<

Large Language Models

Artificial Intelligence

* What is Artificial Intelligence (Al) ?

Artificial intelligence Is the science and engineering of making
Intelligent machines, especially intelligent computer programs.

It is related to the similar task of using computers to understand
human intelligence, but Al does not have to confine itself
tomethods that are biologically observable.

(1. McCarthy (2007). “What is artificial intelligence?” Retrieved from https://oreil.ly/C7sja and https://oreil.ly/
n9X8O0.

Artificial Intelligence: Learning
Techniques

Artificial
Intelligence Machine
Methods capable of imitating Learning DGEp Learning

human behavior

Methods capable of
automaticalmly learning from

data Use of deep neural networks

s

(30)()()()(30)()(3)(<)

Artificial Intelligence: Application
Domain

Artificial
Intelligence Natural Language Computer Vision
Processing

A Recent History of Language Al

[DistiIBERT]

‘ RoBERTa \
[wordzvec] l BERT I [(;ﬂ ‘GPT—3| lChatGPTI
GPT

[Bag—of—words] [Attention] I I LT_E] ‘Switch\ | FIan-TS\

------ e s | P

-2000 2013 2017 2018 2019 2020 2021 2022 2023

] Decoder-only [Encoder-only [] Non-transformer models [] Encoder-decoder

L] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.

Artificial Intelligence: Natural
Language Processing

 What is Natural Language Processing (NLP) ?

Language Al refers to a sunfield of Al that focuses on developing
technologies capable of understanding, processing, and

generating human language. The term Language Al can often be
used interchangeable with Natural Langage Processing (NLP).

L] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.

A Recent History of Language Al

Text input
Unstructured data

-

Language Al
Processes the input text

v v v

Text output Embeddings Classification
Generative modeling Numeric values Identify targets
] L]

(] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.

Representing Language as a Bag-of-
Words

Input Input
[That is a cute dog] [My catis cute]
l Splitinput by a whitespace l

oonomoanm

L] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.

Representing Language as a Bag-of-
Words

Tokenized sentences

o) [) () o) o) () () () o

o[+ el

L] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.

Representing Language as a Bag-of-
Words

Input
r My cat is cute]

(; Tokenization
mﬂ ["‘at} [= 1 [cute] Splitinput by a whitespace

i hYd N NN AY 8 Y4

that [| is a ||cutel|| dog || my || cat Bag-of-words

Count individual words

0 1 0 1 0 1] | €
Vector representation

L] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.

<

Natural Langage
Processing

Better Representation with Dense
Vector Embeddings

« Bag-of-words ignores the semantic nature, or meaning, of text.

* Word2vec was one of the first succesful attempts at capturing
the meaning of text in embeddings.

 Embeddings are vector representations of data that attempt to
capture its meaning.

Better Representation with Dense
Vector Embeddings

Input Hidden Output
layer layer layer
Feature 1 —p»
— Spam
Feature2 =
—— Not spam
Feature 3 =—p
Node
- (Takes weights,
WEIghtS_ . performs calculations,
(Strength and direction 34 produces output)
of the influence one
node has on another)

(] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.

Better Representation with Dense
Vector Embeddings

Words Embeddings Model
r . dict
Gt |— I —> Neural network preciction
Task: ety ().74
‘ Cute | — | Arethetwo words neighbors?

Better Representation with Dense
Vector Embeddings

cats puppy houses apple

A
animal H -67 ’
newborn | -11 -]
human |19 29 + Number of dimensions

(properties)

plural Rz
fruit

Better Representation with Dense
Vector Embeddings

cats dog apple
) @
puppy banana
O O
building adult
T S
S L\
h#es b?y

<

Natural Langage
Processing

Encoding and Decoding Context with
Attention

* Word2vec creates static, downloadable representations of
words.

e For instance, the word ‘bank’ can refer to both a financial bank
as well as the bank of ariver.

* [ts meaning, and therefore its embeddings, should change
depending on the context.

Encoding and Decoding Context

Selt;]upeurrce (1) love llamas

v v v
: Encoder (RNN) =
Neural Task: representing language :
machine : :
translation : Decoder (RNN) B
: Task: generating language :

Output J’ -------- 7T R P
sequence @ ~

Encoding and Decoding Context 9.

