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Gravitationnal waves

• GW = space time deformation predicted by General relativity

• GW produced by:

– Binaries coalescence

– Supernovae

– Rotating neutron stars (pulsars)

– Early universe

• Science:

– Test of General relativity in several regimes

– Cosmology

– Equation of state of ultra dense matter (neutron stars)

– Compact star population studies (formation and evolution)

– Formation and evolution of galaxies

– Dark matter
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Gravitationnal waves: sources and detectors

3



Detection of gravitational waves

• Effect of GW on free falling masses

• GW amplitude: h = L/L

• Detection principle: measure relative length variation with time

• Typical amplitudes: h = O(10-22) 
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Detectors sensitivities and source amplitudes
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Ground based interferometers: LIGO-Virgo-KAGRA network
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Ground based interferometers: detection principle

• Detection principle: 

– Michelson interferometer on dark fringe

sensitivity:

Sensitivity increased with:

– Fabry-Perot cavities (increase effective L)

– Power recycling (increase effective P)

– Signal recycling 
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Fondamental noises
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Fondamental noises: quantum noise reduction

• Reduction of quantum noise:

– Increased laser power

– Quantum squeezing technique
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Fondamental noises: quantum noise reduction
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LIGO Virgo KAGRA (LVK) network timeline
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Detector upgrades 

and commissioning

Now

GW170817First detection

90 sources
280 sources

End of O4 postponed to Oct 2025



O4 detectors sensitivity
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GW searches
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GW detections

• Detection of binary coalescences by LVK

– 2 NS-NS

– 4 NS-BH

– 273 BH-BH
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End of O4c: Oct 2025

NS = neutron stars

BH = black holes



Multi-messenger: low latency analysis and public alerts
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Optimize detection of multi-messenger 
events by

• Analyzing GW data in real time
• Sending alerts to enable follow-up

Alerts content:
• Sky localization
• Classification

O1-O2: alerts sent to identified partners

O3: open public alerts

O4: reduced latency, include “early-warning” candidates, distributed via SCiMMA and GCN



Public alert examples
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First BNS detection: GW170817
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• First binary neutron star merger (BNS) detection in 2017: GW170817

• Multi-messenger Astronomy with GW170817: 

event also observed across the EM spectrum:

– short gamma-ray burst GRB 150101B

– associated kilonova: bright electromagnetic radiation

– MM publication: https://arxiv.org/pdf/1710.05833

• Many results:

– confirms the production of heavy elements through r-process 
nucleosynthesis in BNS mergers

– Link between BNS and GRBs

– Hubble constant (see next slide)

– Speed of GW (see next slide)

– Constraint on EOS of NS

– Tests of GR

– ....



Hubble constant and speed of GW

GW170817: the first and only bright standard siren

Hubble constant measurement:

The identification of an EM counterpart and host galaxy yielded the first 
cosmological measurements with GW standard sirens:

• GW signal => luminosity distance

• Host galaxy identified by EM observations => redshift measurement

Speed of GW:

• Stringent constraints on the speed of GW: 

−3×10−15 < cg/c -1 < 7×10−16 

=> rules out several modified 

gravity models
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H0 = 69+17
-8 km s−1 Mpc−1



Events in the “mass gap”

• GW230529:  https://arxiv.org/abs/2404.04248

– most probably a NS-BH coalescence

– BH mass ~3 M  : in the “mass gap” excluded by standard star evolution

– Formation hypothesis:

• BH forms after supernovae by accretion of mass

• BH formed by previous NS-NS coalescence (tripple system) 

• Primordial BH
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Rates and population studies

• Study based on GWTC3 catalog: 90 coalescences

– Merger rates for BBH, BNS

– Evolution of BBH rates with redshift 

• Publication: https://arxiv.org/pdf/2111.03634

21

BBH differential merger rate

Forecast of astrophysical GW background



Other searches

• Continous waves (pulsars): no detection, upper limits

• Burst (Supernovae, ...) : no detection, upper limits

• Stochastic background: upper limits

• Example of event follow up by LVK:  the SN2023ixf event

– Type II Supernovae in M101 galaxy (6.7Mpc) discovered by Itagaki

=> Improved upper limits on emitted GW energy

– Paper
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https://arxiv.org/pdf/2410.16565


Ground detectors: Pulsar Timing Arrays
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Pulsar Timing Array: detection principle

PTA detection principle:

• Monitor the distance between the earth and the pulsars using
very stable pulsars

• Earth and pulsars = test masses

• Use correlation between pulsars

Sensitivity:

• Observation times: T ~weeks to 10’s of years

• Timing uncertainties : dt ~100ns

 Sensitivity h=dt/T ~ 10-16

 Frequency band ~ 1/T~ [10-9 – 10-6] Hz
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PTA: detectors

• NanoGrav (US)

• EPTA (Europe)

• InPTA (India)

• PPTA (Australia)

• SAPTA (Africa)

• CPTA (China)
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PTA’s GW evidence

• Consistent results from EPTA, NANOGrav, PPTA (June 2023) – arXiv

– recently confirmed by MeerKAT - arXiv
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Spatial correlation of the signal

