Gamma-ray Astronomy from Space & Ground

M. de Naurois (denauroi@in2p3.fr)

Detection **Techniques &** Instruments

SFP 2025

The Electromagnetic spectrum

Constrains – Atmospheric transmission

Space or Ground ?

- Flux falling quickly with energy
 Need large effective area at high energy
- Atmosphere opaque to γ-rays

- Direct detection from space limited to E ≤ 100 GeV (statistics)
- Indirect detection from ground (atmospheric showers)

Space Instruments

 Low energy (< 1 MeV): photoelectric effect
 ⇒ Coded mask telescope (Integral, Swift-BAT)

Intermediate energy: Compton scattering
 Compton telescope (Comptel, ...)

 High energy (> 10 GeV): pair creation telescope (Agile, Fermi-LAT)

Calorimeter

ወ

Telescope

Axis

Fermi-LAT

- High precision tracker
 - 18 planes X/Y, Si strips (228 µm)
 - 900 000 channels
 - Angular resolution varying with energy 4° @ 100 MeV ⇒ 0.1° @ 10 GeV
- Hodoscopic Calorimeter
 - 1536 cristals, CsI(TI), 8 layers
- Segmented anti-coincidence dome
 - 89 foils of scintillator
- Launched by Delta rocket June 11th 2008
- Still operating
 - one solar array failure in 2018

Mathie

Ground-based Detection - Atmospheric Showers

- Atmosphere acts as inhomogeneous calorimeter
- Pair creation & Bremsstrahlung
 ⇒ extensive, atmospheric showers
- Additional processes in hadronic showers

E ₀	T _{max} (g cm ⁻²)	Altitude (m)	N _e (t _{max})
30 GeV	216	12000	50
1 TeV	345	8000	1200
1000 TeV	600	4400	$0,9 \times 10^{6}$
$10^{19} \mathrm{eV}$	936	1200	$7,4 imes 10^9$
10 ²⁰ eV	1021	0	7,0 × 10 ¹⁰

8

Comparison

IACTs

- Good angular & energy resolution
- Good background rejection (image shape)
- Small field of view (a few °)
- Small duty cycle (dark nights)

Sampling Experiments

- Large field of view
- Large duty cycle
- Poor resolution
- Poor background rejection

Deep analysis of selected targets
Large surveys

Cherenkov Emission

- Opening Angle:
- Refractive Index : $n-1 \propto \rho(z)$
- Density : $\rho(z) \propto \rho_0 \exp\left(-\frac{z}{z_0}\right)$
- Angle varies from ~ 1.4° at see level to 0.30 at 30 km

 $\cos\theta = \frac{1}{2}$

 Very brief (~ ns) emission, ring-shaped emission

Very High Energy y-ray World

High Energy Stereoscopic System (H.E.S.S.)

Array of 4+1 Cherenkov telescopes located on Khomas Highland, Namibia (1800 m)

- H.E.S.S. phase 1 (09-2002):
- 4 telescopes: Ø 12 m,107 m²
- Stereoscopic reconstruction
- 960 PMTs/camera, Field of view : 5°
- Observations : ~1000h/year
- Source position : ~ 10"

- H.E.S.S. phase 2 (09-2012):
- 5th telescope, Ø 28 m, 600 m² (largest IACT in the world)
- 2048 PMTs, Field of view : 3.5°
 - \rightarrow Energy threshold (zenith) ~ 30 GeV

Sampling experiments

- HAWC High Altitude Water Cherenkov
 - Altitude: 4100m, Mexico
 - 20000 m² covered with 300 water Cherenkov detectors equipped with 1200 PMTs
 - Inaugurated in April 2015

- LHAASO Large High Altitude Air Shower Observatory
 - Large array (1.3 km²), several techniques: Scintillators, Water Cherenkov, Muon detectors, Wide Field Air Cherenkov Telescopes
 - Sichuan, China

The Milky Way

SFP 2025

The Milky-Way in Gamma-Rays

4FGL – DR3 Catalogue

- 6658 sources (June 2022)
- Identified Galactic Sources:
 - 137 Young pulsars
 - 139 Millisecond pulsars
 - 44 Supernova remnants
 - 22 Pulsar wind nebulae
 - 41 Globular clusters
 - 9 Low-mass X-ray binaries
 - 11 High-mass X-ray binaries
 - 6 Star-forming regions
 - 8 Novae
- Identified Extra-galactic Sources:
 - 3932 Blazars
 - 67 Radiogalaxies and other AGNs

https://arxiv.org/abs/2201.11184

VHE View – H.E.S.S Legacy Survey

- Major H.E.S.S. project over 10 years (⇒ 2013)
- 78 VHE sources of different types:
 - 12 PWNs
 - 8 SNRs
 - 8 Composites
 - 3 Binaries
 - Sgr A*
 - 11 without counterparts

Very – High Energy View – Others HAWC LHAASO

- 65 sources \geq 5 σ , overlapping each other (poor angular res.)
- Agrees with H.E.S.S. after smoothing (0.5°)

 Ultra high energy photons from 12 galactic sources (>100 TeV)

