Cosmic-ray astronomy at the highest energies Ground- and space-based detection principles, recent highlights and future projects

Jonathan Biteau – Journée SFP Astropart. & MM – 2025.03.20

From Hillas, 20 years ago... pre Pierre Auger Observatory era

From Hillas, 20 years ago... pre Pierre Auger Observatory era

From Hillas, 20 years ago... pre Pierre Auger Observatory era

Today's picture: all astroparticles

Today's picture: cosmic rays at the highest E

Who Is Shooting Superfast **Particles at the Earth?**

I. Spectrum & nuclear composition

How to measure them, where do we stand, why does it matter **II. Anisotropy searches at the highest E** Why do we try, what do we see, the sources within reach? **III. The extragalactic cosmic-ray background** Next observational and phenomenological frontiers

Detection principles

Event reconstruction: surface detector (SD)

Auger Coll., ApJS 2023

Event reconstruction: fluorescence detector (FD)

Auger Coll., ApJS 2023

Cosmic-ray spectrum at the highest energies

Energy estimation

at the Pierre Auger Observatory

Data-driven: cross-calibration of SD signal with FD calorimetry

Energy estimation

-26

at the Telescope Array

East-West distance [km]

TA, Science (2023)

Monte-Carlo based + data-driven correction $E_{max}(TA) = 244 \pm 29 \text{ EeV}$

10

Cosmic-ray spectrum at the highest energies

Energy estimation

at the Pierre Auger Observatory

Data-driven: cross-calibration of SD signal with FD calorimetry

Energy estimation

at the Telescope Array

Monte-Carlo based + data-driven correction $E_{max}(TA) = 244 \pm 29 \text{ EeV} \leftrightarrow E_{max}(SD) \simeq 150 \pm 20 \text{ EeV}$

Shower slant depth: a proxy for $\frac{|A|}{Z}X$

Independent measurements of $X_{max} \propto \ln (E/A)$ at the Pierre Auger Observatory

Auger Coll., PoS(ICRC23) by Salamida

Composition impact on energy loss length

Composition impact on energy loss length

I. Spectrum & nuclear composition How to measure them, where do we stand, why does it matter II. Anisotropy searches at the highest E Why do we try, what do we see, the sources within reach? III. The extragalactic cosmic-ray background Next observational and phenomenological frontiers

Combining observables to search for UHECR origins

Fit of synthetic model of source population

to spectrum and composition data

Spectral and composition observables integrated over the sphere \rightarrow constrain energy injection rate & composition at escape from the sources

Ankle at > 5 EeV marks the transition to a purely extragalactic origin, with the onset of He nuclei

Observed spectral features: instep at 10-15 EeV, toe at 40-50 EeV

- \rightarrow markers of ~Peters cycle (acceleration up to $E_{max}(Z) \sim Z \times 5 \text{ EeV}$)
- \rightarrow hard nuclear emission at sources (**d***N*/**d***E* \propto *E*^{±1} vs *E*⁻², explained e.g. by escape

from magnetized region within the sources)

→ reservoir of heavy elements? Accelerated material with heavy nuclei, that is little H and He with respect to the interstellar medium.

Anisotropy observables

 \rightarrow break down the flux (and composition) vs arrival direction: pinpoint sources? if cosmic magnetism does not prevent it!

Energy injection rate

 $\dot{Q}(E>0.6\,{
m EeV})=1.1 imes10^{45}\,{
m erg\,yr^{-1}\,Mpc^{-3}}$

Composition at the sources

$$igg|rac{M(ext{He})}{M(ext{C-Fe})}igg|_{ ext{UHECR}} = 0.21 \pm 0.05 \pm 0.06$$

vs $igg|rac{M(ext{He})}{M(ext{C-Fe})}igg|_{ ext{ISM}} = 18 \pm 2$

Luce, Marafico, JB+ ApJ '22 & Marafico, JB+, ApJ '24 20

UHECR propagation on extragalactic scales

UHECR propagation on extragalactic scales

UHECR propagation on extragalactic scales

Arrival-direction modulation on large angular scales

Modulation of the event rate as a function of R.A.

or of the difference between events from East and West

Exposure of the array nearly uniform in right ascension

→ modulation = robust observable for the phase and amplitude of the first spherical harmonic (equatorial component of the dipole)

Observed arrival directions from the ankle to the toe

Observed arrival directions from the ankle to the toe

Which sources to explain the Centaurus region excess?

