
Centre de Calcul
de l’Institut National de Physique Nucléaire
et de Physique des Particules

Git-GitLab tutorial
DU Data Science (UCA) – March 2025

Gino Marchetti (CC-IN2P3)



17/03/2025 2DU Data Science – March 2025

Git and the “Git⁎b”

 Git
 Free and open-source distributed

version control system.

 Branching and Merging:
developers may create separate
branches for features, bug fixes, or
experiments, seamlessly merging
them back into the main codebase
after review.

 Distributed nature: Every
developer has a complete local
repository, eliminating single points
of failure and enabling offline work.

 Staging area: The staging area
provides granular control over what
changes are committed, enhancing
code organization and ensuring
only intended modifications are
recorded.

 GitLab
 Web-based platform that enables

development and deployment
workflows from Git repositories.

 Similar to GitHub for: Repository hosting, Issue tracking, Code review and collaboration.
 Continuous Integration /

Continuous Deployment (CI/CD):
allowing teams to automate the
entire software delivery process,
from code commit to production
deployment.

 Integrated DevOps tools: features
for container management,
monitoring, and security scanning.
The entire development lifecycle
within a single platform.

 GitHub
 Cloud-based hosting service that

provides a user-friendly web interface
for managing Git repositories.

 Remote repository hosting: hosting
Git repositories remotely, providing a
centralized location for developers to
push and pull code changes.

 Collaboration and Social coding:
allowing developers to follow projects,
contribute code, and interact through
discussions, issues, and pull requests.

 Issue tracking: enabling teams to
report bugs, propose new features,
and manage project tasks effectively.

 Pull requests and Code review:
allowing developers to propose
changes through pull requests,
receive feedback, and merge code
into the main codebase.

 Project management tools: boards,
wikis, and project tracking tools.



The Old Days...

 True
 Indeed there was (for example) a van
transferring data tapes from CC-IN2P3
to CERN and vice-versa.

 Obviously false
 Do you really think giving a air-horn to a
bunch of bona fide physicists / computer
scientists would be a good idea?

https://xkcd.com/2324/

3DU Data Science – March 202517/03/2025

https://xkcd.com/2324/


You logged in GitLab and added an SSH key...

https://gitlab.in2p3.fr

4DU Data Science – March 202517/03/2025

https://gitlab.in2p3.fr/ccin2p3-support/formations/du-data-science/2025.3/sandbox


Create a project on GitLab

 Step 1
 Check in the Sandboxsub-group
 Training accounts areallowed to create projectsin there!

https://gitlab.in2p3.fr/ccin2p3-support/formations/du-data-science/2025.3/sandbox
5DU Data Science – March 202517/03/2025

https://gitlab.in2p3.fr/ccin2p3-support/formations/du-data-science/2025.3/sandbox


Create a project on GitLab

 Step 2
 Create a project

 No template
 Private
 Initialize with README

https://gitlab.in2p3.fr/ccin2p3-support/formations/du-data-science/2025.3/sandbox

6DU Data Science – March 202517/03/2025

https://gitlab.in2p3.fr/ccin2p3-support/formations/du-data-science/2025.3/sandbox


15/03/2025 15èmes Journées Informatiques IN2P3/IRFU

Create a project on GitLab

 Step 3
Welcome to your project!

 Check for:
 “survival kit” README
 Left: project functionalities
 Right: operational shortcuts

7



Add your first file from the interface + Add README

Web IDE
 Write your text in Markdown format
 Changes will be highlighted for youractions
 Add a commit message to “push”yourmodifications
 Use the pop-up message to get back toyour project

8DU Data Science – March 202517/03/2025



Clone your remote project on your local workstation

On your GitLab
web-interface On your

notebook
terminal

9DU Data Science – March 202517/03/2025



The Git workflow

 While on your workstation
 You modify files in yourworking tree.
 You selectively stage justthose changes you wantto be part of your nextcommit
 You do a commit, whichtakes the files as they arein the staging area andstores that snapshotpermanently to your Gitdirectory.

10DU Data Science – March 202517/03/2025



Suggestion
Create the hidden file .gitignore containing file patterns youwant Git to ignore. Example:
cat << EOF >> .gitignore
*.log
*.tmp
test_data/
my_personal_notes.txt
EOF

These files won’t show up in git status output.

Working with Git - monitoring
$ git status
On branch develop
Your branch is up to date with 'origin/develop'.

nothing to commit, working tree clean

documentation :
• https://git-scm.com/docs/git-status
• https://git-scm.com/docs/git-diff
• https://git-scm.com/docs/git-log

 Shows you the files on your branch inthe repository, both tracked anduntracked by Git.
 Answers the question:What's going on?

$ git diff

$ git log

 Shows you changes between versions.Without arguments it shows allchanges made on the tracked file sincethe last commit.
 With a branch name as argument, itshows the differences between theworking branch and the argument.

 Shows the commit history on yourcurrent branch.
 With -<N> as argument, it showsthe <N> last commits.$ git log -<N>

11DU Data Science – March 202517/03/2025

https://git-scm.com/docs/git-status
https://git-scm.com/docs/git-diff
https://git-scm.com/docs/git-log


Working with Git – Setting your working branch
$ git branch
branch_1

* branch_2
branch_4
...

