LASAGN : a new laser spectroscopy setup at DESIR

Louis Lalanne IPHC/CNRS

ISOL-France workshop – 04/04/2025

13

HFS : HyperFine Structure

Hyperfine splitting:

$$E(F) = kA + k'B \qquad A = \frac{\mu Be(0)}{I.J} \quad B = e Qs V(0)$$

Isotope shift : HFS shift between an isotope A and A'

$$\delta v_i^{A,A'} = \frac{A - A'}{AA'} M_i + F_i \delta \langle r^2 \rangle^{A,A'}$$

- Nuclear spin I
- Dipole magnetic moment μ
 - \rightarrow Single particle configuration
- Electrical quadrupole moment Q_s
 - \rightarrow Nuclear shapes
- Mean-squared charge radii
 → Magicity, collectivity, correlations

Collinear Laser Spectroscopy

X.F. Yang et al., PPNP 129 105005 (2023)

Isotope shift : HFS shift between an isotope A and A'

$$\delta v_i^{A,A'} = \frac{A - A'}{AA'} M_i + F_i \delta \langle r^2 \rangle^{A,A'}$$

Resonance Ionization Spectroscopy

Hyperfine splitting:

$$E(F) = kA + k'B \qquad A = \frac{\mu Be(0)}{I.J} \quad B = e Qs V(0)$$

Isotope shift : HFS shift between an isotope A and A'

$$\delta v_i^{A,A'} = \frac{A - A'}{AA'} M_i + F_i \delta \langle r^2 \rangle^{A,A'}$$

Measuring the HFS allows access to:

- Nuclear spin I
- Dipole magnetic moment μ
 - \rightarrow Single particle configuration
- Electrical quadrupole moment Q_s
 - \rightarrow Nuclear shapes
- Mean-squared charge radii
 → Magicity, collectivity, correlations

Resonance Ionization Spectroscopy

X.F.

Yang et al., PPNP 129 105005 (2023

The GANIL / SPIRAL2 facility

Desintegration, Excitation and Storage of Radioactive Ions Hall for low-E and precision (nuclear) physics experiments (2027)

NFS

Neutron For Science —— High intensity neutron beam 1-30MeV

NEW GANIL INJECTOR NEW GANIL INJECTOR (2030)

Super Separator Spectrometer (2026)

S3

SPIRAL2 SC Linac

HI up to 15 MeV/A

few 10 pµA

SPIRAL2 ion source

DESIR

SPIRAL1—

ISOL fragmentation RIB

GANIL cyclotrons – ¹²C to ²³⁸U, up to 95 MeV/A < 1 pµA - LISE spectrometer

ion sources

GANIL experimental areas

GANIL

RIB production for DESIR

RIB production for DESIR

RIB production for DESIR

DESIR RIB preparation and purification

RFQ cooler and High Resolution Separator

- $M/\Delta M = 20,000 @ 3\pi \text{ mm.mrad} / 60 \text{keV}$
- Commissioned at LP2I Bordeaux
- *J. Michaud et al., NIM B 541, 161 (2023) T. Kurtukian Nieto et al., NIM B 317, 283 (2013)*

Transport lines

• 1+ ions, 3, 30-60 keV, 3-80 π.mm.mrad

S3 RIB >

Fully electrostatic

PIPERADE

- Double penning trap
- Purification + measurement
- 10⁵ ions/bunch, 2-20 Hz
- $M/\Delta M = 10^5$

PIPERADE: P. Ascher et al., NIM A 1019, 165857 (2021)

General Purpose Ion Buncher (GPIB)

- Transmission : 100 % @ 10⁶ ions/bunch
- time dispersion down to ≈ 250 ns (FWHM)
- 2-50 Hz

GPIB: M. Gerbaux et al., NIM A 1046, 167631 (2023)