Gamma-ray pulsars

30

- Fermi: discovery of a full population of pulsars, including many millisecond, recycled pulsars
- Strong constraints on the geometry of emission zone (con opening angle vs energy)

Pulsars from ground

- 3 VHE pulsars observed from ground: Crab, Vela & PSR B1706-44
- Amongst brightest pulsars in Fermi 2PC catalogue
- Very-high energy emission (20 TeV in Vela) from IC component on IR
- Must occur far from light cylinder (otherwise strong sync. cooling)

Millisecond pulsars & Neutron Stars

- Millisecond pulsars are old, but reaccelerated due to interaction in binary system.
- Best natural clocks known (no glitches etc)
- "Black widows" & "redback spiders" eat their mates.
- Those with eclipses can be used to estimate neutron star mass (direct information on system inclination)
- Can also be used to constrain stockastic background of gravitational wave

Science

A gamma-ray pulsar timing array constrains the – nanohertz gravitational wave background SFP 2025

Nature Astronomy, 7,451-462 (2023)

GeV-TeV spectra of supernova remnants

Other sources in the Milky Way

- Pulsar Wind Remnants
- Binary systems & Microquasars
- Novae
- Interacting Stellar Winds
- Galactic Centre (Black Hole)

Microquasars - SS 433

Extragalactic Science

SFP 2025

Gamma Ray Bursts up to TeV Scale

- Recent revolution in VHE astronomy
- Two populations
 - Long GRBs: Collapse of massive stars
 - Short GRBs: Neutron star mergers
- Recent detections (Long GRBs):
 - GRB 180720B (HESS)
 - GRB 190114C (MAGIC)
 - GRB 190829A (HESS)
 - GRB 201216C (MAGIC)
 - GRB 221009A aka BOAT (LHAASO)
- Hint from short GRB
 - GRB 160821B (MAGIC, 3 σ)

GRB 190829A

- Long GRB (t_{GBM90} ~ 60 s, t_{BAT90} ~ 60 s) @ z = 0.078
- Observation started at t₀ + 4h20 (ATel #13052)
- Followed during 3 nights (22, 6 and 3 σ)!
- Extending up to > 3 TeV
- Modest energy but one of the closest ever

Right Ascension (J2000)

H.E.S.S. Collaboration - Science 372 (2021)

∠8

B.O.A.T.: The Brightest Of All Time

- GRB221009A was an extraordinary event:
 - very energetic (~10⁵⁵ erg) and close to Earth (z=0.151)
 - thought to be a once-in-10,000-year event
- LHAASO detection up to ~ 14 TeV, >60,000 photons above 0.2TeV
 - T₀ ≈ 225–228 s
 - Estimated Lorentz Factor of the Jet ~ 440

Active Galactic Nuclei

- Most numerous class of extragalactic sources
 - Supermassive black hole surrounded by an accretion disk
 - Some have ultrarelativistic jets, some not
 - "Blazars" have jets pointing towards the earth and show highly variable TeV emission

Physics:

- Mechanisms of relativistic jet production (acceleration & ejection)
- Probes of the extragalactic background light (EBL) through pair absorption
- Tests of Lorentz Invariance

Blazars - Multi-messenger observations

- Emerging associations between neutrinos & AGN
 - IC 170922A: One neutrino coincident with Flaring Blazar TXS 0506+056 +
 Burst of neutrinos in archival data 5.0°
 - IC 190730A ⇒ PKS 1502+106
 - IC 200107A ⇒ 3 HSP J0955+3551
- Possible neutrino from Tidal Disruption Event (AT2019dsg)

Other extragalactic Sources

12.42

12.4

12.36

12.34

- Radio-Galaxies: Possibility to measure the extension and pin-point the region of acceleration (Centaurus A)
 - Continuous acceleration of particles along the jet
- Starburst Galaxies
 - Regions of intense stellar formation activity (e.g. NGC 253)
- Tomography of the Universe (measure of EBL) & Fundamental physics (Lorentz Invariance)

12h30m40s RA (hours)

32

Beyond y-rays: Cosmic Electron Spectrum

33

Evolution of the field – "Kifune" Plot

Number of sources vs time [T. Kifune]

Perspectives

SFP 2025

Mauneu de Nadiois

Future MeV-GeV mission?

e-AstroGam

- High resolution Tracker + Calorimeter (0.3 MeV – 3 GeV)
- Access to polarimetry, Exploits Compton event
- Proposed to ESA M5 call

HERD

- Fibre tracker + Calorimeter + TRD detector
- Energy range > 1 GeV
- Proposed for the future Chines Space Station (2027 –)

СТАО

- Next generation IACTs
- 2 sites, 3 sizes of telescopes (LST, MST, SST)
 - Canary Island: 0.5 km², 4 LST, 9 MST focus on extragalactic science
 - Chile, 3 km², 14 MST, 37 SST (+ 4 LST?) focus on pevatrons & galactic science
- ERIC signed January 7th, 2025

Southern Wide-field Gamma-ray Observatory – SWGO

- Water Cherenkov detector in the Southern Hemisphere
- Potential site Atacama Astronomical Park, Chile.
- At an altitude of 4770 m.
- Energy range from 100s of GeV up to the PeV scale

Not funded yet

