Random media generation

16/05/25

Generate a random media :

- Rectangular cuboid
- Center (x, y, z)
- ► Size (s_x, s_y, s_z) with s_x and $s_y \in [0.5, 1]$ mm and $s_z \in [1, 1.5]$ mm
- Rotation angle $(\alpha_x, \alpha_y, \alpha_z)$

In a rectangular cuboid with fibres.

Metropolis algorithm

Algorithm 1

- 1: for each grain g do
- 2: Determine the energy of the system *E_i*
- 3: Randomly move/rotate g
- 4: Determine the energy of the system E_f
- 5: if $\exp(-\beta(E_f E_i)) < \eta$ then
- 6: Revert the move
- 7: end if
- 8: end for

Where β is a constant and η a random number between 0 and 1.

- Allows to take into account any field, forces
- In the case of hard volumes, simplify to E = 0 (no intersection) or E = ∞ (intersection)

In this talk, for the sake of simplicity, the grains will be only allowed to move on the (x,y) plane but can rotate on the 3 axis.

Proof of principle

Successfully applied in "Étude de la diffusion optique par des matériaux hétérogènes rugueux : Diffusions surfacique, volumique et couplage surface/volume" by Hervé Chanal

Generated media example, hard sphere model, with (left) and without (right) a $1/r^2$ field

Comparison of the Pair Correlation Function for a random media between the analytical expectation and the generated media

Example 1

- Algorithm programmed in Python
- Panda3d used
- ► 100 grains

After 2000 steps

Example 2

- To reach high volumic fraction : generate boxes even outside GRAiNITA
- Use a gravity like field
- ► Here : 1000 grains

Initial step

After 8800 steps