A study of foundation models for event classification in collider physics

Tomoe Kishimoto

Computing Research Center, KEK

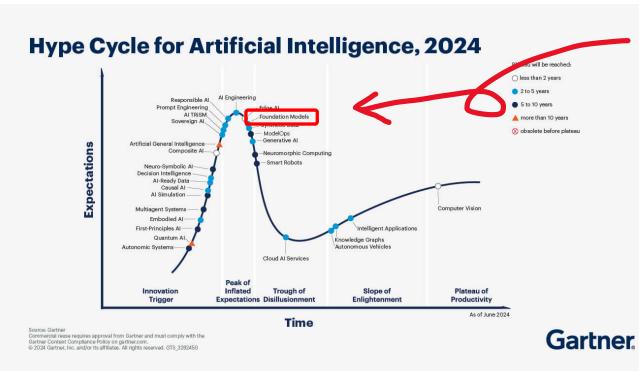
tomoe.kishimoto@kek.jp

My recent activities

- KEKCC migration
 - > The new system including Grid is running well
 - > (Some grid services are still running on RHEL7 with ELS...)
- > Open Access projects
 - Procured Lenovo DE4000H (2PB) for open data access
 - Evaluating how to integrate with <u>GakuninRDM</u>

Deep learning for physics analysis in collider physics

Introduction



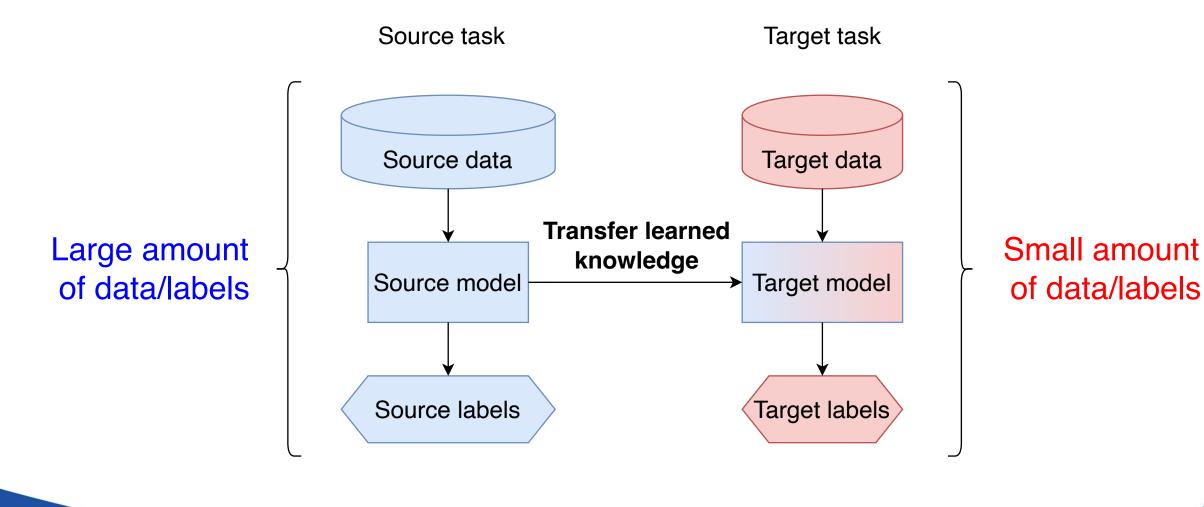
"Foundation models" is one of the keywords for AI

- Pre-training using a large amount of "unlabeled" data
- Fine-tuning for a target application (transfer learning)
- \rightarrow Q: Is the concept of foundation models beneficial to collider physics

Gartner.com

加速器だから見える世界。

Transfer learning

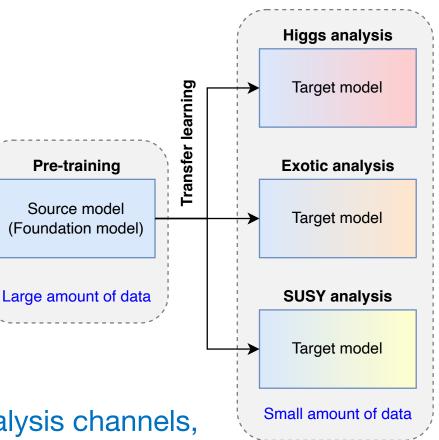


Use case of physics analysis

> Many analysis channels in collider physics

- Higgs, Exotic, SUSY, etc
- Currently, dedicated DL models are trained from scratch for each channel
 Large amount of training data (MC) for each channel

