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Artificial Intelligence

* What is Artificial Intelligence (Al) ?

Artificial intelligence Is the science and engineering of making
Intelligent machines, especially intelligent computer programs.

It is related to the similar task of using computers to understand
human intelligence, but Al does not have to confine itself
tomethods that are biologically observable.

(1. McCarthy (2007). “What is artificial intelligence?” Retrieved from https://oreil.ly/C7sja and https://oreil.ly/
n9X8O0.



Artificial Intelligence: Learning
Techniques

Artificial
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Artificial Intelligence: Application
Domain

Artificial
Intelligence Natural Language Computer Vision
Processing




A Recent History of Language Al
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L] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.



Artificial Intelligence: Natural
Language Processing

 What is Natural Language Processing (NLP) ?

Language Al refers to a sunfield of Al that focuses on developing
technologies capable of understanding, processing, and

generating human language. The term Language Al can often be
used interchangeable with Natural Langage Processing (NLP).

L] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.



A Recent History of Language Al

Text input
Unstructured data
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Language Al
Processes the input text
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Text output Embeddings Classification
Generative modeling Numeric values Identify targets
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(] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.



Representing Language as a Bag-of-
Words

Input Input
[ That is a cute dog ] [ My catis cute ]
l Splitinput by a whitespace l
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L] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.



Representing Language as a Bag-of-
Words

Tokenized sentences
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L] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.



Representing Language as a Bag-of-
Words

Input
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L] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.
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Better Representation with Dense
Vector Embeddings

« Bag-of-words ignores the semantic nature, or meaning, of text.

* Word2vec was one of the first succesful attempts at capturing
the meaning of text in embeddings.

 Embeddings are vector representations of data that attempt to
capture its meaning.



Better Representation with Dense
Vector Embeddings
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(] Alammar, J., & Grootendorst, M.(2024). Hands-On Large Language Models. O'Reilly Media.



Better Representation with Dense
Vector Embeddings
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Better Representation with Dense
Vector Embeddings
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Better Representation with Dense
Vector Embeddings
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Encoding and Decoding Context with
Attention

* Word2vec creates static, downloadable representations of
words.

e For instance, the word ‘bank’ can refer to both a financial bank
as well as the bank of ariver.

* [ts meaning, and therefore its embeddings, should change
depending on the context.



Encoding and Decoding Context
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Encoding and Decoding Context 9.

Input Output
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Encoding and Decoding Context
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Encoding and Decoding Context

* This context embedding, however, makes it difficult to deal with
longer sentences since it is merely a single embedding
representing the entire input.

* In 2014, a solution called attention was introduced that highly
iImproved upon the original architecture

» Attention mechanisms play a crucial role in transformers.
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Tokens and Embeddings

Input
prompt Have the bards who preceded me left any theme unsung?
I
Language model
Process the text and predict the next token

v

Output




Tokens and Embeddings

Input [ Have the bards who preceded... ]

Tokenization

Break down the text into smaller pieces
(words or parts of words)

Tokens [Have] [ the ] [bards] [who] [preceded]

Turn tokens into numeric representations
capturing their meaning

Embeddings




Tokens and Embeddings

GPT-3.5&GPT-4 GPT-3(Legacy)
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Tokens and Embeddings

Input Have the bards who preceded...
Tokenizer: encode
Tokens [Have| [the | [ b (ards | [ who
— ( A ~ ™) ( ™) ~ B
Token IDs 6,975 278 278 3163 1,058
Language model
v

Output token ID: |1,394
Tokenizer: decode *




Tokens and Embeddings
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Tokens and Embeddings
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Tokens and Embeddings 9.
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Tokens and Embeddings

Have the bards who preceded me left any theme unsung?

Tokenization

Break down the text into smaller pieces
(words or parts of words)

[ Have T The T bards T who Tpreceded]

Numeric representations of the tokens
capturing their meaning

Language model
Process the text and incorporate additional context

v

Contextual token embedding vectors
Better token embedding vectors that incorporate more context




Large Language Models: An 9.
Overview of Transformer
Models



An Overview of Transformer Models

\

r Write an email apologizing to Sarah for the
Prompt | tragic gardening mishap. Explain how it

happened.
|
N
3 Transformer LLM
v
Dear Sarah,

Generation | mwriting to apologize for the incident last
week. [...]




An Overview of Transformer Models

Write an email apologizing to Sarah for the
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An Overview of Transformer Models

r Write an email apologizing to Sarah for the | H
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The Components of the Forward Pass
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The Components of the Forward Pass
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The Components of the Forward Pass
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The Components of the Forward Pass
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Inside the Transformer Block
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Inside the Transformer Block

Transformer block

Transformer block 1
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Attention is all you need
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Attention is all you need

Other positions Position currently
in the sequence being processed
Self-attention
v \4

Current position information

Enriched with context
information from other
positions




Attention is all you need

 Two main steps are involved in the attention mechanism:

- A way to score how relevant each of the previous input
tokens are to the current token being processed.

