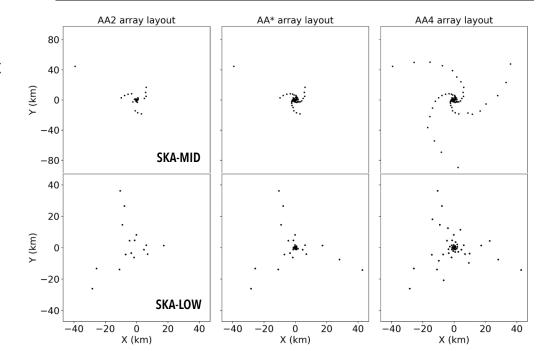
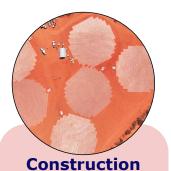


SKA Phase 1 Baseline

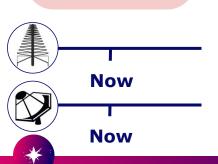
- SKA-LOW (50-350 MHz): 131072 log
 periodic antennas, spread across 512 stations
 Maximum distance between stations: 74 km
- SKA-MID (350 MHz 15.4 GHz): 197 fully steerable dishes, including the existing 64 MeerKAT dishes
 Maximum distance between dishes: 150 km
- <u>SKA-HQ</u>: SKAO headquarters located on the UNESCO World Heritage Site of Jodrell Bank
- <u>SRC-Net</u> (SKA Regional Center Network): a world wide network of data/computing centres

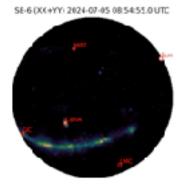
Construction strategy

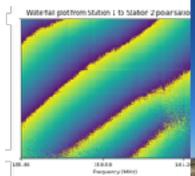

- Construction split into stages (Array Assemblies): AA0.5, AA1, AA2, AA*, AA4
- Target: build the SKA Baseline Design (AA4)
- Not all funding yet secured, therefore following Staged Delivery Plan (AA*)
- AA2 will be an important milestone for the scientific community: SKA telescopes will be scientifically competitive → beginning of Science Verification

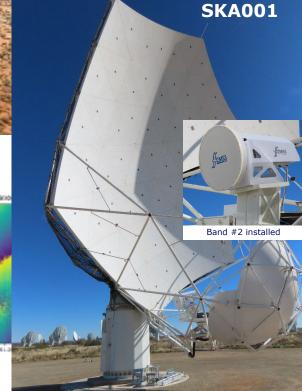

SKAO Staged Delivery, Array **Assemblies and Lavouts**

Available	on-	in


Telescope	Maximum baseline length and number of stations/dishes			
	AA2	AA*	AA4	
Low	64.8 km with 68 stations	73.4 km with 307 stations	73.4 km with 512 stations	
Mid	108.0 km with 66 dishes (36.0 km, excluding dish SKA008)	108.0 km with 144 dishes (36.0 km, excluding dish SKA008)	159.6 km with 197 dishes	


SKAO milestones




- Building antennas, dishes, roads etc!
- Followed by Assembly, Integration and Verification

SKAO milestones

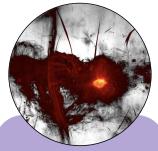
Construction

- Building antennas, dishes, roads etc!
- Followed by Assembly, Integration and Verification

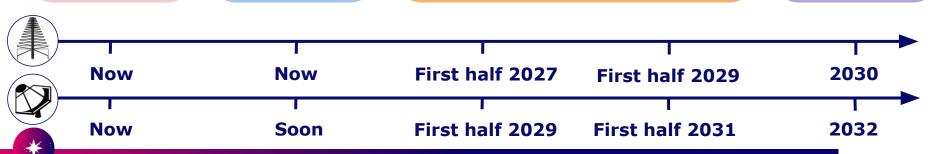
Commissioning

- SKAO activityCollaborative
- across system
 verification and
 science
 commissioning

Community involvement starts



Science Verification


- A full dress rehearsal of the end-to-end system for every mode of operation
- Once modes and pipelines are working, the community can submit target ideas
- Data will be publicly available for scrutiny
- Build trust and fostering an early science return

