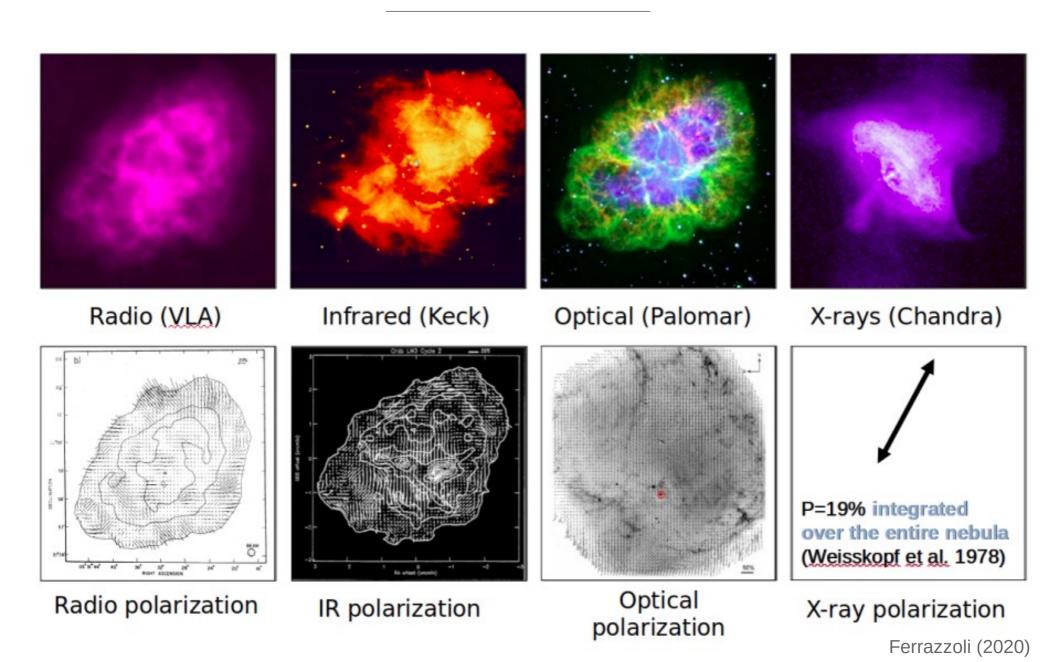
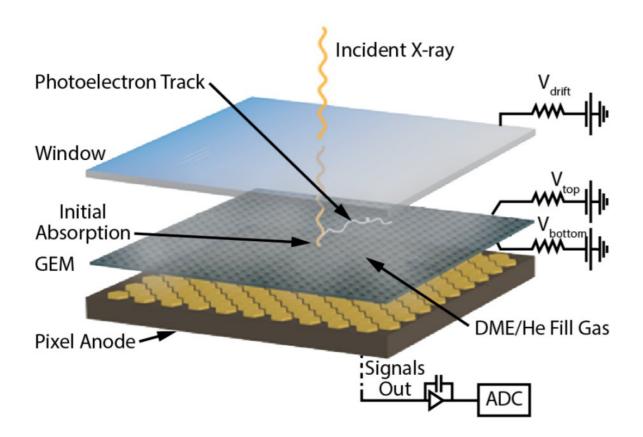
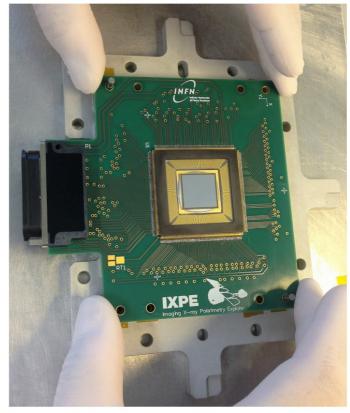


Review of the four years of IXPE operation


Frédéric Marin

The polarized sky

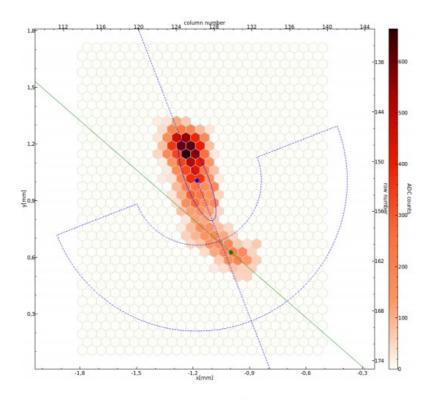



How to open this window?