$ git switch <branch name> Lists the branches availablelocally and identifies thebranch you are on.

$ git branch <branch name>

$ git branch -d <branch name>

documentation :
• https://git-scm.com/docs/git-branch
• https://git-scm.com/docs/git-switch

 Creates locally a new branch but doesnot change your working branch

$ git switch -c <branch name>

 Deletes locally the target branch

 Changes your working branch intothe target branch. The target branchmust exist

 Creates a new branch while changingyour working branch into the newtarget branch.

12DU Data Science – March 202517/03/2025

https://git-scm.com/docs/git-status
https://git-scm.com/docs/git-diff


Working with Git – Making changes

$ git add <file>

$ git commit

 Adds the target file(s) in the staging area
 With the --all option all modified ornewly created files are added to thestaging area.

$ git restore <file>

$ git add --all

$ git commit -a

$ git commit -m ".."

$ git restore --staged <file>

documentation :
• https://git-scm.com/docs/git-add
• https://git-scm.com/docs/git-restore
• https://git-scm.com/docs/git-commit

 Restores the file status tounmodified
 With the --staged option,restores stages file to “unstaged”status

 Record chances to the repository. Without options the command will open a texteditor to write a commit message
 With the -a option all modified files are recorded. Newly created files are ignored.
 With the -m option you may write a one-liner commit message

13DU Data Science – March 202517/03/2025

https://git-scm.com/docs/git-add
https://git-scm.com/docs/git-restore
https://git-scm.com/docs/git-commit


Git commit Messages

https://xkcd.com/1296/  The 7 rules!
1. Separate subject from body with
a blank line

2. Limit the subject line to 50
characters

3. Capitalize the subject line
4. Do not end the subject line with a
period

5. Use the imperative mood in the
subject line

6. Wrap the body at 72 characters
7. Use the body to explain what and
why vs. how

14DU Data Science – March 2025

https://cbea.ms/git-commit/

17/03/2025

https://xkcd.com/1296/
https://cbea.ms/git-commit/


Working with Git – Collaborating 1/2
$ git merge <branch name>
Auto-merging <file>
CONFLICT (content): Merge conflict in <file>
Automatic merge failed; fix conflicts and then commit the result

 Incorporate the changes on the target branchinto the current branch
 When If a conflict arises it is notified in theoutput

 Open in a text editor the involved file(s) andcheck for the pattern shown right
 Choose the most pertinent version (or writea new one) and save the file. Then: git add <file>
 git commit –m "conflict fixed"
 git push

Here are lines that are either unchanged from the
common ancestor, or cleanly resolved because only
one side changed, or cleanly resolved because both
sides changed the same way.
<<<<<<< HEAD
Conflict resolution is hard; let's go shopping.
=======
Git makes conflict resolution easy.
>>>>>>> branch-to-be-merged
And here is another line that is cleanly resolved
or unmodified.

15DU Data Science – March 202517/03/2025



Working with Git – Collaborating 2/2

$ git push

$ git pull  Fetch and integrate withthe remote repository.

$ git branch <branch name>
...modifications...
$ git commit -am "first commit"
$ git push --set-upstream origin <branch name>

 Update the remote repository.

 On your fist push from a newly created branch you willneed to create the branch on the remote repository.

First push

16DU Data Science – March 202517/03/2025



To summarize...
htt

ps:
//x

kcd
.co

m/
159

7/

 We ALL did that!
 At least once...
 ...and we are not much proud about it

 YOU need to do better
 This course allows you to get started and work
on a collaborative project
 the famous “shell commands” Git is solid and “foolproof” for a fair amount of
foolishness

 Practice, put yourself in a difficult position, ask
questions, solve your issue and learn using Git

17DU Data Science – March 202517/03/2025

https://xkcd.com/1597/


GitLab environment overview 1/5

 Project Management
 Activity

 Branches, Commits Members
 Invite, grant access rights Labels for Issues, Milestones, MR...
 Create, Rename

18DU Data Science – March 202517/03/2025



GitLab environment overview 2/5

 Organize collaboration
 Issues, Issue boards

 A ticketing system for the project
 Labels may be added to Issues
 Members may be assigned to issues Milestones
 Organize development progress settingdeadlines Wiki
 Project documentation space internal to GitLab

19DU Data Science – March 202517/03/2025



GitLab environment overview 3/5

 Day-to-day work
 Repository

 Project files and directories Tags
 Flag a commit (to prepare a release or highlightan important development phase) Repository graph
 Project commit tree (check which branch is themost “forward”) Compare revision
 Graphical version of git diff

20DU Data Science – March 202517/03/2025



GitLab environment overview 4/5

 CI/CD
 Pipelines, Jobs

 Check the CI task status and workflow
 P. editor and schedules Artifacts
 Output files of CI tasks

21DU Data Science – March 202517/03/2025



GitLab environment overview 5/5

 Deploy
 Releases

 Write release notes
 Associate Milestone and Tags Pages
 Allows to publish a project website

22DU Data Science – March 202517/03/2025



Enjoy collaborative
development!

DU Data Science – March 202517/03/2025