- Using those scores, we combine the information from the
various positions into a single output vector.



Attention is all you need

Other positions Position currently
in the sequence being processed
Self-attention |1 I Current position information
Relevance scoring
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Attention is all you need

Other positions Position currently
in the sequence being processed
Self- attention LI:I:I:I Current position information
Relevance scoring
Attention  \ . . . -
head '
Combining information
— /  Enriched with context
information from other
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How attention Is calculated

* The attention layer (of a generative LLM) Is processing attention
for a single position.

* The inputs to the layer are:
- The vector representation of the current position or token

- The vector representations of the previous tokens




How attention Is calculated

* The goal Is to produce a new representation of the current
position that incorporates relevant information from the previous

tokens:

- For example, If we're processing the last position in the
sentence ‘Sarah fed the cat because it’, we want ‘it’ to
represent the cat, so attention bakes in ‘cat information’

from the cat token.



How attention Is calculated

* The training process produces three projection matrices that
produce the components that interact in this calculation:

- A query projection matrix
- Akey projection matrix
- A value projection matrix



How attention i1s calculated
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How attention Is calculated

Other positions inthe

Position currently sequence
being processed
Self-attention | [CI_T] Current position information
Attention head #1 ¢
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Self-attention: Revelance scoring

Other positions in the

Position currently sequence
being processed
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Self-attention: Revelance scoring

Position currently
being processed

Other positions in the
sequence
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Large Language Models: 9.
Recent Improvements to the
Transformer Architecture



Local/Sparse attention
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Local/Sparse attention

<

(a) Transformer

(b) Sparse Transformer (strided)

(c) Sparse Transformer (fixed)




Local/Sparse attention
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Multi-query and grouped-query
attention
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The Transformer Block

Thinking Machines
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The Transformer Block

Thinking Machines
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Positional Embeddings (RoPE)

* Positional embeddings enable the model to keep track of the
order of tokens/words in a sequence/sentence, wich is an
iIndispensable source information in language.



Positional Embeddings (RoPE)
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Positional Embeddings (RoPE)
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Multimodal Large Language Models 9.
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Multimodal Large Language Models
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Multimodal Large Language Models 9.
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Multimodal Large Language Models 9.
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Multimodal Large Language Models
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Multimodal Large Language Models 9.
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CLIP: Connecting Text and Images

 Zero-shot classification:

We can compare the embedding of an image with that of the description of its possible classes to find
wich class is most similar.

« Clustering
Cluster both images and a collection of keywords to find which keywords belong
to which sets of images.

e Search
Across billions of texts or images, we can quickly find what relates to an input
text or image.

* Generation
Use multimodal embeddings to drive the generation of images



How Can CLIP Generate embeddings
to drive the generation of images

"A supercar onthe
road with the sunset
in the background”

. “A pixelated image “A puppy playing
Caption . ofacutecat” inthe snow”




How Can CLIP Generate embeddings
to drive the generation of images
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How Can CLIP Generate embeddings
to drive the generation of images
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How Can CLIP Generate embeddings
to drive the generation of images
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BLIP-2: Briding the Modality Gap

* Instead of building the architecture from scratch, BLIP-2 bridges
the vision-language gar by building a bridge, named the
Querying Transformer (Q-Former), that connects a pretrained
Image encoder and a pretrained LLM.



BLIP-2: Briding the Modality Gap

Pretrained
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BLIP-2: Briding the Modality Gap

* To connect the two pretrained models, the Q-Former mimics
their architectures. It has two modules that share their attention
layers:

- An Image Transformer to interact with the frozen Vision
Transformer for feature extraction.

- A Text transformer that can interact with the LLM.



BLIP-2: Briding the Modality Gap

Vision-and-language Vision-to-language
Representation learning Generative learning

. Pretrained Trainable E Pretrained ,
[ | (& Q-Former Efi i|* Q|
Vision - . o | Largelanguage |:
& | P -
Transformer Vision Text ' : mOdE| :
Transformer || Transformer || ® '




BLIP-2: Briding the Modality Gap

« With these inputs, the Q-Former is then trained on three tasks:

Image-text contrastive learning

This task attempts to allg PaII‘S of image and text embeddings such that
they maximize thelr mutual information.

Image-text matching

A classification task to predict whether an image and text pair is positive
(matched) or negative (unmatched).

Image-grounded text generation

Trains the model to generate text based on information extracted from the input
image.



BLIP-2: Briding the Modality Gap
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BLIP-2: Briding the Modality Gap
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BLIP-2: Briding the Modality Gap
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