VLA - 1.5 GHz VLBA - 43 GHz 10 arcseconds 3000 light years 0.01 arcseconds 3 light years GMVA - 86 GHz EHT - 230 GHz 0.001 arcseconds 0.3 light years 0.00001 arcseconds 0.003 light years C. Goddi et al. 2019, The Messenger, 177, 25 EHT Collaboration/M. Kornmesser/ESO

Particle acceleration in extreme environments

Martin Lemoine
Astroparticule & Cosmologie (APC)
CNRS – Université Paris Cité

... modelling the origin of VHE particles from astrophysical sources:

- → remarks, issues and techniques
- → scenarios: shocks, reconnection, turbulence
- → conclusion & perspectives

Particle acceleration: energization of a fraction of the plasma to VHE

→ extreme environments:

- ... realm of relativistic astrophysics: relativistic outflows & temperatures, high magnetization, high compactness
- → relativistic jets and winds (GRBs, PWNe, blazars, binaries, micro-quasars), vicinity of compact objects (BH, NS)

→ main parameters and generic acceleration processes:

... main parameters: plasma velocity and Lorentz factor $(\beta_E \ c, \Gamma_E)$, or Alfvén $(\beta_A c, \Gamma_A)$, or shock $(\beta_{\rm sh} c, \Gamma_{\rm sh})$ magnetization parameter $\sigma =$ magnetic energy dens. / plasma e. dens. = $\Gamma_A^2 \beta_A^2$

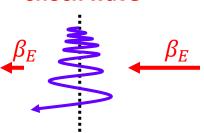
... main scenarios: Fermi at (relativistic) shocks, reconnection (at $\sigma \gtrsim 0.1$), turbulence (at $\sigma \gtrsim 0.1$)

→ generic motivation:

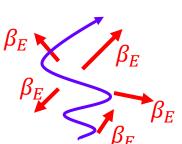
... multi-messenger astrophysics ($\gamma - \nu - CR$) connection and the origin of non-thermal radiation

... acceleration to VHE-UHE in relativistic sources: $E \sim \beta_E B$ leads to Hillas bound on $\varepsilon_{\rm max} \sim e \beta_E B L Z$

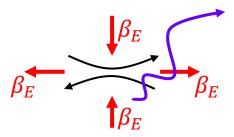
Acceleration schemes

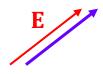

- → two broad categories (Fermi's argument):
 - ... on large ("astrophysical") scales, ${f E}=-{m eta}_E imes {f B}$ derives from motion of magnetized plasma
 - ... on small (\sim "kinetic") scales, non-ideal electric fields, parallel to **B**, or even larger than **B**
 - ... large vs small: large is \gg $r_{\rm g,\,th} \sim 10^8\,{\rm cm}\ T_4^{1/2}B_{\mu{\rm G}}^{-1}$ $c/\omega_{\rm pi} \sim 10^7\,{\rm cm}\ n_0^{-1/2}$

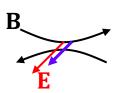
$$r_{\rm g, th} \sim 10^8 \, {\rm cm} \ T_4^{1/2} B_{\mu \rm G}^{-1}$$


$$c/\omega_{\rm pi} \sim 10^7 \, {\rm cm} \ n_0^{-1/2}$$

ightarrow Fermi acceleration: $\mathbf{E} = -oldsymbol{eta}_E imes \mathbf{B}$... acceleration by interactions with regions of different $oldsymbol{eta}_E$

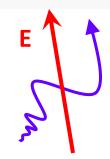

shock wave


turbulence

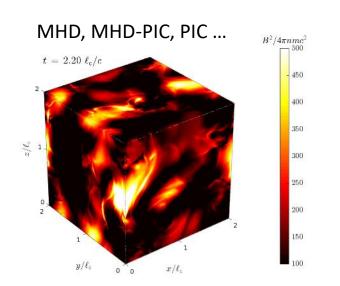


reconnection (outside X-point)

 \rightarrow in non-ideal **E** fields: existence of (localized) **E** \parallel **B** or E > B leads to fast linear acceleration, unimpeded by **B** ... application: electrostatic gaps and reconnection (X-point)


→ talk by B. Crinquand

By necessity, a multi-pronged approach, from num. sim. to theory to phenomenology


→ a needle in a haystack:

 $scales(acceleration) \ll \ll scale(source)$

+ nonlinear, multiple scale physics

Numerical simulations

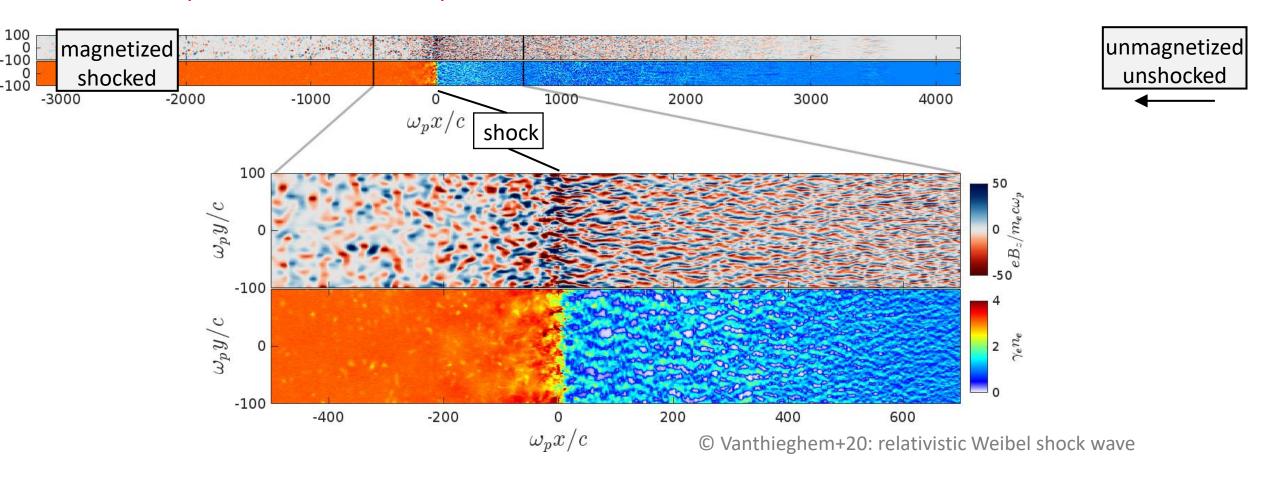
<u>Theory</u>

schemes: shock, turbulence, reconnection? test-particle vs self-consistent picture? extrapolation to large scales?

Applications

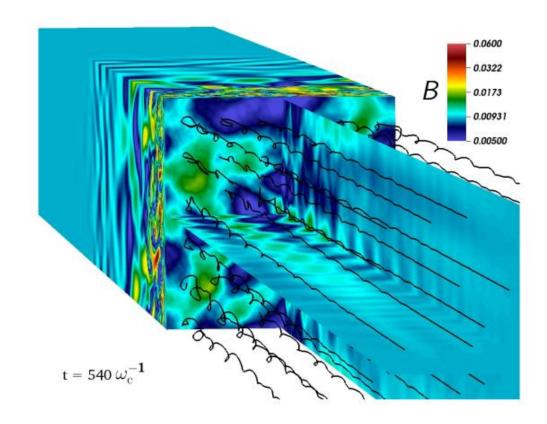
 \rightarrow predictions: $t_{\rm acc}$, $\varepsilon_{\rm max}$, ${\rm d}n/{\rm d}\varepsilon$

... to be used in transport equations


Numerical schemes for modeling particle acceleration

- → test-particle: particle tracking through Monte Carlo in prescribed e.m. geometry
 - + direct (simple + cheap) estimates of particle energy distribution
 - omits backreaction of HE particles on their environment (e.g. instabilities)
- → particle-in-cell (PIC): plasma ~ collection of macroparticles evolved self-consistently with E, B
 - + self-consistent description of injection, acceleration including nonlinear feedback processes
 - + virtual experiment, crucial to developing intuition and building model
 - must resolve smallest scales (gyroradius, skin depth): cannot probe astrophysical scales
 - costly: limited in dimensionality

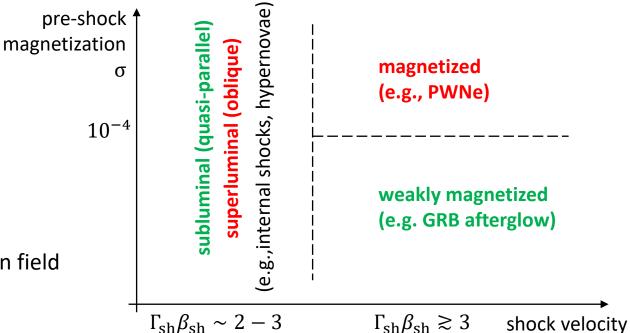
- → magnetohydrodynamics + particles: background plasma in MHD + module tracking HE particles + module for feedback
 - + allows to describe flow dynamics on large scales (~up to source)
 - + feedback can be included by coupling HE particles and MHD background
 - cannot model injection process of HE particles


