ZnWO4 PSD study

Denys Klekots

denys.klekots@gmail.com

Preprocessing setup

- Average pulse curves are calculated for an order of 1000 events.
- The events individually undergo some preprocessing to ensure good quality of events.
- Data measured with fast and slow wavecatchers.
- The events with one proton were selected for analysis. For electrons, it's already one electron.

Normalised average pulse shapes.

Considered the following cases:

- Electrons (measured)
- Protons 6 MeV, low energy (measured)
- Protons 15 MeV, high energy (measured)
- Alphas, pulse builds on values from publication.

Pulse parameters from publication

Type of irradiation	Decay constants, µs				
	$\tau_1 \; (A_1)$	$\tau_2 \ (A_2)$	τ_{3} (A ₃)		
γ ray α particles	0.7 (2%) 0.7 (4%)	7.5 (9%) 5.6 (16%)	25.9 (89%) 24.8 (80%)		

Measured pulses for protons compared against measured electrons.

Built pulses for alphas compared against the built for gammas.

Normalised average pulse shapes.

Normalisation

Ratio of normalised curves

Here curves represent the ratio of the handrons and corresponding electron pulses for each point in time.

Comparison of charge integrals

Difference between charge integrals

7

Hadronic particle	$Max V_h/V_e$	Max q_t difference (% of total charge)
High energy protons	1,12	1,85 %
Low energy protons	1,24	3,85 %
Alphas	1,55	5,95 %

Thank you for your attention

Backup slides.

Single event readings and synchro signal

- Reference time is half the height of the rising edge of the channel 1 pulse.
- ■All of the event readings were shifted to the left to align the reference time to the most left one.
- Readings were averaged to get the final pulse shape

04.07.2025

Effect of event alignment by the synchro signal

2500

1 proton vs 6 proton events comparison

Preprocessed data before fit

Curve averaged over events that pass selection.

- Zero baseline removed (subtracted from all readings)
- Zero time (x-axis) redefined.

Fast wave catcher pulse fit starts from 90 ns
Slow wave catcher pulse fit starts from 1,2 microsecond.

Fit methodology

 $F_{f}(t|A_{1-4},\lambda_{1-4}) = A_{1}e^{\lambda_{1}t} + A_{2}e^{\lambda_{2}t} + A_{3}e^{\lambda_{3}t} + A_{4}e^{\lambda_{4}t}$ $F_{s}(t|C,A_{1-4},\lambda_{1-4}) = C\left(A_{1}e^{\lambda_{1}t} + A_{2}e^{\lambda_{2}t} + A_{3}e^{\lambda_{3}t} + A_{4}e^{\lambda_{4}t} + A_{5s}e^{\lambda_{5s}t}\right)$

- A_1 A_4 amplitudes, shared for slow and fast wave cathers
- λ_1 λ_4 the exponential decrements. They related to the τ parameters by $\lambda_i = \frac{1}{\tau_i}$. Also shared between the slow and fast dataset measurements
- C the parameter for matching the voltage between different wave catchers.

5th exponent introduced to correct electronics

The fit is performed by finding the minimum of the loss <u>function</u>. Two loss functions considered.

$$\begin{bmatrix} \mathsf{MSE fit} \\ L_k(C, A_{1-4}, \lambda_{1-4}) = \sqrt{\frac{\sum_{i=1}^N \left[y_i - F_k(t_i | C, A_{1-4}, \lambda_{1-4}) \right]^2}{N}} \end{bmatrix} \begin{bmatrix} \mathsf{CHI2 fit} \\ L_k(C, A_{1-4}, \lambda_{1-4}) = \sqrt{\frac{1}{N} \sum_{i=1}^N \frac{\left[y_i - F_k(t_i | C, A_{1-4}, \lambda_{1-4}) \right]^2}{y_i}} \end{bmatrix}^2$$

The final loss function to minimize is as follows

$$L(C, A_{1-4}, \lambda_{1-4}) = L_f(A_{1-4}, \lambda_{1-4}) + 1.1 \cdot L_s(C, A_{1-4}, \lambda_{1-4})$$

The <u>dual annealing</u> minimization was used. I tend to be safe from falling into a local minimum, and the fit does not depend on the initial parameter guess.

5th exponent explanation

Solving the circuit for a pulse by applying Kirchhoff's rules would get something like

$$a\ddot{I} + b\dot{I} + cI = F(x)$$

Standard solution is

 $I = C_1 e^{\gamma_1 t} + C_2 e^{\gamma_1 t} + \tilde{F}(x)$

Generally, it introduces more exponents

Fit results visualisation

□ Fit results for different methods of fitting (MSE) look alike.