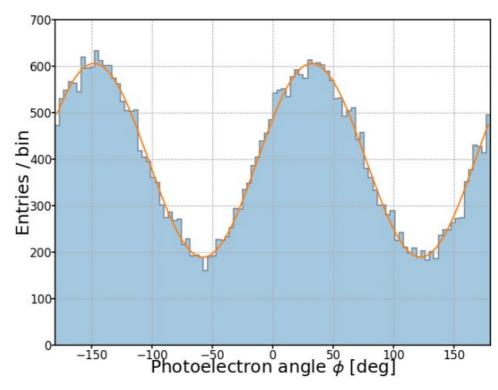
The lack of X-ray satellites dedicated to X-ray polarimetry comes from multiples arguments:

- X-ray polarimetry needs rotation (movable parts);
- Technologically less advanced than spectroscopy, timing or imaging;
- Polarized fluxes are often much lower than total fluxes (long integration time).

Early 2000's, the game changed (Costa et al. 2001, Bellazzini et al. 2006,2007):


Sgrò et al. (2017)

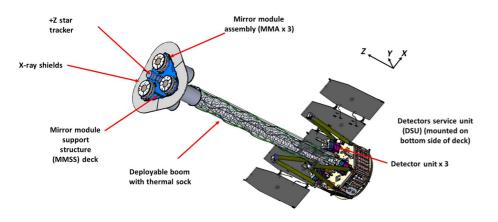
The Gas Pixel Detector


The lack of X-ray satellites dedicated to X-ray polarimetry comes from multiples arguments:

- X-ray polarimetry needs rotation (movable parts);
- Technologically less advanced than spectroscopy, timing or imaging;
- Polarized fluxes are often much lower than total fluxes (long integration time).

Early 2000's, the game changed (Costa et al. 2001, Bellazzini et al. 2006,2007):

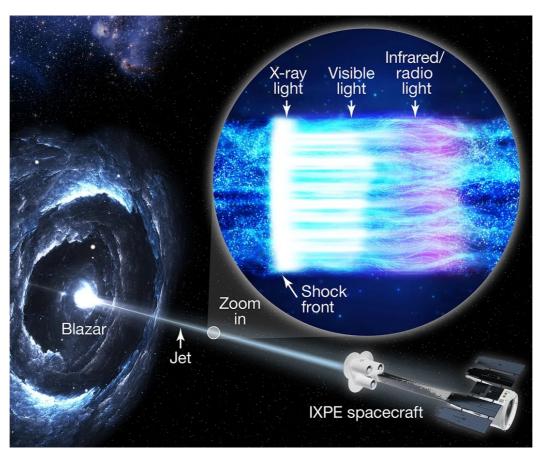
Trace onto the pixelized anode



Signal modulation

IXPE

This is why we launched the Imaging X-ray Polarimetry Explorer (IXPE) in 2021 (a Small Explorer mission undertaken by NASA in partnership with the Italian Space Agency)



Parameter	Performance
Launch mass	330 kg
Length	5.2 m (deployed)
Nominal lifetime	2 years (no life-limiting consumables)
Energy band	2 to 8 keV
FOV (detector limited)	12.9 arcmin square
half-power diameter	28 arcsec @ 4.5 keV
Effective area per mirror module (x3)	166 cm ² @ 2.3 keV
Energy resolution (FWHM)	0.52 keV @ 2 keV (∝√E)
Timing	1 μs

As of August the 22nd, 2025, IXPE has made 199 pointings, looking at 108 different targets

- → about 15 Ms of observing time per year
- → all kinds of sources (including a GRB), except for stars and planets
- → **637** NASA/ADS entries, **234** refereed publications (since the begining of the mission)
- → opened to everyone (Year 3 General Observing program, starting in February 2026)
- → joint programs with XRISM and NRAO
- → all observation publicly available (no proprietary time)

NASA Press release Mrk 501

From the IXPE Senior Review proposal:

Table 1a: IXPE science highlights

Topic	Result	Target(s)
Stellar Black	Comptonizing medium in hard state is extended	Cyg X-1, Swift J1727
Holes (BHs)	along the disk plane for accreting stellar BHs.	oyg x 1, omico1121
Supermassive	Comptonizing medium is extended along the disk	NGC 4151
BHs	plane also for accreting supermassive BHs.	Constitution of the consti
Supermassive	Electrons are accelerated at shock fronts and lose	Mrk 501, Mrk 421,
BH jets	energy as they propagate into turbulent regions.	1ES 1959+750,
Supermassive	X-ray-obscuring tori around supermassive BHs are	Circinus galaxy, NGC
BHs	geometrically thick, thicker than revealed in radio/	1068
	infrared.	
Supernova	Magnetic fields near forward shocks in young SNR	Cas A, Tycho, SN
Remnants	are radial, thus are stretched along the flow.	1006
Supernova	Conversely, older SNR have tangential magnetic	RX J1713, Vela Jr
Remnants	fields indicating compression in forward shocks.	10
Pulsar Wind	PWNe radiation zones are well organized by the	Crab, Vela, MSH 15-
Nebulae	pulsar spin and exhibit unexpectedly low turbu-	52, SNR 0540-69
(PWNe)	lence, at odds with diffusive shock acceleration.	
Accreting	Measurement of the magnetic geometry, leading to	Her X-1
Neutron Stars	detection of neutron star (NS) free precession.	
NS-LMXBs	Comptonized emission is strongly polarized in	Sco X-1, Cyg X-2,
	weakly-magnetized neutron star low-mass X-ray	GX 13+1, 4U 1624-49,
	binaries (NS-LMXBs).	GX 9+9,
Galactic Cen-	The supermassive BH at the center of our Galaxy	Sgr A*/Sgr A
ter	was active a few hundred years ago.	
Magnetars	Extremely high polarizations, up to 80%, provide	4U 0142+61, 1RXS
	evidence in favor of ultra-strong magnetic fields.	J1708, 1E 2259+586
Super-critical	High polarization in Cyg X-3 indicates it is accret-	Cyg X-3
accretion	ing at super-Eddington rates.	

Comptonizing medium in hard state is extended

From the IXPE Senior Review proposal:

Stellar Black

Result

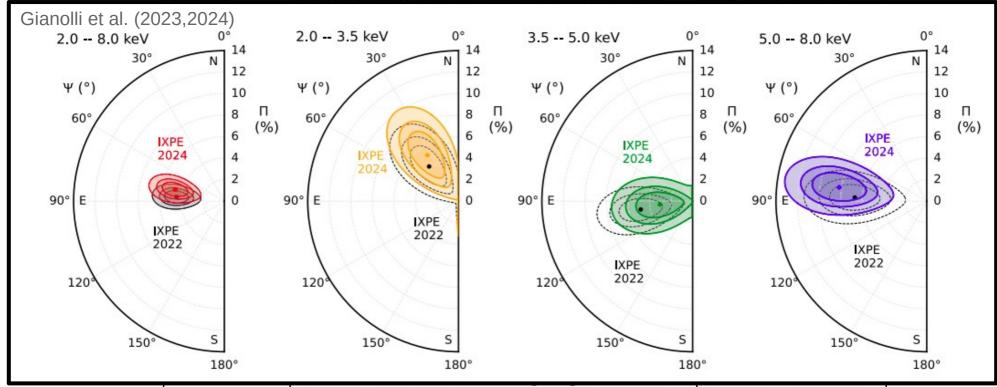
Topic

Table 1a: IXPE science highlights

Target(s)

Cva X-1, Swift J1727

		Oteliai Biack	Comptonizing mediani ii		Oyg X-1, Ownt 01727	
		Holes (BHs)	along the disk plane for			
		Supermassive		s extended along the disk	NGC 4151	
		BHs	plane also for accreting	supermassive BHs.		
		Supermassive	Electrons are accelerate	d at shock fronts and lose	Mrk 501, Mrk 421,	
		BH jets	energy as they propagat	e into turbulent regions.	1ES 1959+750,	
1		Trunca with disc Co	ted disc mptonization	nd supermassive BHs are	Circinus galaxy, NGC	
	E 90° Cone extended along spin axis	N 0° IXPE obs 2-8 keV 8%, 95%, 99.7%) 75° 30° 75° 30°	Truncated disc with synchrotron self-Compton 75° 75° Sandwich corona -60° -80° 2 4 6 8 Polarization degree [%]	2.0-3.0 k Solution of the second of the sec	2 4 Polarization degree 4U 0142+61, 1RXS J1708, 1E 2259+586	90° W ee [%]
		Super-critical	High polarization in Cyg	X-3 indicates it is accret-	Cyg X-3	
		accretion	ing at super-Eddington r			


From the IXPE Senior Review proposal:

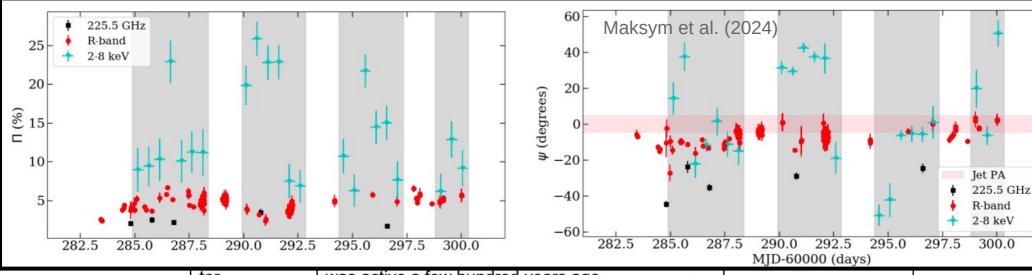
Super-critical

accretion

Table 1a: IXPE science highlights

Topic	Result	Target(s)
Stellar Black	Comptonizing medium in hard state is extended	Cyg X-1, Swift J1727
Holes (BHs)	along the disk plane for accreting stellar BHs.	
Supermassive	Comptonizing medium is extended along the disk	NGC 4151
BHs	plane also for accreting supermassive BHs.	
Supermassive	Electrons are accelerated at shock fronts and lose	Mrk 501, Mrk 421,
BH iets	energy as they propagate into turbulent regions.	1FS 1959+750

High polarization in Cyg X-3 indicates it is accret-

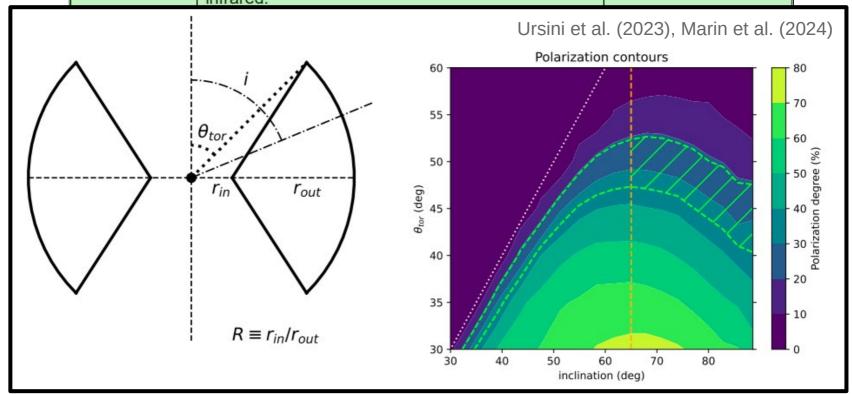

ing at super-Eddington rates.

Cyg X-3

From the IXPE Senior Review proposal:

Table 1a: IXPE science highlights

3,40	10.010 10.10 1 = 00.01.100 1.1.9.1.19	75
Topic	Result	Target(s)
Stellar Black	Comptonizing medium in hard state is extended	Cyg X-1, Swift J1727
Holes (BHs)	along the disk plane for accreting stellar BHs.	(9)
Supermassive	Comptonizing medium is extended along the disk	NGC 4151
BHs	plane also for accreting supermassive BHs.	
Supermassive	Electrons are accelerated at shock fronts and lose	Mrk 501, Mrk 421,
BH jets	energy as they propagate into turbulent regions.	1ES 1959+750,
Supermassive	X-ray-obscuring tori around supermassive BHs are	Circinus galaxy, NGC
BHs	geometrically thick, thicker than revealed in radio/	1068



ter	was active a few nundred years ago.	1.7
Magnetars	Extremely high polarizations, up to 80%, provide evidence in favor of ultra-strong magnetic fields.	4U 0142+61, 1RXS J1708, 1E 2259+586
	evidence in lavor of ultra-strong magnetic fields.	J1706, 1E 2239+366
Super-critical accretion	High polarization in Cyg X-3 indicates it is accreting at super-Eddington rates.	Cyg X-3

From the IXPE Senior Review proposal:

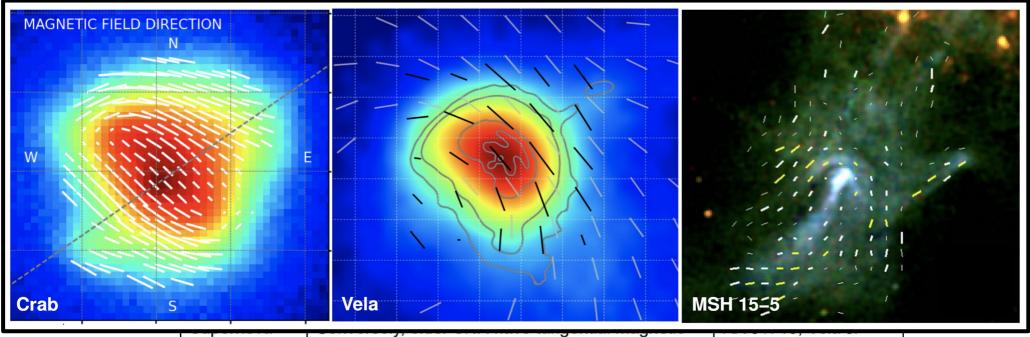
Table 1a: IXPE science highlights

***	9 0	22
Topic	Result	Target(s)
Stellar Black	Comptonizing medium in hard state is extended	Cyg X-1, Swift J1727
Holes (BHs)	along the disk plane for accreting stellar BHs.	(10) Fee Carrow (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10)
Supermassive	Comptonizing medium is extended along the disk	NGC 4151
BHs	plane also for accreting supermassive BHs.	
Supermassive	Electrons are accelerated at shock fronts and lose	Mrk 501, Mrk 421,
BH jets	energy as they propagate into turbulent regions.	1ES 1959+750,
Supermassive	X-ray-obscuring tori around supermassive BHs are	Circinus galaxy, NGC
BHs	geometrically thick, thicker than revealed in radio/	1068
	infrared.	

From the IXPE Senior Review proposal:

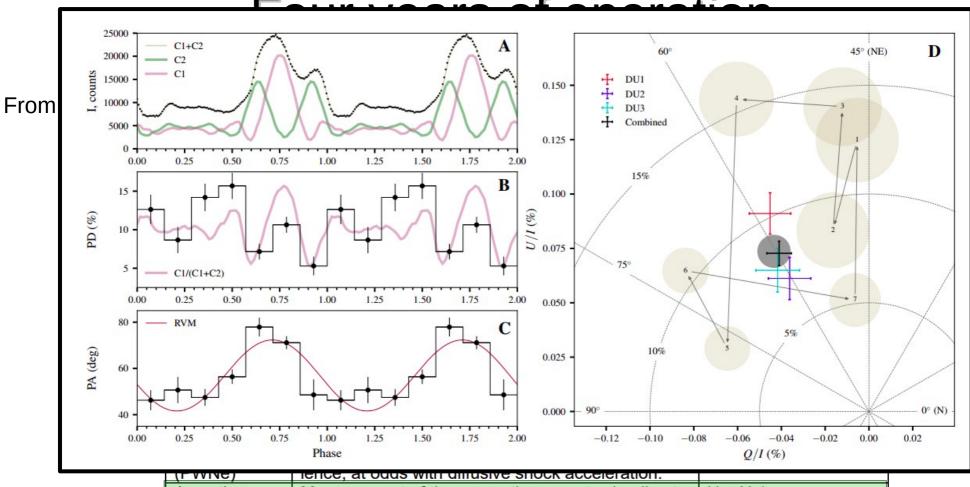
Table 1a: IXPE science highlights

17 <u>121</u>	Table Ta. IAPE Science highlights	2
Topic	Result	Target(s)
Stellar Black	Comptonizing medium in hard state is extended	Cyg X-1, Swift J1727
Holes (BHs) Supermassive	along the disk plane for accreting stellar BHs. Comptonizing medium is extended along the disk	NGC 4151
BHs		NGC 4151
	plane also for accreting supermassive BHs.	Male EO4 Male 404
Supermassive	Electrons are accelerated at shock fronts and lose	Mrk 501, Mrk 421,
BH jets	energy as they propagate into turbulent regions.	1ES 1959+750,
Supermassive	X-ray-obscuring tori around supermassive BHs are	Circinus galaxy, NGC
BHs	geometrically thick, thicker than revealed in radio/	1068
_	infrared.	
Supernova	Magnetic fields near forward shocks in young SNR	Cas A, Tycho, SN
Remnants Su	are radial, thus are stretched along the flow.	1006
Ne (P) Ac Ne NS Ga ter Ma	Stokes I	90 % 99 % 99.9 % -60° 4-49, Shell -90° W
ac		30 40