Numerical schemes for modeling particle acceleration

- \rightarrow particle-in-cell (PIC): plasma \sim collection of macroparticles evolved self-consistently with E, B
 - + self-consistent description of injection, acceleration including nonlinear feedback processes
 - + virtual experiment, crucial to developing intuition and building model
 - must resolve smallest scales (gyroradius, skin depth): cannot probe astrophysical scales
 - costly: limited in dimensionality

Numerical schemes for modeling particle acceleration

- → magnetohydrodynamics + particles: background plasma in MHD + module tracking HE particles + module for feedback
 - + allows to describe flow dynamics on large scales (up to source scale!)
 - + feedback can be included by coupling HE particles and MHD background
 - cannot model injection process of HE particles


© van Marle+21: 3D MHD-PIC sim. of parallel shock

(Relativistic) shock acceleration -- overview

→ basic scheme:

... systematic acceleration through scattering on pre- and post-shock turbulence ... issue: in relativistic regime, post-shock plasma moves away from shock at $\sim c/3 \Rightarrow$

prevents acceleration unless scattering is strong

→ main parameters & features:

... key parameter: magnetization σ + obliquity of mean field i.e., moderate magnetization \Rightarrow no acceleration

... spectral index: $s \simeq 2. \rightarrow 2.3$

... acceleration rate: <Bohm at weak magnetization

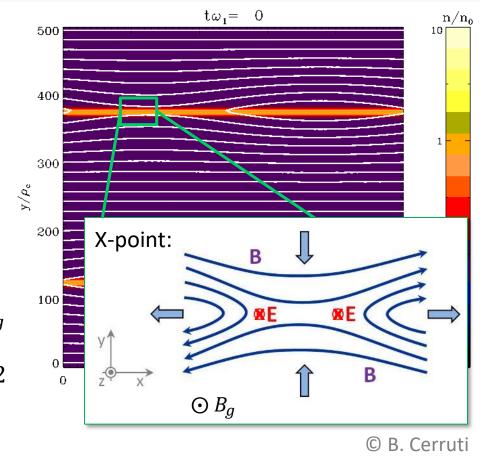
→ applications and open questions:

- ... magnetized ultra-relativistic: termination shock of PWNe (do they accelerate particles?), magnetars outbursts
- ... weakly magnetized ultra-relativistic: GRB afterglow (ISM $\sigma \sim 10^{-8}$)
- ... mildly relativistic regime: can accelerate at high rate in quasi-parallel configuration (internal shocks in jets, shocks in micro-quasars, outflows from BH etc) ...
- ... open question: long timescales, in particular for mildly relativistic, still poorly explored (+on long timescales)

(Relativistic) reconnection -- overview

→ basic scheme:

... reconnection of field lines of opposite polarity dissipates magnetic energy in diffusion region (X-point), generates plasma motion (in and out)


... different regions for acceleration: in diffusion region through non-ideal field, outside through Fermi processes in flows

→ main parameters & features:

... key parameters: σ + guiding (non-annihilating) magnetic field B_g

... spectral index: mean energy $\sim \sigma \, mc^2$, spectral slope $s \simeq 4 \to 2$ (harder with larger σ , lower B_g)

... acceleration rate: ~Bohm up to mean energy, slower above

→ applications and open questions:

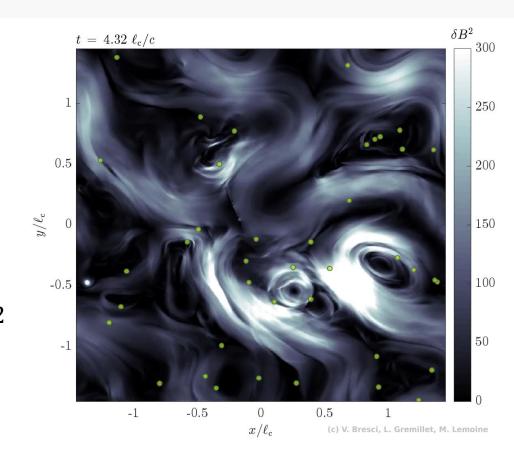
... $\sigma \gg 1$: in vicinity of compact objects (NS, BH), e.g. rapid flares with mean energy $\sim \sigma \ mc^2$

... open question: extrapolation of microscopic simulations to macroscopic (+3D) reconnection? Connection with turbulence?

