FiTQun One-Ring NLL curves

Calculating the NLL and making a curve

 In fiTQun, the negative log likelihood (NLL) is calculted using the fiTQun::GetOneRngnglogL function for the one ring fit

```
::GetOneRngnglogL(int iPID, double *X, int& PCflg, int iring){
       double
         if (iring<0) {
2870
2871
                               ::nring-1;
           iring=
2872
2873
2874
         Resetmuring(iring);
         PCflg=OneRing(iPID,X,iring);
2875
2876
         return nglogL();
2877
```

 We make a NLL curve by calculating the NLL for different inputs *X and plotting the results

Calculating the NLL and making a curve

```
lnlval=OneRingFit(iPID,X,PCflg);
2559
2560
           if (iPID == ie) {
                                                                      Calculate the NLL
2561
           if (ipeak == 0) {
                                                                      values inside the
2562
                         outputFile("results.txt");
2563
              l::ofstrea
                                                                      Do1RFit function
2564
2565
                                               ::nSnglTrkParams];
           double testparameters[f:
                                                                      after the final
           testparameters[0]=X[0];
2566
                                                                      fitting step
2567
           testparameters[1]=X[1];
2568
           testparameters[2]=X[2];
2569
           testparameters[3]=X[3];
2570
           testparameters[4]=X[4];
2571
           testparameters[5]=X[5];
2572
           testparameters[6]=X[6];
2573
           testparameters[7]=X[7];
2574
2575
           outputFile << "momenta" << "\n";// Fit Result: " << testparameters[6];</pre>
2576
2577
           for (double i = X[6]-10;i<X[6]+10; i+=0.1) {
2578
             testparameters[6]=i;
2579
             double result;
             int PCdumflg;
2580
             int iring=staticthis->cring;
2581
2582
2583
             result = staticthis->GetOneRngnglogL iPID,testparameters,PCdumflg,iring);
2584
             outputrile << i << " " << result
2585
2586
           testparameters[6]=X[6];
```

Electrons (Positions)

Random position and direction in the detector

500MeV energy

Electrons (zoomed)

(Positions)

Random position and direction in the detector

500MeV energy

Electrons (Direction)

Random position and direction in the

detector

500MeV energy

Direction fit result converted from cartesian coordinates

Electrons (zoomed)

(Direction)

Random position and direction in the detector

500MeV energy

Direction fit result converted from cartesian coordinates

Electrons

(Time and Momentum)

Random position and direction in the detector

500MeV energy

Electrons (zoomed)

(Time and Momentum)

Random position and direction in the detector

500MeV energy

Fit result corresponds well to NLL curve minimum

Does it look this good for Muon events as well?

Muons (Positions)

Muon at origin and in x-direction

500MeV energy

Fit hits the minimum, but y-curve strange

Muons (Direction)

Muon at origin and in x-direction

500MeV energy

Direction still looks good

Muons (Time and Momentum)

Muon at origin and in x-direction

500MeV energy

Time fit corresponds to curve minimum

Momentum fit <u>fails</u> to find the minimum