Input Output
Step]‘ | Iove}[llamas —

Stepz‘ | “ Iovewllamasu Ik 17
5tep3r | H love “ llamas “ Ik H hou7
Step4‘ | “ Iove“ Ilamasu Ik “ hou “ van‘—b lama's

Encoding and Decoding Context

| love | | llamas |

word2\{ec Order of
erbeddne: I 2 3 /Drocessing

Encoder (RNN)

[Context embedding] HE B
Decoder RNN) Y|

Encoding and Decoding Context

* This context embedding, however, makes it difficult to deal with
longer sentences since it is merely a single embedding
representing the entire input.

* In 2014, a solution called attention was introduced that highly
iImproved upon the original architecture

» Attention mechanisms play a crucial role in transformers.

<

Large Language Models:
Tokens and Embeddings

Tokens and Embeddings

Input
prompt Have the bards who preceded me left any theme unsung?
I
Language model
Process the text and predict the next token

v

Output

Tokens and Embeddings

Input [Have the bards who preceded...]

Tokenization

Break down the text into smaller pieces
(words or parts of words)

Tokens [Have] [the] [bards] [who] [preceded]

Turn tokens into numeric representations
capturing their meaning

Embeddings

Tokens and Embeddings

GPT-3.5&GPT-4 GPT-3(Legacy)

Have the bards who preceded me left any theme unsung?

VZ,

Clear Show example

Tokens Characters

13 53

Have the bards who preceded me left any theme unsung?

Text Token IDs

Tokens and Embeddings

Input Have the bards who preceded...
Tokenizer: encode
Tokens [Have| [the | [b (ards | [who
— (A ~ ™) (™) ~ B
Token IDs 6,975 278 278 3163 1,058
Language model
v

Output token ID: |1,394
Tokenizer: decode *

Tokens and Embeddings

Text Havethe JJ bards who preceded...

Word tokens [Have T the T J T bards T who T preceded T)

Subword tokens [Have T the T J T bard m who T preced Ted T)

Charactertokens |Hla|v|e t{hfe| [g] [bla]|r]d]s

H a <space> t € <space> ﬂ <space>
Y Y YT Yy
ofolofofololofolol1]1[1]1]0
1111 f1lolif1l1]ol1]lolo]o]o
ol {11100l
Bvie ol olofl1lolol1lololol1|1|o]1]0
ytetokens 19 tofofofolol1lo]olol1|1]o]ol
olofl1|[1|ol1lol1|olofl1|1]1]0
olofl1|o|ololo|lo|olo|l1|1]0]0
ol1lofl1|ololol1|olol1|lo]1]0

Tokens and Embeddings

BERT base [[CLS] english and capital ##ization [UNK] [UNK] show _ token ##s false none eli
model Bt ==>Eelse: twotab##s i " " three tab##s " " 12 . 0¥ 50 = 600 [SEP]
(uncased)
BERT base [[CLS]1 English and CA ##PI ##TA il ##1 ##Z ##AT ##ION [UNK] [[UNK] show _ token
model (cased) ##s F ##als ##e None el ##if =E>=else : twoEa##bs i " " ThreeEa ##bs 1 " " 12]
0 * 50 = 600 [SEP]
GPT-2 English and CAP ITAL IZ ATION
boeele
Show _ t 6K ens False None el if 22 >=glse i two tabs f¥ " Three £abs : "
120 0*50 =600
FLAN-TS EngTish and CA PI TAL IZ ATION <unk= <unk> showltokens FalsE@Noned1ifE=5
Helse: fWotabsl " "Thred tabs " " 120 0 * 50 = 600 </s>
GPT-4 English and CAPITAL IZATION
e
show | tokens False None elif == >=else i two tabs i¥ | " Three tabs : !
12. 0¥ 50 =600
StarCoder English and CAPITAL IZATION
Bevseo

show | tokens False None elif ==>=else : twotabs :" | " Three tabsfi" [™
12.8%505600

Tokens and Embeddings 9.

Trained tokenizer Language model
Tokens 1 Token embeddings

‘TokenID\ ‘ Token \ _H_l

‘ 0 \ | | I L

I (T T]

|

Tokens and Embeddings

Have the bards who preceded me left any theme unsung?

Tokenization

Break down the text into smaller pieces
(words or parts of words)

[Have T The T bards T who Tpreceded]

Numeric representations of the tokens
capturing their meaning

Language model
Process the text and incorporate additional context

v

Contextual token embedding vectors
Better token embedding vectors that incorporate more context

Large Language Models: An 9.
Overview of Transformer
Models

An Overview of Transformer Models

\

r Write an email apologizing to Sarah for the
Prompt | tragic gardening mishap. Explain how it

happened.
|
N
3 Transformer LLM
v
Dear Sarah,

Generation | mwriting to apologize for the incident last
week. [...]