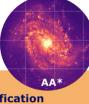
Credit: I. Heywood, SARAO

Cycle 0

- Shared-risk PI projects
- SRCNet resources ready for user
- Proprietary periods

SKAO milestones

SKAO milestones **Community involvement starts**

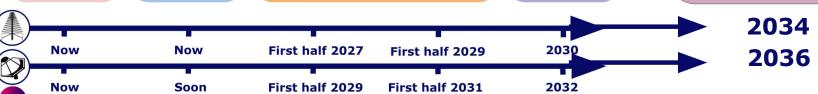

- · Building antennas, dishes, roads etc!
- Followed by Assembly, Integration and Verification

Commissioning

- SKAO activity
- Collaborative across system verification and science commissioning

AA2

Science Verification


- A full dress rehearsal of the end-to-end system for every mode of operation
- Once modes and pipelines are working, the community can submit target ideas
- Data will be publicly available for scrutiny
- Build trust and fostering an early science return

Credit: I. Heywood, SARAO

- Shared-risk PI projects
- SRCNet resources ready for user
- Proprietary periods

Cycle ~4 Steady state operations (all capabilities available)

SKA-Low *****

AA*

307

Stations

Up to 48 station beams

Up to **1440** substations

Up to **16** subarrays, commensal Observations
Two telescopes, frequency coverage of 50
MHz and 15.4 GHz

144 Antennas

Continuum

Spectral Line

Pulsar Timing

Pulsar Search

Transient Buffer

VLBI

Observing modes

SKA will be highly flexible, complicated and delivered on an enormous scale. Plan to deliver highly processed Observatory Data Products adds to this complexity → we expect to build up to the full set of capabilities over time

74 km

Max Baseline

Delivery of capabilities

36 km

Max Baseline

*108 km including SKA008

SKA-Low 1

ΑΑ*

307

Stations

Up to 48 station beams

Up to **1440** substations

74 km Max Baseline Two telescopes, frequency coverage o

Continuum

Spectral Line

Pulsar

Pulsar Search

Transient Buffer

Observing modes

SKA will be highly flexible, complicated and deliver more scale. Plan to deliver highly processed C Data Products adds to this complexity → we expected build up to the full set of capabilities over

-Delivery of capabilities

A year in the life of the SKA telescopes: overview and main outcomes

Revision 01

SKAO-TEL-0002665 Classification: Document type: Date: Status:

UNRESTRICTED REP 2025-06-13 RELEASED

 Role
 Name
 Designation
 Affiliation
 Signature
 Date

 Author
 Sarryesh Sridhar
 Operations Scientist
 SKAO
 SARVESH Sridhar
 2025-06-13

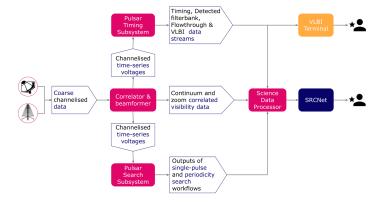
 Owner
 Shari Breen
 Head of Science Operations
 SKAO
 SLAVI'S Breen
 2025-06-13

 Approver
 Antonio Chrysostomou
 Director of Operations
 SKAO
 Antonio Chrysostomou
 2025-08-13

 Released by
 Lewis Ball
 Director of Operations
 SKAO
 Autonio TLM:
 2025-08-13

s work is licensed under a Creative Commons Attribution 4.0 International Licens

@ <u>0</u>


© Copyright 2025 SKA Observator

Some information of interest for your community

The **transient buffer capture** mode consists of a buffer continuously recording a certain bandwidth of raw voltage data, in dual polarisation, corresponding to all Mid antennas and Low station beam data to capture transient events. ...

buffer can be dumped when an alert is received, either internally from the telescope (e.g., following the detection of a single pulse) or externally from multi-wavelength and/or multi-

messenger triggers.