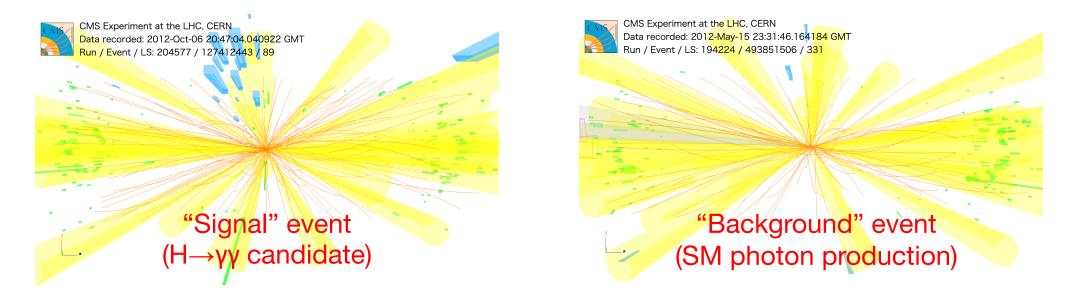
 \rightarrow If transfer learning can be applied to different analysis channels, computing resources for MC simulations and DL training are saved



Event classification

> The concept is examined using "event classification" problem

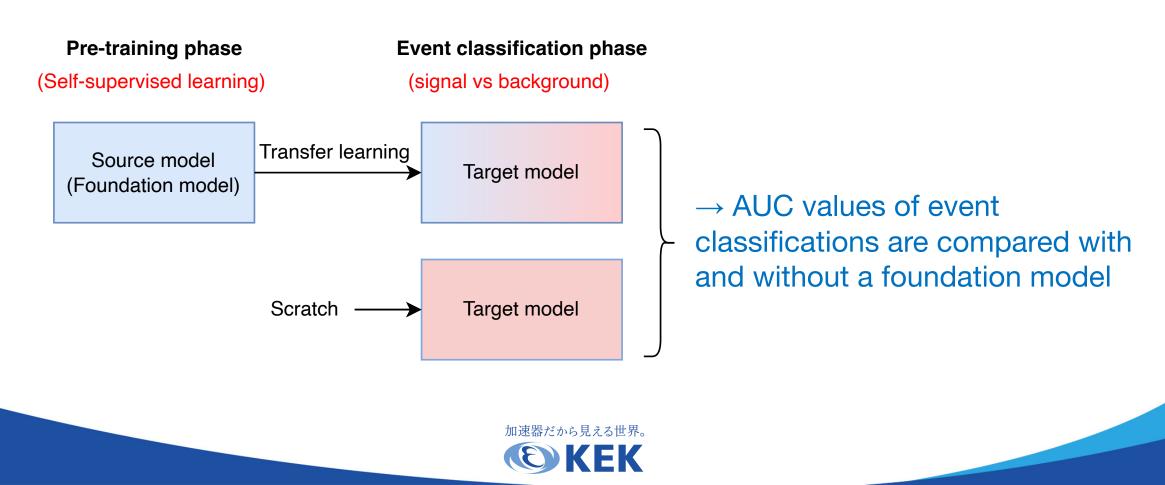
> A typical problem in HEP, signal event vs. background event

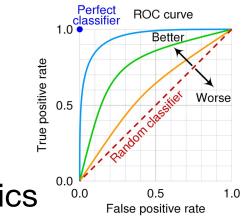


 \rightarrow Reconstructed particles (objects) are the basic information for the classification

AUC metric

Event classification performances are evaluated with AUC metrics





Updates form pervious study

> A preliminary study was showed in the previous FJPPN workshop

https://indico.in2p3.fr/event/31887/

Fully adapted to the CMS open data

> No hand-made MC simulations (Madgraph+Pythia+Delphes)

> Four types of event classification are evaluated to discuss generalization

Data augmentation technique is introduced based on our physics knowledge

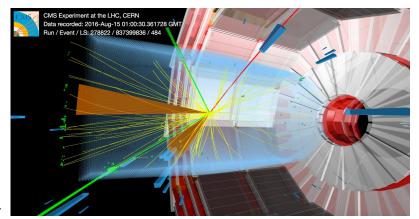
CMS open data

CMS released new open data in 2024

> 70 TB of 13 TeV collision data in 2016 and 830 TB of MC simulations

- > 16.4 fb⁻¹ collision data (the Higgs discovery required 10.4 fb⁻¹)
- Nano AOD format
 - Possible to analyse by pure ROOT (and RDataFrame)
 - > (Previous open data requires the CMS software...)
- \rightarrow This study should be reproducible

A candidate event in which a top quark is produced in association with a Z boson.