An Overview of Transformer Models

Write an email apologizing to Sarah for the
Prompt | tragic gardening mishap. Explain how it

happened.
|
|
$ Transformer LLM
v
Generation #1 #2 #3 #4
Sarah

<newline>

An Overview of Transformer Models

r Write an email apologizing to Sarah for the | H
tragic gardening mishap. Explain howit | e‘ Transformer LLM —P

happened.
 Write an email apologizing to Sarah for the | =~
tragic gardening mishap. Explainhowit | $ Transformer LLM | Sarah

happened.

>.
Dear l

The Components of the Forward Pass

rWrite an email apologizing to Sarah for the“ =
tragic gardening mishap. Explain how it ,

happened. Py [Tokenizer]

I | Transformer block 1

- Stackof /

$ Transformer LLM Transformer | Transformer block2

blocks ¢ ~

t Transformer block N

* '...“‘“
(LM head]

The Components of the Forward Pass

Tokenizer

Token vocabulary
&Tra nsformer LLM | TokenD | Token
. H 0 !
L Tokenizer | =

1

[Transformer block 1 |
Stackof > - 50,000 | Zyzzyva
Transformer| Transformer block 2 i)
blocks ¢ i : 1
Transformer block N Token embeddings

. 0
LM head) 1

7 ’ 50,000 T 1]

The Components of the Forward Pass

& Transformer LLM ‘ Output
- . q‘ r . X
| Tokenizer J Token probability
" Transformer block 1 TokenID | Token |
Stackof > - 5 |
Transformer | Transformer block 2 1 i |
blocks ¢ <
lTransformerbIockN ‘ 1102 Doar |
LM head \o-—t® | 50.000 | Zyzzyva |

The Components of the Forward Pass

Prompt | tragic gardening mishap. Explain how it Output token

Write an email apologizing to Sarah forthe]

happened. probabilities (highest)
+ r
0 Dear 40%
[8\ Transformer LLM]—b Title
To
Hi

lDecodfng strategy

Large Language Models: An 9.
Overview of Transformer
Models

Inside the Transformer Block

Output of
Transformer block 1

.8» Transformer LLM

[

Tokenizer

[Say T something Tsmart]

I | | Embeddings

[

Transformer block 1

=3 IO

I I|I I Stack of

Transformer
Transformer block 2 blocks
Transformer block N
| | |
v v
0 011 [1 1] Outputvectors
LM head)

Inside the Transformer Block

Transformer block

Transformer block 1

Output of | [I [8 Self-attention

Transformer block 1} | | S A)

Transformer block 2
I i bWl B Feedforward neural network
Transformer block N

Attention is all you need

(The T dOchhasedT the quwrreIT because T it

dog squrrrel because
3 I I |

Transformer block

Transformer block 1

[Self-attention ‘

Transformer block 2

tW Bl Feedforward neural network

Transformer block N

Attention is all you need

Other positions Position currently
in the sequence being processed
Self-attention
v \4

Current position information

Enriched with context
information from other
positions

Attention is all you need

 Two main steps are involved in the attention mechanism:

- A way to score how relevant each of the previous input
tokens are to the current token being processed.

- Using those scores, we combine the information from the
various positions into a single output vector.

Attention is all you need

Other positions Position currently
in the sequence being processed
Self-attention |1 I Current position information
Relevance scoring

9 7
1 1 1 | |
o ™

Combining information

Enriched with context
information from other
v v v M / positions

Attention is all you need

Other positions Position currently
in the sequence being processed
Self- attention LI:I:I:I Current position information
Relevance scoring
Attention \ . . . -
head '
Combining information
— / Enriched with context
information from other
v v v v positions

How attention Is calculated

* The attention layer (of a generative LLM) Is processing attention
for a single position.

* The inputs to the layer are:
- The vector representation of the current position or token

- The vector representations of the previous tokens

How attention Is calculated

* The goal Is to produce a new representation of the current
position that incorporates relevant information from the previous

tokens:

- For example, If we're processing the last position in the
sentence ‘Sarah fed the cat because it’, we want ‘it’ to
represent the cat, so attention bakes in ‘cat information’

from the cat token.