As defined in the Access Rules and Regulations of the SKA Observatory [AD7], the SKAO define three project categories:

- Key Science Projects (KSPs): projects that require significant observing time and resources over more than one observing cycle⁴.
- Principal Investigator (PI) projects: projects that require small to moderate allocations of telescope time, typically over one or a limited number of cycles within an overall time request threshold.
- Director-General's Discretionary Time (DDT): time allocated by the Director-General outside the normal allocation process, generally at short notice, when an unforeseen, unexpected or significant event has occurred requiring telescope time before the next cycle.

... The

A year in the life of the SKA telescopes: overview and main outcomes

 SKAO-TEL-0002665
 Revision 01

 Classification:
 UNRESTRICTED

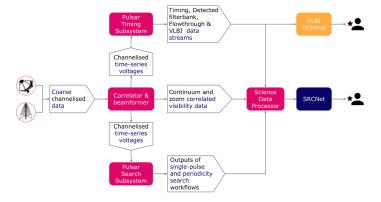
 Document type:
 REP

 Date:
 2025-06-13

Date: 2025-06-1 Status: RELEASED

Role	Name	Designation	Affiliatio	n Signature	Date
Author	Sarrvesh Sridhar	Operations Scientist	SKAO	Sarrvesh Sridhar	2025-06-13
Owner	Shari Breen	Head of Science Operations	SKAO	Shari Broon	2025-06-13
Approver	Antonio Chrysostomou	Deputy Director of Operations	SKAO	Antonio Chrysostomol	2025-06-13
Released by	Lewis Ball	Director of Operations	SKAO	Juris T Bell.	2025-06-13

© Copyright 2025 SKA Observatory.



Some information of interest for your community

The **transient buffer capture** mode consists of a buffer continuously recording a certain bandwidth of raw voltage data, in dual polarisation, corresponding to all Mid antennas and Low station beam data to capture transient events. ...

buffer can be dumped when an alert is received, either internally from the telescope (e.g., following the detection of a single pulse) or externally from multi-wavelength and/or multi-

messenger triggers.

These project types can be further categorised according to four additional attributes:

- Target of Opportunity (ToO; a pre-planned rapid response observation following an expected trigger),
- Long-Term Projects (LTP; projects requiring more than one cycle to complete, but require significantly less resources than a KSP),
- Joint SKA Projects (JSP; projects that require both Mid and Low to complete science goals, contemporaneously or not),
- Coordinated Projects (CP; projects that require coordination with an external facility or facilities, including but not limited to Very Long Baseline Interferometry (VLBI)).

The

A year in the life of the SKA telescopes: overview and main outcomes

 SKAO-TEL-0002665
 Revision 01

 Classification:
 UNRESTRICTED

 Document type:
 REP

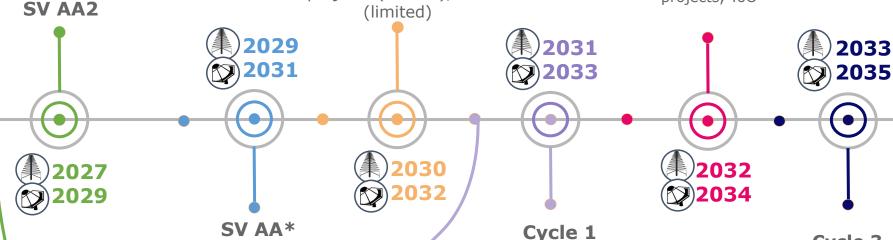
 Date:
 2025-06-13

 Status:
 RELEASED

Role	Name	Designation	Affiliation Signature Date	
Author	Sarrvesh Sridhar	Operations Scientist	SKAO Sarrvesh Sridhar 2025-06-13	
Owner	Shari Breen	Head of Science Operations	SKAO Shari Broon 2025-06-13	
Approve	r Antonio Chrysostomou	Deputy Director of Operations	SKAO Antonio Chrysostomou 2025-08-13	
Released by	Lewis Ball	Director of Operations	SKAO Junis T Bell . 2025-08-13	

© Copyright 2025 SKA Observatory.