Hillas: only the highest-energy

Confinement, i.e. large B-field, size, and shock velocity: $B \times (r \times \Gamma) \times \beta_{shock} > E/Ze$

Arrival directions: only the numerous

No significant self-clustering above flux suppression:

number density > 10^{-5} / Mpc³ (if deflections < 30°)

Alves Batista+, Front.Astron.Space Sci. '19

Status of anisotropies in the toe region

Arrival directions of events > 32 EeV up to Dec. 2020: best template model

- ~ 3.8 or exclusion of isotropy with 10% XS from 44 brightest star-forming galaxies < 150 Mpc (Auger, ApJ '22, ApJL '18)
- ~ 4.60 exclusion when including Northern complementary data (Auger Coll. + Telescope Array Coll., PoS(ICRC2023) by Caccianiga)

Mapping out star formation in the CR horizon

Candidate ultra-high-energy sources

Impact of magnetic fields?

I. Spectrum & nuclear composition

How to measure them, where do we stand, why does it matter **II. Anisotropy searches at the highest E** Why do we try, what do we see, the sources within reach? **III. The extragalactic cosmic-ray background** Next observational and phenomenological frontiers

The extragalactic background from radio λ to ultra-high *E*

The extragalactic background from radio λ to ultra-high E

The multi-messenger extragalactic spectrum

How to constrain the populations of hadronic emitters and the mechanisms at play in hadronic accelerators?

 10^{3} 10^{2} $\nu I_{\nu} d \ln \nu$ $I_{\nu} d\nu$ CME 10^{1} $vI_v [\text{nW} \text{ m}^{-2} \text{ sr}^{-1}]$ 04 CRB CIB COB CGB ENB ECRB 0.2 - 200 EeV 10^{-1} 10^{-2} 10 LV - 3 LV 10 Mbfs - 10 CHz am - 2 mms 0.1 - 10.8 2M/V-1T/V Ξ AX $^{2}I(E)$ [GeV 10^{-3} -4 Y v p 10^{-5} 10^{-6} 6900+500 eV 400 eV 0000 -03 EV 0-00 20 0.014 -# 8 10 10^{5} 1013 1017 1021 1025 1029 1033 10^{9} Frequency, v [Hz]

 \rightarrow likely from what we learned about the populations of photon emitters

Model for the particles of the extragalactic spectrum?

Model for the multi-messenger extragalactic spectrum

Ingredients

- baryonic matter

Backup

Common in literature

→ apparent local rate × isotropic-equivalent energy (beaming corrected - often based on gamma-ray flux)

This work

→ true local rate (beaming corrected) x true energies (based on expected kinetic energies)

What remains: the multi-messenger extragalactic spectrum

Spline fit of the multi-messenger extragalactic spectrum

Credits: Tinyakov+ '21

Some landmarks in Auger anisotropy studies

Status of the TA hotspots

Continuous losses of protons: p-y on the CMB

$$egin{aligned} p+\gamma &
ightarrow p+e^++e^- \ &
ightarrow p+\pi^0 \ &
ightarrow n+\pi^+ \end{aligned}$$

Threshold for π photoproduction $2m_p m_π / 4ε \sim 50 \text{ EeV} \times (λ / 1 \text{ mm})$ *Note:* $p @ 50 \text{ EeV} \rightarrow \underline{unobserved}$ Center of mass $(50 \text{ EeV} \times 1 \text{ meV})^{\frac{1}{2}} \sim 0.2 \text{ GeV}$ Neutron = proton in the IGM

үст ~ 10 kpc x (*E* / 1 EeV)