How attention Is calculated

* The training process produces three projection matrices that
produce the components that interact in this calculation:

- A query projection matrix
- Akey projection matrix
- A value projection matrix

How attention i1s calculated

Position currently

being processed

Other positions in the
sequence

Self-attention ‘ [T 11 Current position information

[Attention head #1 +

~

Projection matrices

Query Key Value

L projection projection projection

~

Enriched with context

l [T-1T] information from other

positions

How attention Is calculated

Other positions inthe

Position currently sequence
being processed
Self-attention | [CI_T] Current position information
Attention head #1 ¢
Projection matrices |
Query Key Value
§ projection projection projection
Previous tokens
Current token L 1]
Queries Keys Values
l Enriched with context
[T information from other

positions

Self-attention: Revelance scoring

Other positions in the

Position currently sequence
being processed
Self-attention | [CI_T] Current position information
[Attention head #1 v ‘
Projection matrices Relevance scores

50%
Current token T DI x -

Queries IKeys

l Enriched with context
[I1] information from other
positions

Self-attention: Revelance scoring

Position currently
being processed

Other positions in the
sequence

Self-attention | [T Current position information
[Attention head #1 v '

Relevance scores Values
11
11

11 _ 11

50% 1 0O13
11
111

Sum T

Enriched with context
[CI1] information from other
positions

Large Language Models: 9.
Recent Improvements to the
Transformer Architecture

Local/Sparse attention

1 2 3 4 5 6 7

Input tokens rT_TTT_m (T T %
l.

v " ! J
L]

N\

Transformer
self-attention
layer

Global autoregressive self-attention Local autoregressive self-attention

Local/Sparse attention

<

(a) Transformer

(b) Sparse Transformer (strided)

(c) Sparse Transformer (fixed)

Local/Sparse attention

Token 1

Token 2

Token 3 dog NeEE:

2) Tokens it can 1) The token
pay attentionto being processed

Multi-query and grouped-query
attention

Multi-query

vvvvvv o 0000 @
00000 0000

UUUUUU (U000 QOO0 O]

Multi-query and grouped-query
attention

Multi-query

vvvvvv o 0000 @
00000 0000

UUUUUU (U000 QOO0 O]

The Transformer Block

Thinking Machines
X1 X2
Positional encoding@ @

, Transformer block
A 2 \
; Self-attention
3 :

S 4 Add and normalize
i T
« | Feedforward] [Feedforward
3 ¥
P Add and normalize

v \ 4

The Transformer Block

Thinking Machines
Xy D:I:D le:l:l:l:l
| |
proneoes l 2024-era Transformer block l "=3
Normalize RMSNorm
v v

; [Self-attention Grouped-query attention, rotary embeddings] ;

eep @) -

h 4 v ;

[Normalize RMSNorm] ;
. v v
' [Feedforward] [Feedforward] :

L) Bt

Positional Embeddings (RoPE)

* Positional embeddings enable the model to keep track of the
order of tokens/words in a sequence/sentence, wich is an
iIndispensable source information in language.

Positional Embeddings (RoPE)

&Transformer LLM

(Tokenizer)

fWrite TT happen T fttted T .]
embegdngs | (001 OG0 (0 O000

Stack of Transformer blocks

~

Rotary embeddings f. Self-attention]
Transformer block 1

Feedforward neural network

I

Ratary embeddings f. Self-attention
Transformer block 2

M

Feedforward neural network

v v v v
(LM head]

I
.

Positional Embeddings (RoPE)

Other positions in the
sequence
Position currently
being processed
Self-attention | [CTT1 Current position information
[Attention head #1 v 1
Projection matrices
Apply rotary
embeddings
() — [OT1]
Queries Keys Queries Keys
(with positional information)
Enriched with context
v CIT T information from other
positions

<

Multimodal Large
Language Models

Multimodal Large Language Models 9.

Input modality Output modality

Text [This is a cat]—L
] —Ir[It's pixelated!]

Multimodal

model
—

Multimodal Large Language Models

Input Output
Features Prediction
I M &
You have been 78% [eEly
selected to receive Transformer —p
14 million dollars! 32% |Not spam
Text

Cat

|2
T
Transformer
domer > [

Dog

Multimodal Large Language Models 9.

Original image Patched image

s L“EI Flattened input i |
— L HF— [RSk 1 S R
g [N

Multimodal Large Language Models 9.

Original image Patched image

- F |
$aad
X, N
SEIRE,) L
TR SV S
‘ 1%__ »:: ~‘
o & : Fp

ravenetopu [1B 3P

Linear projection
e e S el v e (e
| |

Patch
embeddings

[CLASS]

T T T T 1
ENCODER

VY VY Y VYV OYY

@
!