This work is licensed under a Creative Commons Attribution 4.0 International License


Scientific timeline Shared risk: PI and DDT

*Calls will include available modes and capabilities

Cycle 0

with attributes: loint SKA, coordinated projects (limited), ToO Cycle 2

Standard Ops: PI and DDT with attributes: Joint SKA, coordinated projects, long term projects, ToO

Calls* for Science Verification ideas and PI proposals come 6 months ahead of SV/each cycle

Planning and call* for first KSPs

mid 2030 mid 2032 Shared risk: PI and DDT with attributes: coordinated projects

(increased), ToO (increased).

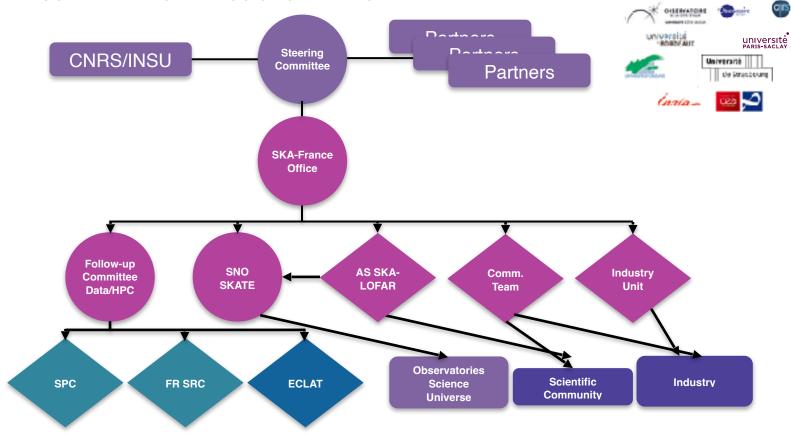
Standard Ops: PI and DDT with attributes: Joint

SKA

Cycle 3 **Standard Ops: KSP,** PI and DDT with attributes: Joint SKA, coordinated projects, long term projects, ToO

SKAO Membership

French membership: where we are


Security Mightan (from the control of the cont

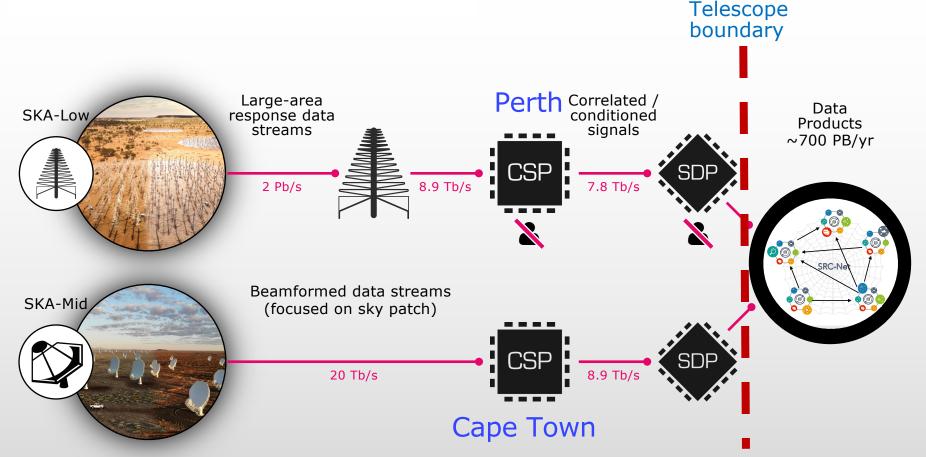
Link

2021

SKA-France: a national coordination

SKA-France: a national coordination Dauthaara Université PROBRE MIT universite Steering CNRS/INSU Université Committee **Partners** de Stracbourg SKA-France C. Ferrari Office chiara.ferrari@oca.eu A. Gusdorf antoine.gusdorf@phys.ens.fr C. Ng cherry.ng-quiheneuf@cnrs-orleans.fr Follow-up **SNO** AS SKA-Industry Comm. Committee **SKATE** LOFAR Unit Team Data/HPC P. Chevrot M. Arav pascal.chevrot@cnrs.fr margaux.arav@oca.eu **Observatories** Scientific Industry **FR SRC ECLAT** SPC Science Community Universe S. Mignot shan.mignot@oca.eu D. Chapon J. Wagg D. Gratadour damien.chapon@cea.fr jeff.wagg@oca.eu damien.gratadour@obspm.fr