Datasets

		Selections	# of events	
Pre-training —	Collision data	lepton $\ge 1 + jets \ge 2 + bjets \ge 1$	~10 ⁶	
Event classification	H+tb[<u>ref.</u>] vs ttbar+jets	lepton $\ge 1 + jets \ge 4 + bjets \ge 1$	~10 ⁶	
	H+HW[<u>ref.</u>] vs ttbar+jets	lepton $\ge 1 + tau \ge 1 + jets \ge 3 + bjets \ge 1$	~10 ⁶	
	ttH[<u>ref.]</u> vs ttbar+jets	lepton \geq 1 + jets \geq 4 + bjets \geq 2	~10 ⁶	
	ttH[<u>ref.]</u> vs ttbar+jets	lepton $\ge 2 + jets \ge 2 + bjets \ge 1$	~10 ⁶	

Pre-training is performed using collision data (unlabelled data) based on the foundation model concept

 $> \sim 10^7$ events are available after the selection, but only $\sim 10^6$ events are used

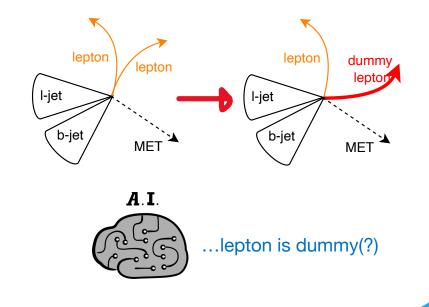
> NVIDIA A100: ~10⁴ events/sec (10⁷ events /10⁴ x 500 epochs = 138 hours)

Pre-training strategy

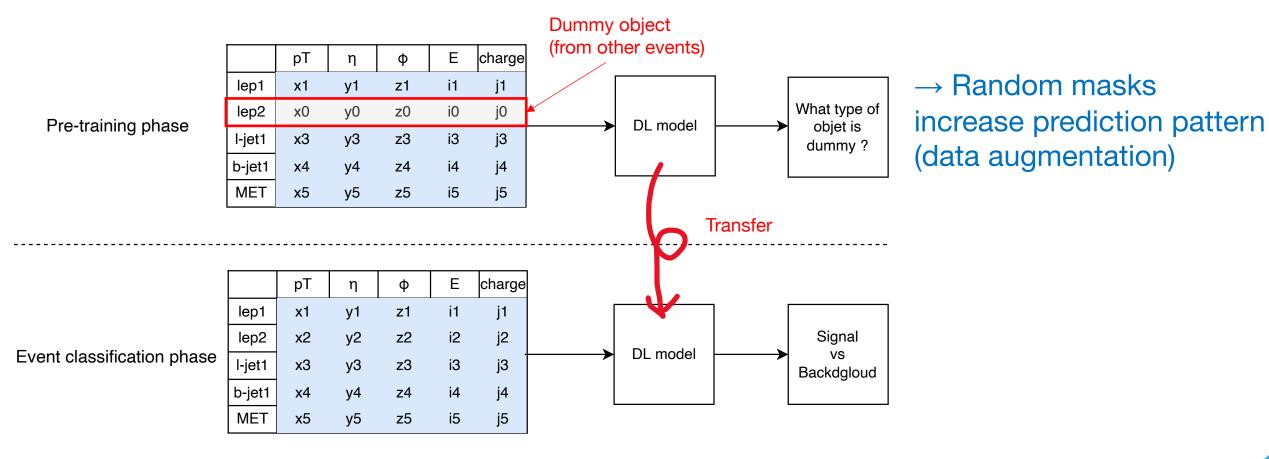
Only low-level features of each object (4-vector + charge) are used as inputs
Self-supervised learning is employed to handle the unlabeled collision data

Strategy:

- An object (lepton, tau, b-jet, light-jet, or MET) is randomly replaced with a dummy object when preparing a mini-batch
 - \rightarrow DL model is trained to predict what type of object was replaced