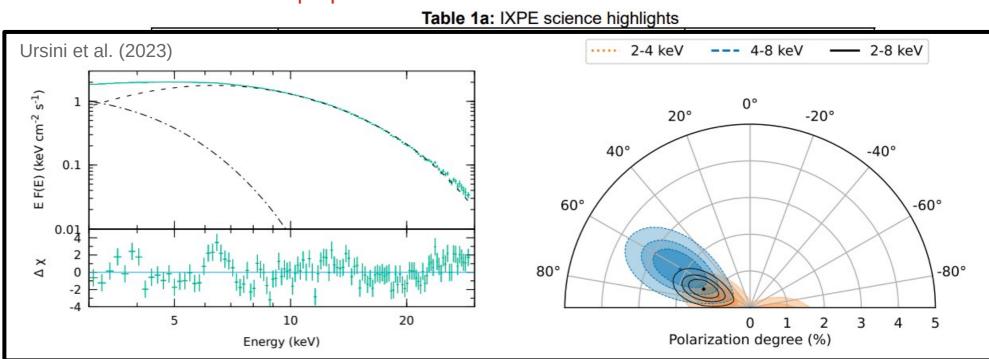

Slane et al. (2024)

2 arcmin 10 arcmin 10.0 17:12:00.0 50.0 14 ²⁶ ²⁸ 3 6 Ferrazzoli et al. (2024) 9 12 15 18 21 24 27 **Polarization degree (%)** Intensity

