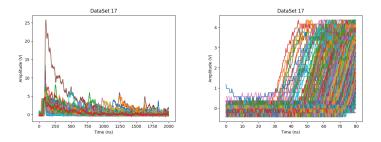
BGO pulse shape studies

24/01/25

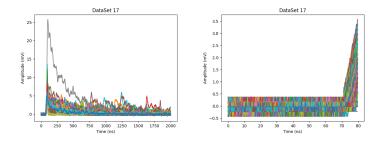
- Magali's test bench (Magali talk https://indico.in2p3.fr/event/33881/)
- ▶ $2 \times 2 \text{ cm}^2$ BGO thin scintillator
- Acquisition with an oscilloscope
- Objective : Prepare the processing software for the test beam to be able to determine the decay time constants

Runs

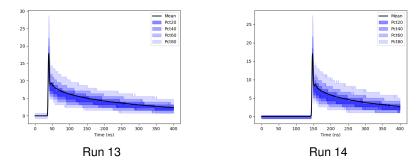

				BGO	
Available runs :					
DataSet	Configuration	Content		PMT	
13	A	Free running			
14	A	Free running (10k)		Configuration	n A
15	A	Free running			
16	В	Alpha Source			
		Trigger issue			
17 1k	В	Alpha Source (1k)			
17 10k	В	Alpha Source (10k)		BGO	ΤMG
18	В	Free running,			۵
		with ext. trigger			

Configuration B

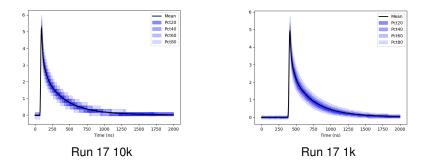
PMT


With the actual trigger, the start of the signal is not clean

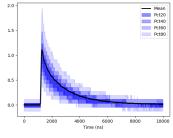
Plague the time constant determination


A note on the triggering

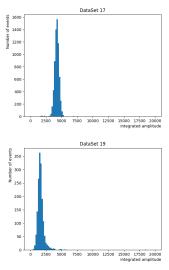
- ► Quickfix : Use a lower thresold (1.5 mV run<17, 0.5 mv run≥17) in the post-processing (software), use the mean value as a reference</p>
- Need to be improved


Free running runs

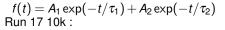
- Simple mean of all signals
- As expected MPV < mean</p>
- Cherekov ligth in the PM glass
- Resolution affected by Limited by the oscilloscope LSB

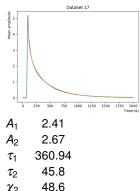

Simple mean of all signals

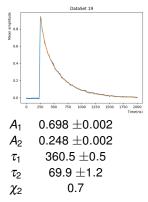
Configuration B allows to get rid of the Cherenkov light


Muon runs

- Simple mean of all signals
- Configuration B allows to get rid of the Cherenkov light
- Trigger generated by two external scintillators in coincidence (muons selection)


Run 18


- Performed on dataset 17 and 18
- Use the python sherpa library and roofit
- Error defined as the std dev. of all signal/bin $/\sqrt{n}$ (oscilloscope binning not included)
- Fitted as the sum of 2 exponentials


Integrated amplitudes

 χ_2

Run 18 :

- S Gundacker et al, Phys. Med. Biol. 65 (2020) 025001 (20pp) 45.8 ns (8 %) 365 ns (92 %)
- W. Wolszczak, et al "Temperature Properties of Scintillators for PET Detectors: a Comparative Study" 2014
 85 ns (7 %) 370 ns (93 %)
- "TIMING PROPERTIES OF BGO SCINTILLATOR" Nuclear Instruments and Methods 188 (1981) 403 409 60 ns (10 %) 300 ns (90 %)

- Next step : move to ASM readout
- Model with two exponential not enough to reproduce the decay shape for alpha particle
- Model with two exponential can reproduce the decay shape for muons, consistent with the literature