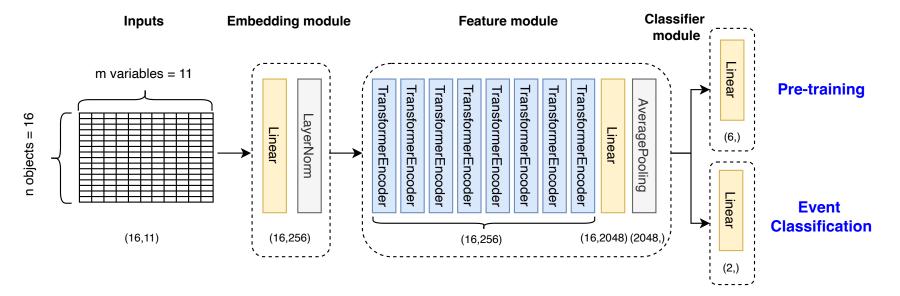


Pre-training strategy



DL model

- > Transformer encoder is employed:
 - ~11M trainable parameters



 \rightarrow Weight parameters of embedding and feature modules are transferred and fine-tuned \rightarrow Classifier module is always trained from scratch

Training details

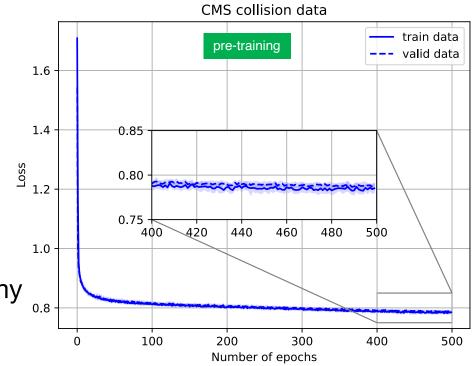
Basically, the same setting between the pretraining and event classification phases:

SGD optimizer:

- Learning rate: 10⁻²-10⁻⁴ (CosineAnnealingLR)
- Batch size: 512, Epochs: 500
- Cross entropy loss:
 - Pre-training: lepton, b-jet, I-jet, MET, or No dummy

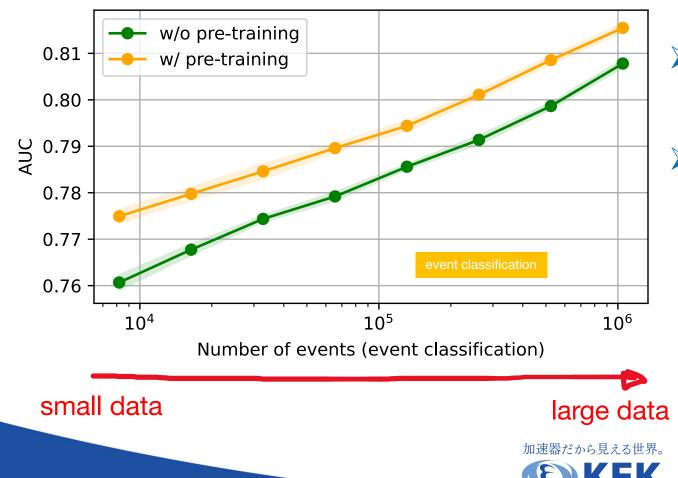
加速器だから見える世界。

- Event classification: signal or background
- NVIDIA A100: ~20 batches/s
 - ~13 hours for one training