French participation in the SKAO


Science

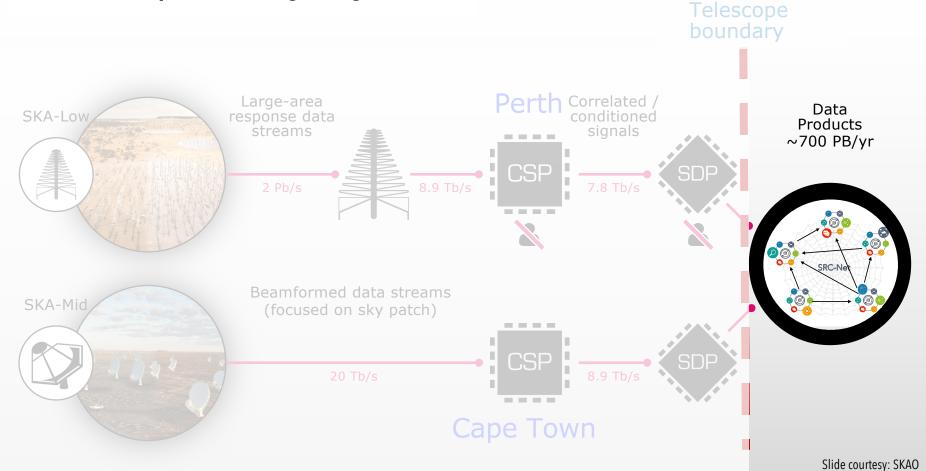
- A continuously growing scientific community preparing for the start of SKAO observations
 - Active exploitation of SKA pathfinders and precursors (NenuFAR, LOFAR, MeerKAT, ASKAP, FAST, ...)
 - Participation to all SKA Science Working Groups
 - Wide and recognised methodological expertise in data processing and analysis
 - The SKAO challenges interests a wider community of researchers, not only astronomers

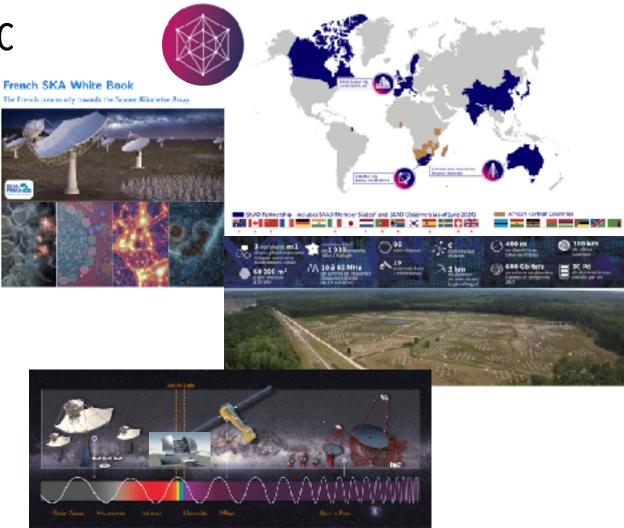
SKAO data processing stages

French participation in the SKAO

Construction & Operations

- Construction
 - Co-design & Equipment of the two sub-exascale computing centres of the Observatory
- Strategic objectives for SKA-France
 - Environmental sustainability of the project
 - Efforts made by France in the design of future SKAO computing centres with low environmental impact
 - Study of energy solutions for SKA-MID funded in 2019
 - SKA: fundamental research as a driver for strategic innovation and collaboration between academia and industry
 - SKA Regional Centre Network (SRC-Net): a new model of Data & Computing Centres for A&A





SKAO data processing stages

Objectives of the FR-SRC

- Contribute to the SRC Net at an appropriate level within the SKAO IGO
- Enable French scientists to lead/ contribute to future SKA projects (KSP and PI)
- Provide to the French community the necessary access and support to SKA and pathfinders/precursors data
- Perspective: meet the needs of the French astronomical community