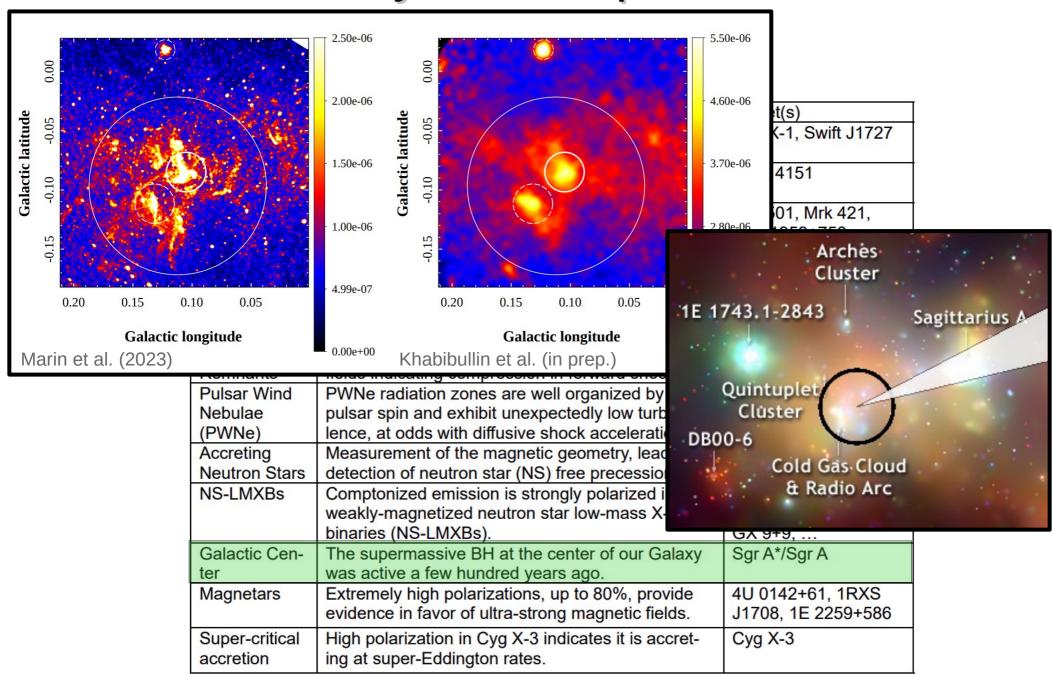
From the


Reminants	are radial, thus are stretched along the now.	1000
Supernova	Conversely, older SNR have tangential magnetic	RX J1713, Vela Jr
Remnants	fields indicating compression in forward shocks.	
Pulsar Wind	PWNe radiation zones are well organized by the	Crab, Vela, MSH 15-
Nebulae	pulsar spin and exhibit unexpectedly low turbu-	52, SNR 0540-69
(PWNe)	lence, at odds with diffusive shock acceleration.	
Accreting	Measurement of the magnetic geometry, leading to	Her X-1
Neutron Stars	detection of neutron star (NS) free precession.	
NS-LMXBs	Comptonized emission is strongly polarized in	Sco X-1, Cyg X-2,
20010-000-000-000-000-000-000-000-000-00	weakly-magnetized neutron star low-mass X-ray	GX 13+1, 4U 1624-49,
	binaries (NS-LMXBs).	GX 9+9,
Galactic Cen-	The supermassive BH at the center of our Galaxy	Sgr A*/Sgr A
ter	was active a few hundred years ago.	
Magnetars	Extremely high polarizations, up to 80%, provide	4U 0142+61, 1RXS
	evidence in favor of ultra-strong magnetic fields.	J1708, 1E 2259+586
Super-critical	High polarization in Cyg X-3 indicates it is accret-	Cyg X-3
accretion	ing at super-Eddington rates.	

Bucciantini et al. (2024)


Remnants	fields indicating compression in forward shocks.	,
Pulsar Wind	PWNe radiation zones are well organized by the	Crab, Vela, MSH 15-
Nebulae	pulsar spin and exhibit unexpectedly low turbu-	52, SNR 0540-69
(PWNe)	lence, at odds with diffusive shock acceleration.	
Accreting	Measurement of the magnetic geometry, leading to	Her X-1
Neutron Stars	detection of neutron star (NS) free precession.	
NS-LMXBs	Comptonized emission is strongly polarized in	Sco X-1, Cyg X-2,
	weakly-magnetized neutron star low-mass X-ray	GX 13+1, 4U 1624-49,
	binaries (NS-LMXBs).	GX 9+9,
Galactic Cen-	The supermassive BH at the center of our Galaxy	Sgr A*/Sgr A
ter	was active a few hundred years ago.	
Magnetars	Extremely high polarizations, up to 80%, provide	4U 0142+61, 1RXS
	evidence in favor of ultra-strong magnetic fields.	J1708, 1E 2259+586
Super-critical	High polarization in Cyg X-3 indicates it is accret-	Cyg X-3
accretion	ing at super-Eddington rates.	

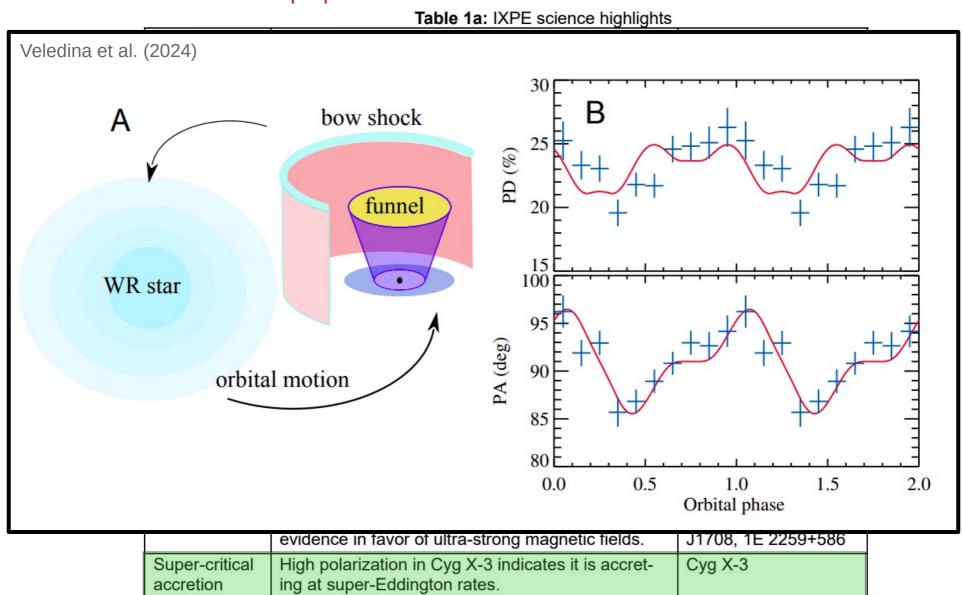
Doroshenko et al. (2023)