~1M events used

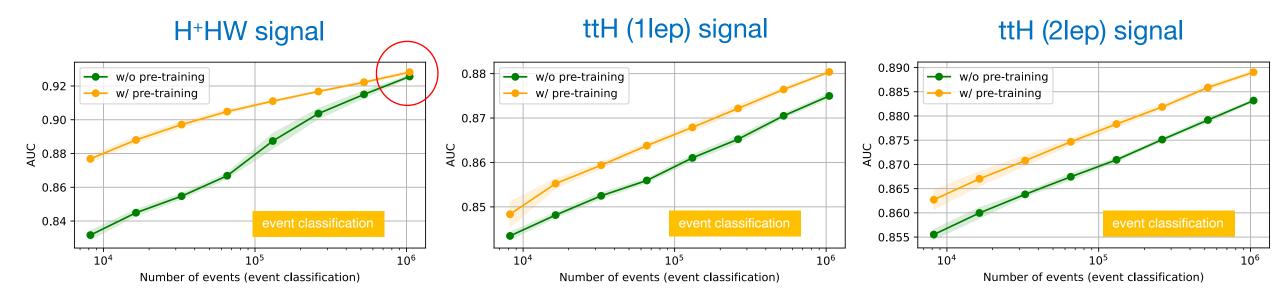
AUC of event classification



H+tb signal

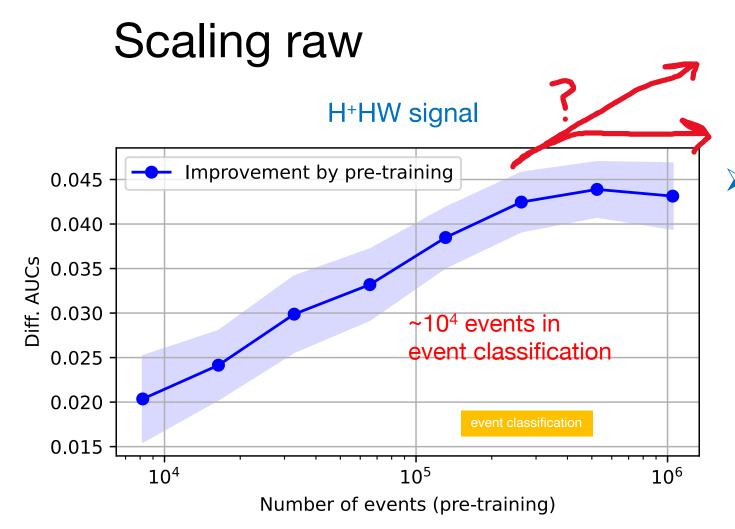
- Significant improvements by introducing the pre-training
- Future work: need to check if the performances converge when more data (>10⁶) are added

AUC of event classification



> The improvements are confirmed for all signal events

 \rightarrow The pre-trained model (foundation model) is well generalized



The scaling behavior encourages a pre-training with a larger data

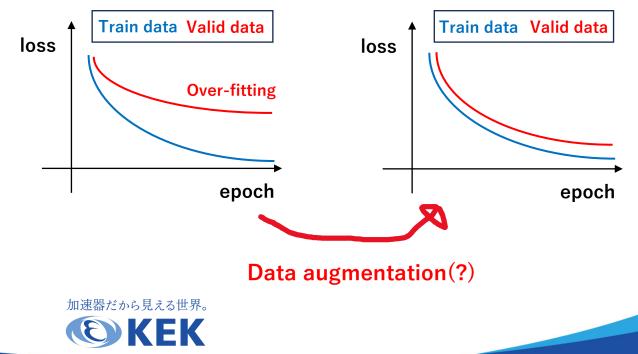
However, the number of events in the CMS open data itself and computing resources are limited

 \rightarrow Data augmentation is examined

Data augmentation

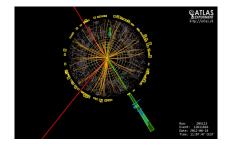
> Data augmentation is well established technique in computer vision field

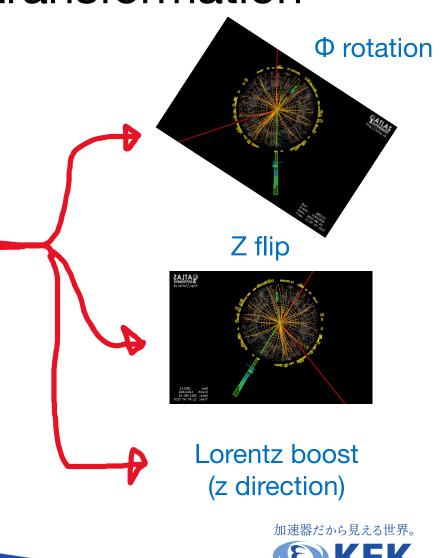
 \rightarrow Easy to increase data with low computing cost, and effective to suppress over-fitting



Lorentz transformation

Original event (Higgs candidate)



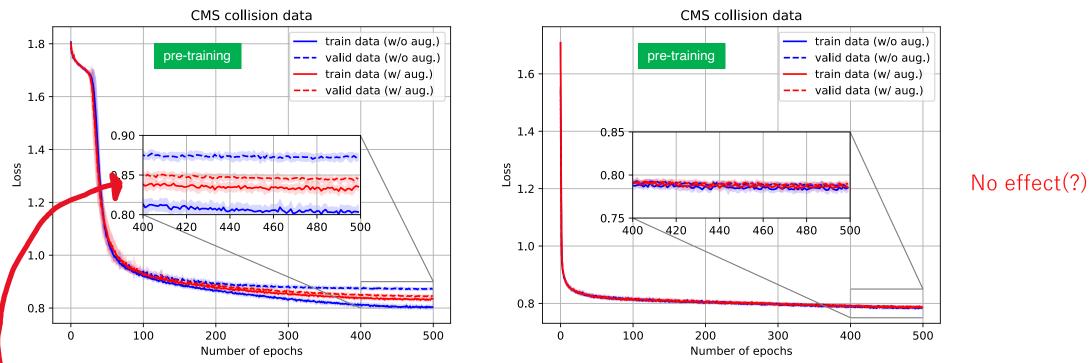


 \leftarrow This data is still a Higgs candidate, and should occur with the same probability as the original event

