News from **bSTILED**

Romain Garreau Laboratoire de physique corpusculaire de Caen

Workshop ISOL-France VII 4th April 2025

- Context and motivations
- The b-STILED project
- "Low-energy" experiment
- "High-energy" experiment

Context

- Standard Model of particle physics :
 - -Describe elementary particles and their interactions
 - -Predictive model, consistent with constraints at TeV scale
 - -Describe three out of four fundamental forces

Context

- Standard Model of particle physics :
 - -Describe elementary particles and their interactions
 - -Predictive model, consistent with constraints at TeV scale
 - -Describe three out of four fundamental forces
- Shortcomings of the Standard Model :
 - Does not account for gravity
 - No answer for the matter-antimatter asymmetry
 - dark matter and dark energy
 - -...

New Physics beyond the Standard Model

• Search for ε_s , ε_τ exotic contributions of weak interaction

Dominant Vector - Axial vector (V – A) form established in SM no fundamental reason to exclude Scalar (S) and Tensor (T) contributions → interesting search window for New Physics

Search for New Physics

 Search for ε_S, ε_T exotic contributions of weak interaction Dominant Vector - Axial vector (V – A) form established in SM no fundamental reason to exclude Scalar (S) and Tensor (T) contributions
→ interesting search window for New Physics

Measurement at low energy, using β-decay

Precision measurement of Ft-values, β -spectrum shape \rightarrow Fierz interference term *b*

 $b \rightarrow$ linear dependence on ε_s (Fermi) and ε_T (Gamow-Teller) \rightarrow sensitive probe to NP

 Search for ε_S, ε_T exotic contributions of weak interaction Dominant Vector - Axial vector (V - A) form established in SM no fundamental reason to exclude Scalar (S) and Tensor (T) contributions
→ interesting search window for New Physics

Measurement at low energy, using β-decay

Precision measurement of Ft-values, β -spectrum shape \rightarrow Fierz interference term *b*

 $b \rightarrow$ linear dependence on ε_s (Fermi) and ε_T (Gamow-Teller) \rightarrow sensitive probe to NP

bSTILED (b : Search for Tensor Interaction in nucLear bEta Decay)
→ Measurement of b in a pure GT transition

- Context and motivations
- The b-STILED project
- "Low-energy" experiment
- "High-energy" experiment

bSTILED goal

- bSTILED (b : Search for Tensor Interaction in nucLear bEta Decay)
 - \rightarrow Measurement of *b* in a pure GT transition
 - For pure GT, $b_{GT} = 6.2 \epsilon_T \rightarrow \text{measure } b_{GT}$ to improve constraints on ϵ_T

M. González-Alonso, O. Naviliat-Cuncic, N. Severijns, Prog. Part. Nucl. Phys. 104 (2019) 165. • Extract the Fierz term b_{GT} from the β -spectrum shape in the decay of ⁶He

Phase I program at GANIL

- Use ⁶He : ideal candidate, copiously produced at GANIL
 - \rightarrow pure GT transition, convenient T_{1/2}=0.8s, E_{bmax}=3.5MeV
 - → high sensitivity theoretical corrections precisely known
- Implant ⁶He in 4π detection setups (scintillators)

→ suppress E_{loss} from β backscattering (main systematic effect)

- Use implantation-decay cycles (3 s 12 s)
 - \rightarrow cst BKGD subtraction
 - $\rightarrow T_{1/2}$ measurement

Phase I program at GANIL: two experiments

- Use simple setups
- Test two techniques (different systematic effects)

Phase I program at GANIL: two experiments

- Use simple setups
- Test two techniques (different systematic effects)

Comparison between techniques and use the most promising one for phase II

Choices for the experiment

 Use YAP:Ce as main scintillator → fast, linear, less Bremsstrahlung escape + plastic scintillator (veto) and ²⁴¹Am source (gain monitoring)

- Context and motivations
- The b-STILED project
- "Low-energy" experiment
- "High-energy" experiment

Low-energy experiment

LIRAT-GANIL line, 25 keV ⁶He⁺

Detection setup

2.5 s implantation

5 Sets of measurement

 ϕ 5mm collimator

Set 1 => Nominal conditions (2.5 s - 12 s and 7.10³ pps) Set 2 => Longer cycles, higher intensity (2.5 s - 26 s and ~2.10⁴ pps) Set 3 => Lower polarization voltages Set 4&5 => Background run (Aluminium cap on scintillator)

Extracted statistical uncertainty after analysis of one set $\Delta b_{GT(stat)} \sim 3.9 \ 10^{-3}$

Low-energy experiment analysis

Unexpected background : Bremsstrahlung from ⁶He implanted on collimator
→ Complexified the analysis

Discrepancies between Sets 1,2,3 ($\Delta b_{GT} \sim 2.10^{-2} > 3 \Delta b_{GT(stat)}$)

 \rightarrow strong systematic effect not yet understood

1st lead: shape of Bremsstrahlung bkgd (changing with Sets)

- \rightarrow to be investigated
- May be difficult to reach phase I uncertainty goal

However there are 3 byproducts : -⁶He halflife measurement

M. Kanafani et al, Phys.Rev. C 106 (2022) 045502

-Precise electron backscattering measurement

article in preparation...