Comparing numbers

	Electrons (C = 0.928)		Protons MSE (C = 0.899)		Protons CHIn (C = 0.896)				
Component	tau [ns]	A [V]	Charge	tau [ns]	A [V]	Charge	tau [ns]	A [V]	Charge
1	26625,35	0,076	82,72%	25699,73	0,192	82,31%	26272,36	0,184	79,97%
2	8303,82	0,039	13,20%	7420,74	0,105	13,03%	8395,01	0,109	15,12%
3	823,71	0,056	1,89%	926,87	0,165	2,54%	987,79	0,165	2,70%
4	83,03	0,061	0,21%	152,07	0,096	0,24%	163,82	0,099	0,27%
5s	2796,77	0,017 (6,96%)	1,98%	2799,26	0,040 (6,72%)	1,87%	2838,26	0,041 (6,92%)	1,95%
Type of irradiation Decay constants, µs						-			
						τ ₁ (Α	τ_1) τ_2 (A ₂)	$\tau_3~(A_3)$	-
					γ ray α particles	0.7 (2 0.7 (4	2%) 7.5 (9%) 4%) 5.6 (16%)	25.9 (89%) 24.8 (80%))) -

Electrons PSD presentation

Single event readings and synchro signal

Reference time is half the height of the rising edge of the channel 0 pulse.

All of the event readings were shifted to the left to align the reference time to the most left one.

Readings were averaged to get the final pulse shape

04.07.2025

Effect of event alignment by the synchro signal

Purely Cherenkov Events

Discrimination is performed based on the relationship between charges accumulated:

- Fast wave catcher:
 - Qc by pulse from 0 to 90 ns
 - Qs by pulse from 90 to 1200 ns
- Slow wave catcher:
 - Qc by pulse from 0 to 200 ns
 - Qs by pulse from 200 to 1200 ns

Charges Q are calculated by integrating readings over time.

Ohm's law applied. $I = \frac{U}{R}$, R=50 Ohm.

Qc vs Qs 2D plots

Qc vs Qs 2D plots Zoomed in

Events below the red line are considered purely Cherenkov.

Preprocessed data before fit

Curve averaged over events that pass Cherenkov selection.

- Zero baseline removed (subtracted from all readings)
- Zero time (x-axis) redefined.

□ Fast wave catcher pulse fit starts from 75 ns

Slow wave catcher pulse fit starts from 1 microsecond. The test of start from 5 microseconds was performed as well.

Fit methodology

 $F_f(t|A_{1-4},\lambda_{1-4}) = A_1 e^{\lambda_1 t} + A_2 e^{\lambda_2 t} + A_3 e^{\lambda_3 t} + A_4 e^{\lambda_4 t}$

 $F_s(t|C, A_{1-4}, \lambda_{1-4}) = C\left(A_1e^{\lambda_1 t} + A_2e^{\lambda_2 t} + A_3e^{\lambda_3 t} + A_4e^{\lambda_4 t}\right)$

- A_1 A_4 amplitudes, shared for slow and fast wave cathers
- $\lambda_1 \lambda_4$ the exponential decrements. They related to the τ parameters by $\lambda_i = \frac{1}{\tau_i}$. Also shared between the slow and fast dataset measurements
- C the parameter for matching the voltage between different wave catchers.

The fit is performed by finding the minimum of the loss <u>function</u>. Two loss functions considered.

$$\begin{bmatrix} \mathsf{MSE fit} \\ L_k(C, A_{1-4}, \lambda_{1-4}) = \sqrt{\frac{\sum_{i=1}^N \left[y_i - F_k(t_i | C, A_{1-4}, \lambda_{1-4}) \right]^2}{N}} \\ N \end{bmatrix} \begin{bmatrix} \mathsf{CHI2 fit} \\ L_k(C, A_{1-4}, \lambda_{1-4}) = \sqrt{\frac{1}{N} \sum_{i=1}^N \frac{\left[y_i - F_k(t_i | C, A_{1-4}, \lambda_{1-4}) \right]^2}{y_i}} \\ y_i \end{bmatrix}$$

The final loss function to minimize is as follows

$$L(C, A_{1-4}, \lambda_{1-4}) = L_f(A_{1-4}, \lambda_{1-4}) + 1.1 \cdot L_s(C, A_{1-4}, \lambda_{1-4})$$

The <u>dual annealing</u> minimization was used. I tend to be safe from falling into a local minimum, and the fit does not depend on the initial parameter guess.

MSE fit results

CHI2 fit results

Fix the tau parameters to published values

Fit if slow data starts from 5 μs

Summary

Parameter	MSE fit	CHI2 fit	Published tau fit	5 μs slow start fit
С	0.9916	0.9883	1.0031	0.9420
A1	0.0765	0.0719	0.0690	0.0721
A2	0.0420	0.0419	0.0460	0.0390
A3	0.0462	0.0489	0.0559	0.0532
A4	0.0557	0.0537	0.0686	0.0528
tau1	25091.66	25978.51	25900.0	26438.23
tau2	5112.91	6500.17	7500.0	8183.37
tau3	762.98	870.01	700.0	857.68
tau4	88.65	97.98	58.915	93.12