(FVVIVE)	ience, at odds with dinusive shock acceleration.	
Accreting	Measurement of the magnetic geometry, leading to	Her X-1
Neutron Stars	detection of neutron star (NS) free precession.	
NS-LMXBs	Comptonized emission is strongly polarized in weakly-magnetized neutron star low-mass X-ray binaries (NS-LMXBs).	Sco X-1, Cyg X-2, GX 13+1, 4U 1624-49, GX 9+9,
Galactic Center	The supermassive BH at the center of our Galaxy was active a few hundred years ago.	Sgr A*/Sgr A
Magnetars	Extremely high polarizations, up to 80%, provide evidence in favor of ultra-strong magnetic fields.	4U 0142+61, 1RXS J1708, 1E 2259+586
Super-critical accretion	High polarization in Cyg X-3 indicates it is accreting at super-Eddington rates.	Cyg X-3

From the IXPE Senior Review proposal:

(1 1110)	ionoo, at oddo with amaoivo onook accordation.	5.0
Accreting	Measurement of the magnetic geometry, leading to	Her X-1
Neutron Stars	detection of neutron star (NS) free precession.	
NS-LMXBs	Comptonized emission is strongly polarized in	Sco X-1, Cyg X-2,
	weakly-magnetized neutron star low-mass X-ray	GX 13+1, 4U 1624-49,
	binaries (NS-LMXBs).	GX 9+9,
Galactic Cen-	The supermassive BH at the center of our Galaxy	Sgr A*/Sgr A
ter	was active a few hundred years ago.	
Magnetars	Extremely high polarizations, up to 80%, provide	4U 0142+61, 1RXS
	evidence in favor of ultra-strong magnetic fields.	J1708, 1E 2259+586
Super-critical	High polarization in Cyg X-3 indicates it is accret-	Cyg X-3
accretion	ing at super-Eddington rates.	


From the IXPE Senior Review proposal:

accretion

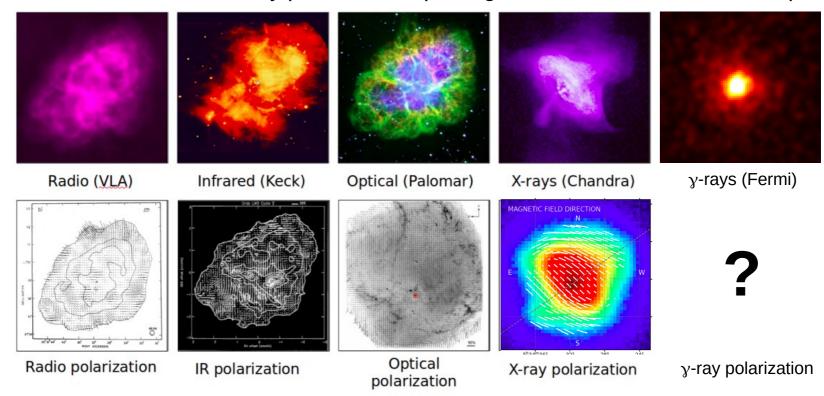
Table 1a: IXPE science highlights Topic Result Target(s) Stellar Black Comptonizing medium in hard state is extended Cyg X-1, Swift J1727 4U 0142+61 1RXS J1708 N -10° Taverna et al. (2022) Zane et al. (2023) -20° -30° 90 deg rotation -60° 60° 5.0-6.0 keV -70° 3.0-4.0 keV 6.0-8.0 keV -80° 2.0-3.0 keV W 4.0-5.0 keV 30 20 Polarization degree [%] 90° W 20 40 60 80 weakly-magnetized neutron star low-mass Polarization degree [%] binaries (NS-LMXBs). GX 9+9, ... Sgr A*/Sgr A Galactic Cen-The supermassive BH at the center of our Galaxy was active a few hundred years ago. ter Magnetars Extremely high polarizations, up to 80%, provide 4U 0142+61, 1RXS evidence in favor of ultra-strong magnetic fields. J1708, 1E 2259+586 High polarization in Cyg X-3 indicates it is accret-Super-critical Cyg X-3

ing at super-Eddington rates.

From the IXPE Senior Review proposal:

Conclusions

IXPE has opened a new observational window and the strong positive feedback from the NASA executives and the scientific community pushes for exploiting this small satellite to its end (~2030)



What's next?

- → eXTP mission (China-lead)
- → ESA M8 call (EXPO, Phemto)
- \rightarrow don't forget γ -ray polarimetry!

Conclusions

IXPE has opened a new observational window and the strong positive feedback from the NASA executives and the scientific community pushes for exploiting this small satellite to its end (~2030)

What's next?

- → eXTP mission (China-lead)
- → ESA M8 call (EXPO, Phemto)
- \rightarrow don't forget γ -ray polarimetry!