•

•

•

10

LASAGN

Laser Spectroscopy At GaNil

Versatile and sensitive

Benefit from purification

Combo with trap and decay

Complementary to S³-LEB

High-resolution and precision

The LASAGN project

- Jan 2024 First visit of LINO @ ALTO : discussion for potential physics program at ALTO.
- > Decision not to start any physics program with LINO @ ALTO.
- Fev/Mar 2024 DESIR WS : Presentation/discussion of different laser spec technics
- Strong interest for the CRIS technic à DESIR
- ➤ Formation of a proto-collaboration : IPHC, KU Leuven, IJCLab, LPC, Manchester
- May 2024 ISOL-France WS : Detailed discussion about LUMIERE and LINO
- First priority: Install and commission LINO à DESIR
- > No strong support for and nuclear orientation program
- Decision to upgrade LINO toward a CRIS-like beam line : projet LASAGN
- Jully 2024 LUMIERE WS : Presentation of the LASAGN project to the international comunity
- Final decision to go for LASAGN at DESIR
- > Potential financial contribution from the UK et IKS/Leuven
- Sept 2024 : Visits at ALTO and GANIL : Inventory, DESIR laser lab, Integration of LINO at DESIR...
- Oct 2024 : Ganil Community Meeting : presentation of the project to the GANIL community
- Feb 2025 : beam request for SPIRAL1 RIB

LASAGN first physics cases

How to make a lasagn?

How to make a lasagn?

d' ail

1 branche de céleri

1

<u>carotte</u>

600 g

de boeuf haché

3 pincées de <u>muscade</u> râpée

800 g de <u>purée de tomate</u>

125 g de Parmesan

11 de lait

The LINO beam line (Laser Induced Nuclear Orientation)

- Collinear Laser Spectroscopy with fluorecence detection
- Commissioned at ALTO facility in IJCLab

Install and commission LINO at DESIR

> Day 0 experiment with standard CLS and radioactive Spiral1 beam

Timeline :

Installation, comissioning : 2026 - 2027 Day 1 experiment : 2027

✓ CLS with fluorescence detection
 ✓ High res : < 50MHz
 X Sensitivity limit: > 10⁴pps

D.T. Yordanov et al 2020 JINST 15 P06004

- > Upgrade to CRIS-like : Collinear resonance laser ionization spectroscopy with ion detection and pulsed lasers
- > Day 1 experiment with exotic Spiral 1 beam + first experiment with S3 beams

New development to enhance the capacity of the setup :

- Collinear-Anticolinear fluorescence and RIS \rightarrow <1MHz precision on IS
- Perpendicular illumination using ultra narrow bunches \rightarrow background free spec.
- In-flight double laser-RF spectroscopy \rightarrow resolution < 10 MHz

New development to enhance the capacity of the setup :

- Collinear-Anticolinear fluorescence and RIS \rightarrow <1MHz precision on IS
- Perpendicular illumination using ultra narrow bunches \rightarrow background free spec.
- In-flight double laser-RF spectroscopy \rightarrow resolution < 10 MHz

LASAGN : Versatile high-resolution, high-precision and high-sensibilty laser spec. setup

- \checkmark Benefits from the many beam preparation and purification devices of DESIR
- ✓ Unique opportunities in the light region with SPIRAL1 RIB
- ✓ Allow to re-inject RIS beams to the central beam line \rightarrow synergy with trap and decay setups

LASAGN technical drawings

LASAGN phase 1: beam transport simulation

SIMION simulation using proper DESIR and LINO ion optics:

- \rightarrow 100% transmission through the Charge Exchange Cell (CEC)
- \rightarrow Work ongoing to implement realistic emitance, ion source and phase 2

	N=14		N=16		N=20						N=28								
³⁰ Cl	³¹ CI	³² Cl	³³ Cl	³⁴ Cl	³⁵ Cl	³⁶ CI	³⁷ Cl	³⁸ CI	³⁹ Cl	⁴⁰ Cl	⁴¹CI	⁴² Cl	⁴³ Cl	⁴⁴Cl	45CI	⁴⁶ Cl	⁴⁷ Cl	⁴⁸ Cl	

Statues of knowledge:

- g.s. spin A>40 not firmly assign
- Only moments of ^{32-38,44}Cl known
- No charge radii measured

Suggested one-*p* halo in ³¹Cl and *p* skin in ³²Cl from theory \rightarrow Increase in charge radii? Influence of continuum?

