

NUCLÉAIRE **& PARTICULES**

Status of the Spectral Analysis

Rudolph Rogly - December 18th, 2024 Neutrino Group Meeting

for the DSNB search

Reminder about the spectral analysis pipeline

R. Rogly

December 18th, 2024

Status of the DSNB Spectral Analysis

Spallation additional PDFs

December 18th, 2024

Status of the DSNB spectral analysis

Limitations of the current approach

- The modification of the PDF content of the fitting model involves at least 2 additional fitting parameters: $N_{P_{Li}}$ and $N_{acc. coinc.}$
- For now, no additional systematics on the shape of the accidental coincidence PDF that might come from: e.g. uncertainties in the (IBD) mistag rates values applied to derive the PDF.
- Main limitation of the approach so far: the normalization parameters of the accidental coincidence PDF and ⁹Li PDF of the n-tag=1 region are completely unconstrained by the normalization parameter of the spallation PDF of the ntag≠1 region.

 \rightarrow **Reminder**: the spallation PDF of the n-tag \neq 1 region is built from a parametric description of the **contribution of 3 isotopes** in the spectra, that is valid only above 16 MeV.

R. Rogly

December 18th, 2024

Status of the DSNB spectral analysis

• <u>NB</u>: In the 12-16 MeV region in ntag=1/med. θ_c \rightarrow Only 2 data points for SK-VI & 1 data point for SK-VII.

Limitations of the current approach

- The modification of the PDF content of the fitting model involves at least 2 additional fitting parameters: N_{PLi} and $N_{acc. coinc.}$
- For now, no additional systematics on the shape of the accidental coincidence PDF that might come from: e.g. uncertainties in the (IBD) mistag rates values applied to derive the PDF.
- Main limitation of the approach so far: the normalization parameters of the accidental coincidence PDF and ⁹Li PDF of the n-tag=1 region are completely unconstrained by the normalization parameter of the spallation PDF of the ntag≠1 region.

 \rightarrow **Reminder**: the spallation PDF of the n-tag \neq 1 region is built from a parametric description of the **contribution of 3 isotopes** in the spectra, that is valid only above 16 MeV.

R. Rogly

December 18th, 2024

Status of the DSNB spectral analysis

Significant increase in the statistical uncertainty due to the lack of constraints in the current version of the fit.

Still working on this.

Unbinned vs. Binned Fit — Rationale

1. Assess the impact of the PDFs sharpness in the final results:

- ➡ For the *binned fit*, these sharp variations are washed out by the integration over the energy bin (see below).

2. Derive a goodness-of-fit:

- ➡ For the *unbinned fit,* no such natural statistics.
- \Rightarrow For the binned fit, we can use the standard χ^2 deviance aka G-statistics:

G(Data, Model)

For the unbinned fit, some sharp variations in the PDFs due to the application of the binned spallation (and solar) cut efficiencies, that are not smoothly-varying.

$$0 = \sum_{bin \ n^{\circ}i} Data[i] \cdot \ln\left(\frac{Data[i]}{Model[i]}\right)$$

5

Unbinned vs. Binned Fit - Results / Comparison

1. Assess the impact of the PDFs sharpness in the final results:

- → For the *binned fit*, these sharp variations are washed out by the integration over the energy bin.

R. Rogly

➡ For the unbinned fit, some sharp variations in the PDFs due to the application of the binned spallation (and solar) cut efficiencies, that are not smoothly-varying.

Binned Fit - Goodness-of-fit

2. Derive a goodness-of-fit:

- ➡ For the *unbinned fit,* no such natural statistics.
- ➡ For the *binned fit,* we can use the *deviance* aka *G*-statistics:

$$G(Data, Model) = \sum_{bin \ n^{\circ}i} Data[i] \cdot \ln\left(\frac{Data[i]}{Model[i]}\right)$$

 \rightarrow Very good agreement for SK-VI fit / Good agreement for SK-VII fit.

R. Rogly

December 18th, 2024

Status of the DSNB spectral analysis

December 18th, 2024

Status of the DSNB spectral analysis

Back-up

Binned vs. Unbinned Fit - Result Plots (SK-VI)

Unbinned fit

December 18th, 2024

Status of the DSNB Spectral Analysis

Binned fit

<u>PS</u>: Histograms are stacked on this plot, contrary to the unbinned plot.

CNIS NUCLÉAIRE & PARTICULES

INSTITUT POLYTECHNIQUE DE PARIS

Binned vs. Unbinned Fit - Result Plots (SK-VII)

Unbinned fit

December 18th, 2024

Status of the DSNB Spectral Analysis

Binned fit

<u>PS</u>: Histograms are stacked on this plot, contrary to the unbinned plot.

Binned Fit - Bin-by-Bin Data-to-Fit disagreement

December 18th, 2024

Status of the DSNB Spectral Analysis