Multimodal Large Language Models

Sentence
- Sentence
---—(Thisis a cat]—\ embedding

& —>

Multimodal
embedding

I
model > |

Image
embedding

Multimodal Large Language Models 9.

| Car Snowing
e Jeoks
(‘ \ O+--Apuppy
> LI
1
Road

My cat is cute

O (O don'tlike cats

<

Multimodal Large
Language Models

CLIP: Connecting Text and Images

 Zero-shot classification:

We can compare the embedding of an image with that of the description of its possible classes to find
wich class is most similar.

« Clustering
Cluster both images and a collection of keywords to find which keywords belong
to which sets of images.

e Search
Across billions of texts or images, we can quickly find what relates to an input
text or image.

* Generation
Use multimodal embeddings to drive the generation of images

How Can CLIP Generate embeddings
to drive the generation of images

"A supercar onthe
road with the sunset
in the background”

. “A pixelated image “A puppy playing
Caption . ofacutecat” inthe snow”

How Can CLIP Generate embeddings
to drive the generation of images

Sentence
Sentence - embedding

m—[This is a cat]— Textencoder —»

Iﬂ Embed input

|2

Image encoder
v |

Image
embedding

How Can CLIP Generate embeddings
to drive the generation of images

O pdotemodel
Sent =
entence 2 Prediction Label
....[This is a cat]— Text encoder >
A
1 1
0 Similar Similar
o Embed input Compare
embeddings
0 0 '
12 ! Dissimilar| | Dissimilar|
cee Image encoder [, > :
(ViT)
A

How Can CLIP Generate embeddings
to drive the generation of images

O pdotemodel
Sent =
entence 2 Prediction Label
....[This is a cat]— Text encoder >
A
1 1
0 Similar Similar
o Embed input Compare
embeddings
0 0 '
12 ! Dissimilar| | Dissimilar|
cee Image encoder [, > :
(ViT)
A

<

Multimodal Large
Language Models

BLIP-2: Briding the Modality Gap

* Instead of building the architecture from scratch, BLIP-2 bridges
the vision-language gar by building a bridge, named the
Querying Transformer (Q-Former), that connects a pretrained
Image encoder and a pretrained LLM.

BLIP-2: Briding the Modality Gap

Pretrained

* . 2
Vision
Transformer

Trainable

Pretrained

® Q-Former

Querying transformer

|2~

* -
Large language
model

5

h .4

BLIP-2: Briding the Modality Gap

* To connect the two pretrained models, the Q-Former mimics
their architectures. It has two modules that share their attention
layers:

- An Image Transformer to interact with the frozen Vision
Transformer for feature extraction.

- A Text transformer that can interact with the LLM.

BLIP-2: Briding the Modality Gap

Vision-and-language Vision-to-language
Representation learning Generative learning

. Pretrained Trainable E Pretrained ,
[| (& Q-Former Efi i|* Q|
Vision - . o | Largelanguage |:
& | P -
Transformer Vision Text ' : mOdE| :
Transformer || Transformer || ® '

BLIP-2: Briding the Modality Gap

« With these inputs, the Q-Former is then trained on three tasks:

Image-text contrastive learning

This task attempts to allg PaII‘S of image and text embeddings such that
they maximize thelr mutual information.

Image-text matching

A classification task to predict whether an image and text pair is positive
(matched) or negative (unmatched).

Image-grounded text generation

Trains the model to generate text based on information extracted from the input
image.

BLIP-2: Briding the Modality Gap

QFormer
Image-text !Ln:tgrl;—stt?\);te Image-grounded
. matching learning text generation
Input image : 4 f 4

Pretrained
EE%_*TME&E%H& 6 vion ® O o “

Transformer Transformer

| |
! E E A pixelated
Learnable image of a

+ embeddings cute cat

BLIP-2: Briding the Modality Gap

Trainable

® Q-Former —

Learnable embeddings

Prnjected- en‘ibeddings

Pretrained

¥
Large language
model

2

[/

BLIP-2: Briding the Modality Gap

Vision-and-language
Representation learning

...