C. Xiang-Zhou *et al.*, Chinese Phys. Lett. 19 (2002) F. Sammarruca, Front. Phys. 6:90 (2018)

Statues of knowledge:

- g.s. spin A>40 not firmly assign
- Only moments of ^{32-38,44}Cl known
- No charge radii measured

Statues of knowledge:

- g.s. spin A>40 not firmly assign
- Only moments of ^{32-38,44}Cl known

23

• No charge radii measured

Statues of knowledge:

- g.s. spin A>40 not firmly assign
- Only moments of ^{32-38,44}Cl known

24

• No charge radii measured

Conclusion

• Laser spectroscopy is a very powerful tool to study nuclear structure

 \rightarrow Access nuclear moments, spin and charge radii in a nuclear-model independent way

• A new low-energy experimental hall

 \rightarrow Unique opportunities with ultra-pure RIB and combinations of exp. technics

- LASAGN : Versatile laser spectroscopy setup of high resolution, precision and sensitivity
 - \rightarrow Unique opportunities for the study of light exotic isotopes, benefiting from existing Spiral1 beams
 - \rightarrow First physics cases envisaged : Cl, P, Zn, O, F...

Rwill enter in operation in 2027 at GANIL

Timeline : move to DESIR end 2025/ beginning 2026; offline commissioning by 2027. First RIB exp in 2027/28 Grant application end of the year (ANR and ERC)

Spokesperson : L. Lalanne and A. Koszorus (KU Leuven)

Collaboration : IPHC, KU Leuven, IJCLab, LPC, University of Manchester

THANK YOU FOR YOUR ATTENTION

The DESIR Menu

DETRAP

The DEsir TRAPping facility

MLLTRAP and **PIPERADE**

■Double Penning trap for high precision mass measurements and in-trap decay
→ Nuclear structure & Decay properties

MORA

- RFQ-CB associated with a Paul trap
- D correlation with laser polarized beams →Fundamental interaction physics (exotic currents, V_{ud}, CP-violation)

LUMIERE

LASAGN

Laser Utilization for Measurement and Ionization of Exotic Radioactive Elements

ASGARD MLLTRAP Decay Station TAGS BEDO SICUBE MONSTER PIPERADE BELEN LASAGN MORA

BESTIOL

BEta decay STudies at the SPIRAL2 IsOL facility

High-precision decay measurements with ultra-pure samples (PIPERADE) for fundamental interaction, nuclear structure, nuclear astrophysics...

- • $\beta \gamma$ decay stations : **BEDO**, ...
- recoil detection : ASGARD
- total absorption spectrometers : **DTAS**
- neutron detection arrays : **BELEN**, **MONSTER**, ...
- electron and proton detection : COeCO, SiCube, b-STILED
- + open lines for temporary setups

CRIS of Oxygen from the proton to the neutron drip-line

29

Oxygen Mass

Ongoing developments

How to improve sensitivity?

 \rightarrow Reduction of ionization volume to reduce collisional rate

A.R. Vernon et al., Scientific reports 10, 12306 (2020)

 \rightarrow Ongoing commissioning at CRIS, ISOLDE

How to improve transition frequency measurement precision?

 \rightarrow Limited by the determination of the ion velocity

 \rightarrow Collinear / anti-collinear spectroscopy + frequency-comb referenced cw

laser system

- \rightarrow <1 MHz precision on transition frequency
- \rightarrow Collinear / anti-collinear RIS to be implemented

How to do both at the same time?

- \rightarrow RIS as a two-body reaction
- \rightarrow Under development at MIT

How to improve the resolution?

→ Double laser-RF RIS (see talk of Ruben)

CRIS-RF

- Improve the precision of hyperfine parameter measurement by several orders of magnitude
- \rightarrow Measurement of magnetic octupole moment

U. Nielsen et al., PRL 51, 19 (1983) T.J. Scholl et al., PRA 33, 4 (1986) R.P de Groote et al., PLB 827, 136930 (2022)