(Relativistic) turbulence -- overview

→ basic scheme:

... particle acceleration through interaction with random electric fields

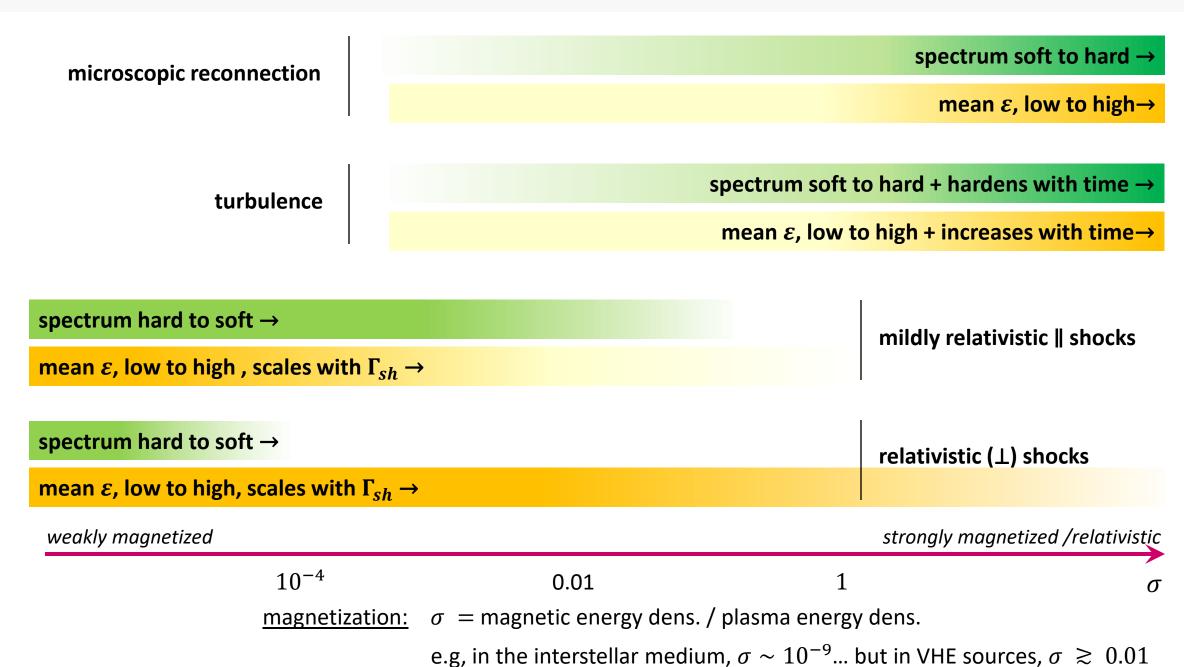

→ main parameters & features:

... key parameters: σ + guiding (non-turbulent) magnetic field B_q

+ duration of turbulence excitation

... spectral index: mean energy $\sim \sigma \, mc^2$, spectral slope $s \simeq 4 \to 2$ (harder with larger σ , lower B_q)

... acceleration rate: independent of energy


→ applications and open questions:

... turbulence generic in astrophysical plasmas: a universal acceleration mechanism

... e.g., acceleration in relativistic jets, BH accretion disks, coronae, PWNe

... open questions: so far, simulations at $\sigma > 0.01$ and $\delta B/B_g \sim 1$... other regimes? At large scale separation $r_{\rm gyroradius}(\varepsilon) / \ell_{\rm coherence}$? Injection fraction? Origin of electric field?

Landscape of acceleration scenarios vs magnetization...

Conclusions

\rightarrow overall:

- ... important progress in last 1-2 decades in relativistic regime on theoretical + numerical (PIC) side
- → a sharper view on the parameter space
- → a new bottom-up (first principles) approach to the origin of non-thermal radiation in HE sources
- ... many open questions remain...
- ... French community active on all topics

→ current questions and perspectives:

- ... key question: how to bridge the gap in scales between microscopic (plasma scales, PIC) and macroscopic (source)?
- → ongoing development of GPU-PIC: will increase dimensionality, dynamic range, but cannot solve above issue
- ... what happens when parameter space of microscopic physics is (mostly) uncovered?
- → increasing need to connect recipes of acceleration with dynamical, realistic model of the source
- → MHD-PIC (or variants) most promising technique

→ recommendations:

- → develop (GR)(R)MHD-PIC techniques in French community: hire & train
- → connect expertise in particle acceleration with expertise in source modeling (e.g., ATPEM topical workshops?)