Escape spectrum: neutrons

Catastrophic losses of nuclei: photo-erosion/disintegration

$${}^A_Z X + \gamma \rightarrow^{A-a-b}_{Z-b} Y + an + bp$$

Photo-erosion driven by

□ $\epsilon_{\rm Y}$ ' ~ 10 MeV: giant dipole resonance → $\lambda_{\rm Y}$ ~ 0.5 mm (CMB) for $E_{\rm X}/A$ ~ 2 EeV □ $\epsilon_{\rm Y}$ ' ~ 30 MeV: quasi-deuteron process □ $\epsilon_{\rm Y}$ ' > 150 MeV: baryon resonance

 $\rightarrow \lambda_{\gamma} \sim 30 \ \mu m \ (ClB)$ for $E_{\chi}/A \sim 2 \ EeV$ Lower energy nuclei and protons

 \rightarrow with Lorentz boost nearly conserved

Cosmic web: volume filling fraction

Credit: Hackstein+ MNRAS '18 (Cosmic V-web constrained sim. / CLUES)

Magnetic fields and where to find them

Jonathan Biteau

Validation: do we grasp all M_{\star} and SFR?

1D visualization vs d out to 350 Mpc (vs 135 Mpc in Karachentsev+ 2018)

 \rightarrow Full-sky plateau beyond 100 Mpc matches deep-field observations (Driver+ 2018)

→ Northern matches Southern hemisphere beyond 100 Mpc: negligible N/S dipole ~ isotropic regime

3D visualization out to 350 Mpc (see interactive figures of the <u>Local Superclusters</u>, <u>Local Clusters</u> and <u>Local Sheet</u>) \rightarrow Good agreement with V-web from Cosmicflows (Hoffman+ 2017, Dupuy +2019) on supercluster scales

Voids: *B* < 10 pG

→ Too low to have a sizeable impact within cosmic-ray horizon

(see Pierre Auger Collab. '24)

The Local Sheet: *B* ~ *B*_{filaments}?

 \rightarrow Translucent, w/ angular spread $\theta_{obs, UHECR} \sim \Delta \theta_{Local Sheet}$

→ Time spread → d_{min} = extent of $B_{Local Sheet}$ ~ few Mpc

Galaxy filaments: B ~ 10-100 nG

- →Translucent to UHE nuclei
- →No need for specific treatment

Galaxy clusters: *B* ~ 1-10 µG

→ Calorimeters for UHE nuclei

 $\Delta\theta = 10^{\circ} \times \left(\frac{B}{10 \text{ nG}}\right) \left(\frac{R}{5 \text{ EV}}\right)^{-1} \left(\frac{d}{2 \text{ Mpc}}\right)^{3/2} \left(\frac{\lambda_B}{10 \text{ kpc}}\right)^{3/2}.$

 $\Delta \tau = 70 \, \text{kyr} \times \left(\frac{B}{10 \, \text{nG}}\right)^2 \left(\frac{R}{5 \, \text{EV}}\right)^{-2} \left(\frac{d}{2 \, \text{Mpc}}\right)$

Condorelli, JB, Adam, ApJ '23

Marafico, JB+, ApJ '24

Why would UHECR sources be transient?

- → Hillas-Lovelace-Waxman: high-luminosity sources
- →Composition: H/He-poor material from (high-mass) stars
- → Minimum distance: for an observer in a large-scale *B*-field

Contrast in the Centaurus region

Marafico, JB, Condorelli, Deligny, Bregeon, ApJ (in press) 2024

Jonathan Biteau

Candidate ultra-high-energy sources

Marafico, JB, Condorelli, Deligny, Bregeon, ApJ (in press) 2024

Conclusions

Marafico, JB, Condorelli, Deligny, Bregeon, ApJ (in press) 2024

arXiv:2405.17179

Transient model of UHECR sky

Marafico, JB, Condorelli, Deligny, Bregeon, ApJ '24

Spectral & composition model (see also Luce+ ApJ '22)

Increasing value of burst rate per star-formation unit k, for a given B-field in the Local Sheet

Observations in the Local Volume

Aim for volume limited sample to d < 11 Mpc or $v_{LG} < 600$ km/s Distances based on usual cosmic-ladder estimates (supernovae, Cepheids, Tully-Fisher, Faber-Jackson) + tip of the red giant branch

 \rightarrow avoid biases induced by peculiar motion, distance uncertainty: 5-25%

Information available from Karachentsev+ 2018

- M₊: stellar mass from K band (1022/1029)
- T: de Vaucouleurs' morphology (1028/1029), special attention to dwarfs
- M(HI): atomic hydrogen mass, tracing gas (819/1029)
- SFR(FUV): mostly based on GALEX observations (647/1029)
- SFR(Hα): from literature & dedicated surveys (470/1029)

Main sequence of galaxies in the Local Volume?