Measured spectrum and amplitude

• Physical interpretation: arXiv:2306.16227

– Comparison to Super massive Binary Black Holes population models

– Constraint on the cosmology of primordial Universe

– Constraint on Ultra Light Dark Matter density

https://arxiv.org/abs/2309.00693
https://arxiv.org/pdf/2412.01153


Futur detectors

• Ground based laser interferometers

• Space interferometers

• Pulsar timing arrays

• Longer term: other space projects and atomic interferometers
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Ground based laser interferometers

• Upgrades of existing 2G detectors (LIGO, Virgo, KAGRA):

– O5: increase range by a factor ~2 

– Virgo_nEXT and A# : push the infrastructures to their limits , increasing range by another factor 2

• Third generation detectors (3G):

– Einstein Telescope and Comsic Explorer under preparation, to start in 2040’s
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Advanced Virgo+
Advanced LIGO+  

Virgo_nEXT

2030’s

Einstein Telescope

New infrastructures

Current  infrastructures 

LIGO upgrade A#
Cosmic Explorer

KAGRA upgrade



3G detectors

• Einstein Telescope:

– Xylophone principle: 2 different detectors (low frequency / high frequency)

– New technologies for low frequency detector (cryogeny, different wavelength)

– 10km arms

• Cosmic Explorer:

– 40km and 20km long arms

– Same technology as 2G, with further improvements

– Foresee upgrades with new technologies
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Reach of ground based interferometers

2G detectors (LVK)

• Expect hundreds of CBC signals well localized (area smaller than 
the field of view of the Vera Rubin Observatory)

→ high chances of multi-messenger observations

• Hubble constant within a few percent

3G detectors

At their ultimate sensitivities, ET and CE will be able to observe all
stellar mass BBH and most of BNS mergers in the Universe

• high precision, high statistics era (106 BBH / 105 BNS / year)

• Multi-messenger astronomy : expect 10-100 detections per year with 
EM counterpart
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- O3

- O5

- CE

- ET



Space detector: LISA

Laser Interferometer Space Antenna (LISA)

• 3 space craft separated by 2.5 million km

• Goal: monitor the arm length at picometer level 

=> h~10-21
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LISA detector
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Test mass

LISA’s detection principle

• Test masses (TM) are protected from external forces by spacecraft 

• Spacecraft position adjustement with respect to TM : capacitive sensing

• Interferometric sensing

• Time delay interferometry:

– 6 channels 

=> build 2 ~independent measurements

 cancelation of laser noise

 Extraction of GW signal



LISA’s sensitivity

• Test mass shielding performances validated 
by the LISA Pathfinder mission

• LISA sensitivity limitations:

– Test mass acceleration

– Interferometer noise (shot noise, …)

• LISA red book (arXiv)
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https://arxiv.org/abs/2402.07571


LISA’s science

34

• Galactic white dwarf binaries:

– multi- messenger studies

• Stellar mass BH binaries : 

– multi-wavelength observations

– multi-messenger?

• Extreme mass ratio inspirals

– properties of MBH environment

• (Super)Massive BH coalescences: 

– possibility of EM signals

– typical sky localisation ~deg2

 GR tests in different regimes

 H0 measurement to few percent

 structure formation

 ...



LISA’s timeline

• Design validated

• Ressources allocated to build the instrument

• Launch: 2035

• Time for transfer: 1.5 years

• Operation: 4.5 years nominal + 6.5 years of extension
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Pulsar timing arrays
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Future

• Combine and jointly analyze data under the IPTA 
umbrella

• More sensitive detectors coming up:
– MeerKAT, FAST already taking data

– SKA > 2029

• Soon reach 5 level?

• Threat: crowded radio spectrum from human activities 

Sources

• Super-massive BH (SMBBH) 

• Stochastic background

Science

• Multi-messenger observations of SMBBHs

• Formation of large structures

• Rate of galaxy mergers

• GR tests & cosmology of primordial Universe



Longer term

DECIGO

• Concept: 

– laser interferometer in space

– Intermediate between LISA and ground based (0.1-1Hz band)

Atomic interferometers

• In the development/proof of concept phase

• First prototypes ~10m scale being prototyped
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Conclusion

• Regular GW detections by 2G detectors

– Now ~280 mergers (mostly BBH)

– O4 run will continue until Oct 2025

– Alert system including early alerts

– Only one “bright siren” observed (GW170817): results show the potential of multi-messenger observations

– Next: long break to allow consequent upgrade of detectors for O5 run

– High statistics expected after upgrades (2030’s )

• GW evidence by PTAs

– First constraints from nHz GW observation

– Multi-messenger observations expected for the future

• LISA space mission entered the construction phase,  3G detectors in the design phase : operation in 2040’s

 Many different sources

 High statistics, high precision era

 Many potential multi-messenger, multi-wavelength observations
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SPARE SLIDES
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A special event: BBH or NS-BH?

GW190814

• A merger involving a 23 solar mass black hole and a 2.6 solar mass

• 2nd object is potentially the lightest black hole or the heaviest neutron star ever observed.

• Publication: https://arxiv.org/abs/2006.12611
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Stable recycling cavities

• Current recycling cavities recycle all beam modes (including noise carried by high-order modes)

➢ create problems to control/understand the interferometer

➢ limit maximum input power and squeezing performance → poor sensitivity of the detector

• Implementation of stable recycling cavities + increased effort on optical simulations

➢ Need longer cavities, fitting in the existing building → folded cavities
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