

Status Report

GRAiNITA Yingrui Hou 21/02/2025

Samples with scintillating process

The detector size: 2m * 2m * 2m (avoid the effect from energy leak)

- Generate the event with scintillating process
 - ➤Save all the scintillating photons
- Pre-scale the sample assuming the efficiency of optical photon to photon-electron is identical for all the optical photons.
 - ► Light yield in generation: 10_000/MeV
 - ➢Photon-electron yield in pre-scale: 10_000/GeV
 - ➢Randomly pick the photons based on the yield ratio and step energy
- \geq 100 event of pi+ and e- are generated.

With 100 events (pi+)

•
$$\frac{\sigma_E}{E} = 4.8\% = \frac{14.4\%}{\sqrt{E}}$$

With 100 events (e-)

•
$$\frac{\sigma_E}{E} = 0.24\% = \frac{0.74\%}{\sqrt{E}}$$

4

Total deposit energy and N_phe of pi+

- The feature of deposit energy is consistent to that of N_phe
- N_phe will be studied as the equivelent variable as deposit energy

Resolution of N_phe

•
$$\frac{\Delta E_i}{\langle E \rangle} = \frac{E_i - \langle E \rangle}{\langle E \rangle} \Rightarrow \frac{\Delta N_i}{\langle N \rangle} = \frac{N_i - \langle N \rangle}{\langle N \rangle}$$

 The resolution of N_phe is checked here, with (5.3+/-0.4)%, consistent with that from deposit energy.

The energy correlation

• The correlation seems consistent with and without optical process in the simulation. Fit of E(dE/dx>5.0) vs Edep

Fits to the EM energy (e-)

Fits to the EM energy (pi+)

Fits to the hadron energy (pi+)

Fits to the EM fraction (pi+)

11

Time shape fit

- From the checks with e- sample and pi+ sample
 - The time distribution fit well with acceptable fitting qualities in each event
 - The fit to the time distribution from hadronic shower is unbias and can get back the input parameters.
 - There's a bias in the fitting to the EM part, causing a small and possibly accepted shift in the f_em, 0.4%, with the mean value around 78%
- In short, we can extract the f_em with small bias from the fit to time distribution.

The correlations

• The N_phe and f_em correlation is taken in the fit and correction.

Single fit to the correlation E_dep vs f_em

- N_phe = af_em + b
 - Constrain linear with fem=1.0, N_phe=100_000

The N_phe after rotation

• After rotation, the resolution is improved by a facto of 2

Summary

- After correcting the N_phe by the correlation N_phe vs f_em, the resolution is improved by a factor of 2
 - With sample 10 GeV pi+, 100 events
 - Detector size in simulation: 2m * 2m * 2m
- To be confirmed
 - Is the correlation universal with different energies?
 - Samples with 1 GeV, 5 GeV, 15 GeV, 25 GeV, 50 GeV will be generated to check the effect