sigma^{(exp)} \equiv pure resummation.$

Uncertainties: chargino-neutralino associated production



Scenario.

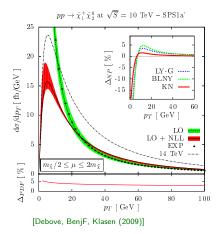
- * $\,pprox\,$ 180 GeV gauginos.
- * LHC collider (10 TeV & 14 TeV).

• *p*_T-**spectrum**

- * Next-to-leading logarithms.
- * $\mathcal{O}(\alpha_s)$ fixed-order.
- * Small p_T : expansion \approx fixed-order.
- * Large p_T : expansion \approx resummation.
- * Intermediate p_T : enhancement.

Showers/resummatio 00000000

Uncertainties: chargino-neutralino associated production



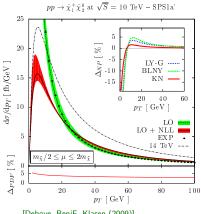
Scenario.

- * \approx 180 GeV gauginos.
- * LHC collider (10 TeV & 14 TeV).

• *p*_T-**spectrum**

- * Next-to-leading logarithms.
- O(α_s) fixed-order.
- * Small p_T : expansion \approx fixed-order.
- * Large p_T : expansion \approx resummation.
- * Intermediate *p*_T: enhancement.
- Scale dependence $(M/2 \le \mu_R = \mu_F \le 2M)$.
 - * Reduction of the uncertainties.
 - * Less than 5% for $p_T > 5$ GeV.

Uncertainties: chargino-neutralino associated production



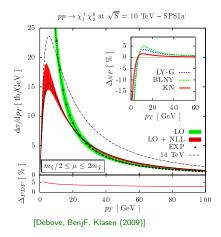
[Debove, BeniF, Klasen (2009)]

Scenario.

- * $\approx 180 \text{ GeV}$ gauginos.
- LHC collider (10 TeV & 14 TeV).

p_T-spectrum

- * Next-to-leading logarithms.
- * $\mathcal{O}(\alpha_s)$ fixed-order.
- * Small p_T : expansion \approx fixed-order.
- **Large** p_T : expansion \approx resummation.
- * Intermediate p_T: enhancement.
- Scale dependence $(M/2 \le \mu_R = \mu_F \le 2M)$.
 - **Reduction** of the uncertainties
 - Less than 5% for $p_T > 5$ GeV.
- Parton densities dependence (44 CTEQ sets).
 - 4-5% uncertainties for all p_T .
 - Similar to weak boson production.

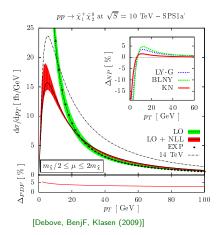


• Scenario.

- * $\,pprox\,$ 180 GeV gauginos.
- * LHC collider (10 TeV & 14 TeV).

• *p*_T-spectrum

- * Next-to-leading logarithms.
- * $\mathcal{O}(\alpha_s)$ fixed-order.
- * Small p_T : expansion \approx fixed-order.
- * Large p_T : expansion \approx resummation.
- * Intermediate *p*_T: enhancement.
- Scale dependence $(M/2 \le \mu_R = \mu_F \le 2M)$.
 - * **Reduction** of the uncertainties.
 - * Less than 5% for $p_T > 5$ GeV.
- Parton densities dependence (44 CTEQ sets).
 - * 4-5% uncertainties for all p_T .
 - * Similar to weak boson production.
- Non perturbative effects at low p_T .
 - ^{*} **Under control** for $p_T > 5$ GeV.



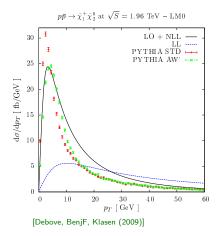
• Scenario.

- * $\,pprox\,$ 180 GeV gauginos.
- * LHC collider (10 TeV & 14 TeV).

• p_T -spectrum

- * Next-to-leading logarithms.
- * $\mathcal{O}(\alpha_s)$ fixed-order.
- * Small p_T : expansion \approx fixed-order.
- * Large p_T : expansion \approx resummation.
- * Intermediate *p*_T: enhancement.
- Scale dependence $(M/2 \le \mu_R = \mu_F \le 2M)$.
 - * Reduction of the uncertainties.
 - * Less than 5% for $p_T > 5$ GeV.
- Parton densities dependence (44 CTEQ sets).
 - * 4-5% uncertainties for all p_T .
 - * Similar to weak boson production.
- Non perturbative effects at low p_T.
 - * **Under control** for $p_T > 5$ GeV.
- Uncertainties under control for $p_T > 5$ GeV.

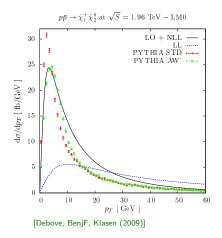
Comparison: PYTHIA and p_T -resummation



Scenario.

- pprox = 110 GeV gauginos.
- * Tevatron collider.
- PYTHIA predictions.
 - * Used for SUSY experimental analyses.
 - * Leading log Sudakov form factor.
 - * Two tunes.
 - ♦ CDF-AW.
 - ♦ Our tune AW'.
- Two set of resummed predictions.
 - * Leading logaritmic approximation.
 - * Next-to-leading logaritmic results.

Comparison: PYTHIA and p_T -resummation



Scenario.

- $^{\circ}~pprox$ 110 GeV gauginos.
- * Tevatron collider.
- PYTHIA predictions.
 - * Used for SUSY experimental analyses.
 - * Leading log Sudakov form factor.
 - Two tunes.
 - ◊ CDF-AW.
 - ♦ Our tune AW'.
- Two set of resummed predictions.
 - * Leading logaritmic approximation.
 - * Next-to-leading logaritmic results.
- Pythia results.
 - * Improves the LL picture.
 - * Intrinsic p_T helps to reproduce NLL.
 - * **Underestimation** for intermediate p_T .
 - * Direct impact for experimental analyses.

Outline

Models and motivation

Motivation for resummation calculations

2

Parton showers and resummation

- Parton showers
- Transverse-momentum, threshold and joint resummation formalisms
- Matching to the fixed order

⁸ Numerical results, with uncertainties

- The Drell-Yan and the Tevatron
- Grand Unified Theories and Z' bosons
- The Minimal Supersymmetric Standard Model (MSSM)

Summary - conclusions

Summary - conclusions

- **Considered processes**: slepton-pair, gaugino-pair and Z' production.
- Soft and collinear radiation:
 - * Large logarithmic corrections in p_T and invariant-mass spectra.
 - * Need for resummation (or parton showers).
- p_T, threshold and joint resummations have been implemented.
 - * Reliable perturbative results.
 - * Correct quantification of the soft-collinear radiation.
 - * Important effects, even far from the critical regions.
 - * Uncertainties from scales and parton densities under good control.
 - * Reduced dependence on non-perturbative effects.
- Comparison with Monte Carlo generators
 - * Significant shortcomings in normalization and shapes for PYTHIA.
 - * MC@NLO reaches (almost) the same precision level as resummation. BUT: easier implentation in the analysis chains of any experiment.
- Implementation of other processes in the precision tools.