SFR-M_{*} branch occupied by Irregular (Irr.) and Spiral (S.) galaxies

Small Magellanic Cloud (ESO/VISTA VMC)

Antennae: NGC4038/4039 (ESA/Hubble)

Messier 83 (ESO)

Karachentsev+2013

Equatorial coordinates

Main sequence in the Local Volume

SFR tracers in the Local Volume

- Hα: 5-10 Myrs timescale, fraction of ionizing photons from young massive stars absorbed before being reprocessed into Hα
- FUV: 100-300 Myrs timescale, fraction of FUV photons from OB stars absorbed, often combined with total IR to estimate SFR
- \rightarrow both corrected for extinction, i.e. escape from the galaxy

3 SFR-M_{\star} branches

→ E-S0: linear (β = 1.0-1.1 ± 0.10), i.e. no active star formation → S: sub-linear (β = 0.81-0.69 ± 0.07), active star formation >10 Myrs ago

Fit results with best morphological divide

- KS-test p-value for Gaussian residuals ~ 5%,
- 4σ outliers \rightarrow hidden variables (metallicity, environment)
- SFR dispersion of S: 0.24 dex (FUV-H α), 0.34 dex (M_-H α)

Exploiting the HyperLEDA database

Limitations of GLADE / MANGROVE

Mix of overlapping catalogs: risk of duplicate entries, possibly direction-dependent flux limit **Fully exploiting distance databases**

Local Volume (1k gal., *d* < 11 Mpc, Karachentsev+ 2018) and HyperLEDA (5M gal., Makarov+ 2014) **Distance revision: cosmic ladder > spectro-z > photo-z**

Cosmic-ladder distances for ~1k nearby objects, spectro- $z \times 4 \rightarrow 200k/400k$ within 350 Mpc Stellar mass estimates

K-band for Local Volume, W1-band otherwise, with $M_*/L = 0.6$ (M_{\odot}/L_{\odot}), i.e. Chabrier IMF

Association results

- 671,593 / 743,480 HyperLEDA pairings (others = 2MASS objects not in HyperLEDA)
- 361 duplicates removed
- 1,387 excluded entries:
 - dubious duplicates removed
 - jetted AGN from HyperLEDA

Incompleteness with increasing distance

Mass function

Full-sky, including clones in the ZoA and weights as a function of galactic latitude

Best-fit double Schechter from GAMA-field observations (Wright+ 2017) scaled to observed integral, accounting for local overdensity

Low-mass end: (luminosity function) × (fraction of observable objects above 2MPZ sensitivity limit, provided distances)

Completeness

From integral of (GAMA mass function) \times M_{*} above 2MPZ sensitivity limit: weights = completeness(d) \times completeness(b) \in [0.26,1]

 \rightarrow probed volume from 140 Mpc (2MRS) to 350 Mpc (2MPZ) at similar completeness: \times 2.6 (distance), \times 18 (volume)

 \rightarrow further increase by \times 4 (distance) to be expected if full WISE x SuperCOSMOS potential exploited

Incompleteness in the Zone of Avoidance

Estimated based on galaxy counts in 100-300 Mpc (nearly isotropic distribution)

Equal area galactic latitude bins in inner and outer plane regions ($|/|=30^\circ$) Cosmic variance estimated from bin-to-bin fluctuations at $l > 45^\circ$

Corrections

Empirical Gaussian(sin b) fit used to infer galaxy weights:

- re-weighting sufficient in outer plane, insufficient in inner plane
- ZoA cut placed at ~50% incompleteness: / = 3° / 20° for outer / inner plane
- galaxy cloning (as in Lavaux & Hudson's 2M++ 2011) in ZoA region