-Bremsstrahlung escape measurement

For now, focus on High energy experiment

- Context and motivations
- The b-STILED project
- "Low-energy" experiment
- "High-energy" experiment

High-energy experiment

- Experiment at LISE GANIL
- \rightarrow implant 300 MeV ⁶He nuclei 10 mm deep in the YAP (max β -range 4mm)

hodoscope

- Simpler main detector (one YAP)
- Control implantation profile (4 thin PVT hodoscope)
- LISE beam purity (measure implantation energy)
- Beam induced contaminants (HPGe)

Measurement cycle

4 sets of measurements

2 crystal sizes, 2 distances, 2 beam intensities

1.1x10⁸ good events → expected stat. uncertainty $\Delta b_{GT(stat)} = 1.2x10^{-3}$

(almost ok for phase II)

High-energy experiment analysis : Beam characteristics

Beam profile (rates from hodoscope)

 \sim 0.4% implantation beyond 6mm from center

High-energy experiment analysis : Beam characteristics

Beam profile (rates from hodoscope)

 \sim 0.4% implantation beyond 6mm from center

Potential contaminants (LISE++): ⁸Li & ⁹Be

Should appear at higher energy

YAP energy spectrum (Implant. phase)

<u>High-energy experiment analysis : Beam induced contaminants</u>

- List potential contaminants (fragmentation and fusion-evaporation)
- Selection of most impacting cases: 50 ms < T_{1/2} < 1 mn</p>
- Identification using:
 - YAP Energy spectrum
 - HPGe in implantation phase \rightarrow look for excited states of contaminants (+ ⁶He, Al, O, Y)
 - HPGe in decay phase \rightarrow look for excited states of daughter nuclei

Contaminants unambiguously identified so far (work in progress):

High-energy experiment analysis : Beam induced contaminants

Extract contaminant contribution and impact on b_{GT}

Summary and conclusions

For the LIRAT experiment :

- Sufficient statistics for phase I
- Analysis complexified by unanticipated source of background
- Analysis on hold...
- Provided 3 by-products

For the LISE experiment :

- Sufficient statistics for phase I and almost for phase II
- Excellent beam purity
- Beam induced contaminants does not seem to be a problem (need to finalize the analysis)
- Next steps : → Geant4 Simulations (for fit templates)

 \rightarrow Study other systematic effects

(implantation region, Bremsstrahlung escape, detector response...)

- Non-proportionality of YAP is the limit with $\Delta b_{GT} \sim 10^{-2}$
 - \rightarrow requires dedicated study to reach goal of phase I and beyond.

THANKS FOR YOUR ATTENTION !

D. Etasse X. Fléchard

R. Garreau

L. Hayen

M. Kanafani

F. Lebourgeois

E. Liénard

J. Lory

O. Naviliat-Cuncic

J. Perronnel

A. Rani

Ch. Vandamme

X. Mougeot S. Leblond G. Craveiro

GANIL

F. Marie-Saillenfest

.1.C. Thomas

V. Morel

MICHIGAN STATE UNIVERSITY

T.E. Haugen O. Naviliat-Cuncic

KU LEUVEN

S. Vanlangendonck

Romain Garreau

Workshop ISOL-France VII

Backup slides

BP 1: Half life measurement of ⁶He

- LIRAT experiment is an ideal setup:
 - Use adapted cycles
 - High rates, high purity beam
 - Gain and baseline corrections
 - Data Time stamp for offline analysis (not simple scalers)

Most precise half life measurement for 6He

 $T_{1/2} = 807.25 \pm 0.16_{stat} \pm 0.11_{syst} ms$

M. Kanafani et al, Phys.Rev. C 106 (2022) 045502

Romain Garreau

Workshop ISOL-France VII

BP 2: Precise measurement of electron backscattering

- Lack of experimental data in the 100 keV- few MeV range
 - \rightarrow Poor benchmarking of Geant4
 - \rightarrow Conservative systematic error on BS (10%-20%) in data analysis
- 6He decay electrons of LIRAT experiment
 - \rightarrow Backscattering probability up to 3.5 MeV

Romain Garreau

Workshop ISOL-France VII

BP 2: Precise measurement of electron backscattering

Comparison with Geant4, several EM low energy options

Relative deviations below 4% (Option4 & Penelope)!

Article in preparation...

BP 3: Measurement of Bremsstrahlung escape

Basic idea:

LIRAT-like geometry with ⁹⁰Sr beta source Inserted in High efficiency γ detector for escaping photons Record single β events and coincidences with photons

Measurement at FRIB in April 2024

Collaboration with ORNL and IRL Use of ORNL MTAS detector

YAP + ⁹⁰Sr source

MTAS Nal ~100% efficiency

Photon detector

B.C. Rasco Th. Ruland K.P. Rykaczewski

Romain Garreau

Workshop ISOL-France VII

BP 3: Measurement of Bremsstrahlung escape

Comparison with Geant4 (EM option4):

Deviations up to 10%

Romain Garreau

Workshop ISOL-France VII

Low-energy experiment analysis

Sources systematic errors

	Systematic effect	Δb_{GT}	ß-range ⁶ He
ſ	Ьмм	2.6 x 10 ⁻⁴	p runge
	Radiative corrections	3.7 x 10 ⁻⁴	
	Bremsstrahlung escape (5 % error on G4) 2.5 x 10 ⁻³	
	Cerenkov (10%error on G4)	5 x 10 ⁻⁴	hy
	Detectors resolution	< 2 x 10 ⁻³	
l			Bremsstrahlung escape
٢	Pile-up (preliminary)	< 1 x 10 ⁻³	
	Calibration for BKGD run (preleminary)	< 2 x 10 ⁻³	
	Detector non-proportionnality (litterature	?) ~10 ⁻²	Dedicated measurements
	Total	?	

M. Kanafani, PhD Thesis, UniCaen (2023)