 \geq These transformations are applied randomly before being fed into the DL model (pretraining phase)

DA (pre-training phase)

~10⁴ events used



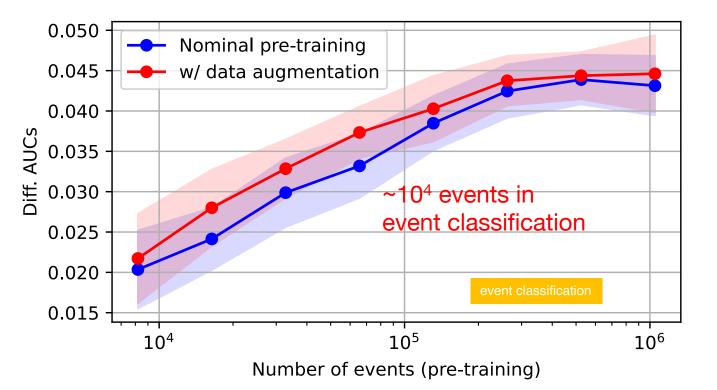
~10⁶ events used

 \rightarrow Over-fitting is suppressed by the data augmentation if the number of events is small

加速器だから見える世界。

Improvements for event classification

H⁺HW signal



Improvements for the downstream event classification are not so visible (within the standard deviation)

 \rightarrow Do you have any other data augmentation ideas?

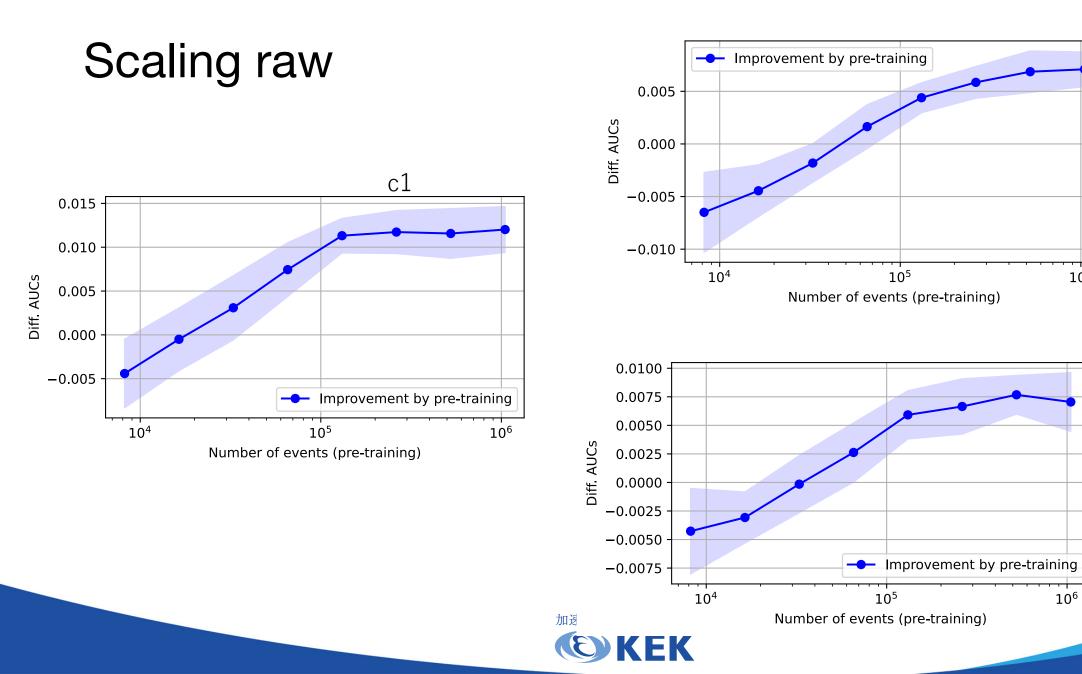
Summary

Focusing on foundation models (transfer learning) and studying their applications to collider physics

> Motivated by reduction of computing resources for future experiments

> Developed a self-supervised learning using real data in pre-training

- The pre-trained model provides significant improvements in event classification when the # of events is small
- > The scaling behavior encourages pre-training with a larger data
 - \rightarrow Data augmentation technique in our physics data was discussed
- > (Need to check the scalability with larger models and larger data)



сЗ

10⁶

c4