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My recent activities 
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ØKEKCC migration
Ø The new system including Grid is running well 
Ø (Some grid services are still running on RHEL7 with ELS…)

ØOpen Access projects
Ø Procured Lenovo DE4000H (2PB) for open data access 
Ø Evaluating how to integrate with GakuninRDM

ØDeep learning for physics analysis in collider physics

https://support.rdm.nii.ac.jp/en/
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Introduction
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Ø “Foundation models” is one of 
the keywords for AI 

Ø Pre-training using a large 
amount of “unlabeled” data 

Ø Fine-tuning for a target 
application (transfer learning)

→ Q: Is the concept of foundation 
models beneficial to collider physics 

Gartner.com

https://www.gartner.com/en/articles/what-s-new-in-artificial-intelligence-from-the-2023-gartner-hype-cycle
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Transfer learning
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Source data

Source model

Source labels

Target data

Target model

Target labels

Large amount  
of data/labels

Small amount  
of data/labels

Transfer learned 
knowledge

Source task Target task
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Source model 
(Foundation model)

Target model

Target model

Target model

Pre-training Exotic analysis

SUSY analysis
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Higgs analysis

Large amount of data

Small amount of data

Use case of physics analysis 
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ØMany analysis channels in collider physics

Ø Higgs, Exotic, SUSY, etc

Ø Currently, dedicated DL models are 
trained from scratch for each channel
← Large amount of training data (MC) for 
each channel

→ If transfer learning can be applied to different analysis channels, 
computing resources for MC simulations and DL training are saved 
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Event classification
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ØThe concept is examined using “event classification” problem

Ø A typical problem in HEP,  signal event vs. background event 

“Signal” event
(H→γγ candidate)

“Background” event
(SM photon production)

→ Reconstructed particles (objects) are the basic information for the classification
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AUC metric 

Source model 
(Foundation model) Target model

Target modelScratch

Pre-training phase Event classification phase
(Self-supervised learning) 

Transfer learning

(signal vs background) 

ØEvent classification performances are evaluated with AUC metrics 

→ AUC values of event 
classifications are compared with 
and without a foundation model 
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Updates form pervious study

ØA preliminary study was showed in the previous FJPPN workshop

Ø https://indico.in2p3.fr/event/31887/

ØFully adapted to the CMS open data

Ø No hand-made MC simulations (Madgraph+Pythia+Delphes)

ØFour types of event classification are evaluated to discuss generalization

ØData augmentation technique is introduced based on our physics knowledge

https://indico.in2p3.fr/event/31887/
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CMS open data

ØCMS released new open data in 2024

Ø 70 TB of 13 TeV collision data in 2016 and 830 TB of MC simulations 

Ø 16.4 fb-1 collision data (the Higgs discovery required 10.4 fb-1 )

Ø Nano AOD format
Ø Possible to analyse by pure ROOT (and RDataFrame) 😀

Ø (Previous open data requires the CMS software…)

A candidate event in which a top quark is produced in association with a Z boson.

→ This study should be reproducible
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Datasets
Selections # of events

Collision data lepton≥ 1 + jets ≥ 2 + bjets ≥ 1 ~106

H+tb[ref.] vs ttbar+jets lepton≥ 1 + jets ≥ 4 + bjets ≥ 1 ~106

H+HW[ref.] vs ttbar+jets lepton≥ 1 + tau≥ 1 + jets ≥ 3 + bjets ≥ 1 ~106

ttH[ref.] vs ttbar+jets lepton≥ 1 + jets ≥ 4 + bjets ≥ 2 ~106

ttH[ref.] vs ttbar+jets lepton≥ 2 + jets ≥ 2 + bjets ≥ 1 ~106

Pre-training 

Event 
classification 

Ø Pre-training is performed using collision data (unlabelled data) based on the 
foundation model concept

Ø ~107 events are available after the selection, but only ~106 events are used

Ø NVIDIA A100: ~104 events/sec (107 events /104 x 500 epochs = 138 hours)

https://link.springer.com/article/10.1007/JHEP01(2020)096
https://arxiv.org/pdf/2207.01046
https://cds.cern.ch/record/2675023/files/HIG-18-030-pas.pdf
https://cds.cern.ch/record/2675023/files/HIG-18-030-pas.pdf
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Pre-training strategy 
ØOnly low-level features of each object (4-vector + charge) are used as inputs

ØSelf-supervised learning is employed to handle the unlabeled collision data

ØStrategy:

Ø An object (lepton, tau, b-jet, light-jet, or MET) is 
randomly replaced with a dummy object when 
preparing a mini-batch 
→ DL model is trained to predict what type of 
object was replaced 

lepton
lepton

MET

l-jet

b-jet

lepton dummy  
lepton

MET

l-jet

b-jet

…lepton is dummy(?)
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pT η φ E charge

lep1 x1 y1 z1 i1 j1
lep2 x0 y0 z0 i0 j0

l-jet1 x3 y3 z3 i3 j3

b-jet1 x4 y4 z4 i4 j4
MET x5 y5 z5 i5 j5

pT η φ E charge

lep1 x1 y1 z1 i1 j1
lep2 x2 y2 z2 i2 j2

l-jet1 x3 y3 z3 i3 j3

b-jet1 x4 y4 z4 i4 j4
MET x5 y5 z5 i5 j5

DL model

DL model

What type of
objet is

dummy ?

Signal 
vs

Backdgloud

Pre-training phase

Event classification phase
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→ Random masks 
increase prediction pattern
(data augmentation)

Pre-training strategy 
Dummy object 
(from other events)

Transfer
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erEncoder
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erEncoder

Transform
erEncoder

Linear

AveragePooling

Linear
Linear

(16,11) (16,256) (16,256) (16,2048) (2048,)

(6,)

(2,)

Inputs Embedding module Feature module Classifier  
module

Pre-training

Event  
Classification

ØTransformer encoder is employed:
Ø ~11M trainable parameters 

→ Weight parameters of embedding and feature modules are transferred and fine-tuned 
→ Classifier module is always trained from scratch
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Training details 
ØBasically, the same setting between the pre-

training and event classification phases:
Ø SGD optimizer:

Ø Learning rate: 10-2-10-4 (CosineAnnealingLR)

Ø Batch size: 512, Epochs: 500

Ø Cross entropy loss:

Ø Pre-training: lepton, b-jet, l-jet, MET, or No dummy

Ø Event classification: signal or background

ØNVIDIA A100: ~20 batches/s 
Ø ~13 hours for one training

~1M events used

pre-training
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AUC of event classification
H+tb signal

ØSignificant improvements by 
introducing the pre-training

ØFuture work: need to check if the 
performances converge when more 
data (>106) are added  

small data large data

event classification
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AUC of event classification
H+HW signal ttH (1lep) signal ttH (2lep) signal

ØThe improvements are confirmed for all signal events 
→ The pre-trained model (foundation model) is well generalized 

event classification event classification event classification
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Scaling raw

~104 events in 
event classification

H+HW signal

ØThe scaling behavior encourages a 
pre-training with a larger data

Ø However, the number of events in 
the CMS open data itself and 
computing resources are limited 

→ Data augmentation is examinedevent classification
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Data augmentation 
ØData augmentation is well established technique in computer vision field 

→ Easy to increase data with low computing cost, 
and effective to suppress over-fitting 

albumentations

epoch

loss

Over-fitting

Train data Valid data

epoch

loss
Train data

Data augmentation(?)

Valid data

https://github.com/albumentations-team/albumentations


加速器だから見える世界。
19

Lorentz transformation

Original event
(Higgs candidate)

Φ rotation

Z flip

Lorentz boost 
(z direction)

← This data is still a Higgs candidate, 
and should occur with the same 
probability as the original event  

ØThese transformations are 
applied randomly before being 
fed into the DL model (pre-
training phase)



加速器だから見える世界。
20

DA (pre-training phase)
~106 events used ~104 events used

→ Over-fitting is suppressed by the data augmentation if the number 
of events is small  

No effect(?)

pre-training pre-training
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Improvements for event classification
H+HW signal

~104 events in 
event classification

Ø Improvements for the 
downstream event 
classification are not so visible 
(within the standard deviation)

event classification

→ Do you have any other data 
augmentation ideas?
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Summary
ØFocusing on foundation models (transfer learning) and studying their 

applications to collider physics

Ø Motivated by reduction of computing resources for future experiments

ØDeveloped a self-supervised learning using real data in pre-training  

Ø The pre-trained model provides significant improvements in event classification 
when the # of events is small

Ø The scaling behavior encourages pre-training with a larger data
→ Data augmentation technique in our physics data was discussed

Ø (Need to check the scalability with larger models and larger data)
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Backup
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Scaling raw
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c1
c3

c4