) Trainable .
Pretrained 0 OF Z ,
= Vision > .
E Transformer Vision & Text 2|
Transformer || Transformer | | *
S T : Vision-to-language
Generative learning
Pretrained :
¥ (I |
Large language |:

model

	Slide 1: Large Language Models
	Slide 2: Artificial Intelligence
	Slide 3: Artificial Intelligence: Learning Techniques
	Slide 4: Artificial Intelligence: Application Domain
	Slide 5: A Recent History of Language AI
	Slide 6: Artificial Intelligence: Natural Language Processing
	Slide 7: A Recent History of Language AI
	Slide 8: Representing Language as a Bag-of-Words
	Slide 9: Representing Language as a Bag-of-Words
	Slide 10: Representing Language as a Bag-of-Words
	Slide 11: Natural Langage Processing
	Slide 12: Better Representation with Dense Vector Embeddings
	Slide 13: Better Representation with Dense Vector Embeddings
	Slide 14: Better Representation with Dense Vector Embeddings
	Slide 15: Better Representation with Dense Vector Embeddings
	Slide 16: Better Representation with Dense Vector Embeddings
	Slide 17: Natural Langage Processing
	Slide 18: Encoding and Decoding Context with Attention
	Slide 19: Encoding and Decoding Context
	Slide 20: Encoding and Decoding Context
	Slide 21: Encoding and Decoding Context
	Slide 22: Encoding and Decoding Context
	Slide 23: Large Language Models: Tokens and Embeddings
	Slide 24: Tokens and Embeddings
	Slide 25: Tokens and Embeddings
	Slide 26: Tokens and Embeddings
	Slide 27: Tokens and Embeddings
	Slide 28: Tokens and Embeddings
	Slide 29: Tokens and Embeddings
	Slide 30: Tokens and Embeddings
	Slide 31: Tokens and Embeddings
	Slide 32: Large Language Models: An Overview of Transformer Models
	Slide 33: An Overview of Transformer Models
	Slide 34: An Overview of Transformer Models
	Slide 35: An Overview of Transformer Models
	Slide 36: The Components of the Forward Pass
	Slide 37: The Components of the Forward Pass
	Slide 38: The Components of the Forward Pass
	Slide 39: The Components of the Forward Pass
	Slide 40: Large Language Models: An Overview of Transformer Models
	Slide 41: Inside the Transformer Block
	Slide 42: Inside the Transformer Block
	Slide 43: Attention is all you need
	Slide 44: Attention is all you need
	Slide 45: Attention is all you need
	Slide 46: Attention is all you need
	Slide 47: Attention is all you need
	Slide 48: How attention is calculated
	Slide 49: How attention is calculated
	Slide 50: How attention is calculated
	Slide 51: How attention is calculated
	Slide 52: How attention is calculated
	Slide 53: Self-attention: Revelance scoring
	Slide 54: Self-attention: Revelance scoring
	Slide 55: Large Language Models: Recent Improvements to the Transformer Architecture
	Slide 56: Local/Sparse attention
	Slide 57: Local/Sparse attention
	Slide 58: Local/Sparse attention
	Slide 59: Multi-query and grouped-query attention
	Slide 60: Multi-query and grouped-query attention
	Slide 61: The Transformer Block
	Slide 62: The Transformer Block
	Slide 63: Positional Embeddings (RoPE)
	Slide 64: Positional Embeddings (RoPE)
	Slide 65: Positional Embeddings (RoPE)
	Slide 66: Multimodal Large Language Models
	Slide 67: Multimodal Large Language Models
	Slide 68: Multimodal Large Language Models
	Slide 69: Multimodal Large Language Models
	Slide 70: Multimodal Large Language Models
	Slide 71: Multimodal Large Language Models
	Slide 72: Multimodal Large Language Models
	Slide 73: Multimodal Large Language Models
	Slide 74: CLIP: Connecting Text and Images
	Slide 75: How Can CLIP Generate embeddings to drive the generation of images
	Slide 76: How Can CLIP Generate embeddings to drive the generation of images
	Slide 77: How Can CLIP Generate embeddings to drive the generation of images
	Slide 78: How Can CLIP Generate embeddings to drive the generation of images
	Slide 79: Multimodal Large Language Models
	Slide 80: BLIP-2: Briding the Modality Gap
	Slide 81: BLIP-2: Briding the Modality Gap
	Slide 82: BLIP-2: Briding the Modality Gap
	Slide 83: BLIP-2: Briding the Modality Gap
	Slide 84: BLIP-2: Briding the Modality Gap
	Slide 85: BLIP-2: Briding the Modality Gap
	Slide 86: BLIP-2: Briding the Modality Gap
	Slide 87: BLIP-2: Briding the Modality Gap

