

Funded Project

Findable Big Data from Various Material Characterisation Techniques

Presenter: Sandor Brockhauser, Humboldt-Universität zu Berlin, https://orcid.org/0000-0002-9700-4803

Implemented by

FAIR Data Infrastructure for Physics, Chemistry, Materials Science, and Astronomy e.V.

•***• Fur *• • * the

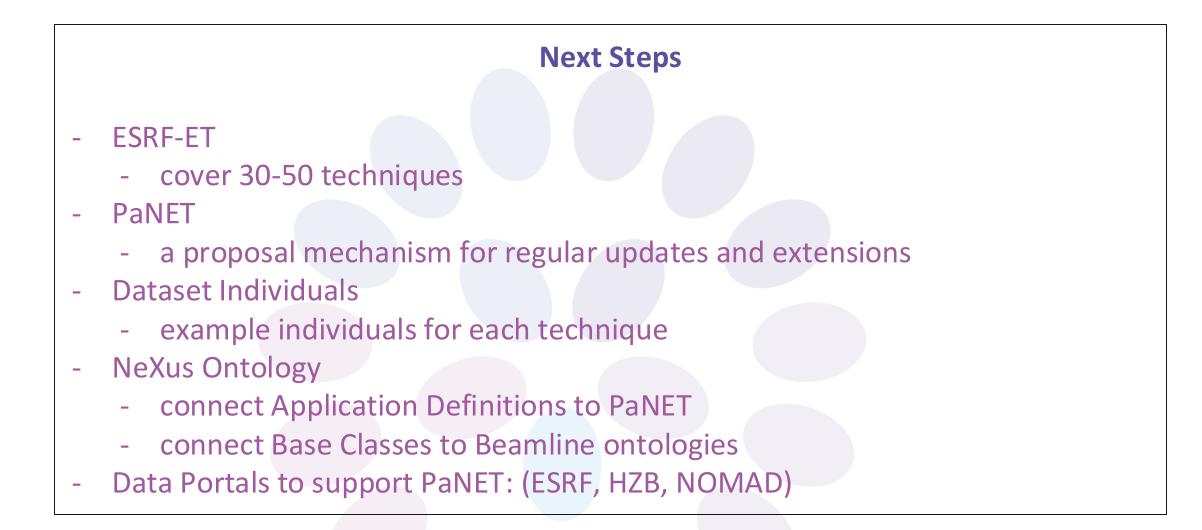
Funded by the European Union

FAIRness of Experimental Data

- Findability and Interoperability needs commonly accepted ontology
 - PaNET aims to cover experiment techniques
 - NeXus provides details of experiment data
 - ESRF-ET is to connect experiment data to techniques
- Data repositories should offer searchability according to these ontologies
- Data driven science and AI tools need such platforms

Main goals

- interoperability of experimental data via connecting ontologies:
 PaNET NeXus ESRF-ET
- integrating ontologies to EOSC services and RDM platforms: NOMAD, PANOSC, ESRF_DATA, HZB_DATA
- Scientific use case:
 - Al driven spectoroscopy analysis



Progress Report after 5 months

- ESRF-ET
 - more than 20 techniques implemented
 - concepts for differentiating the techniques
- PaNET
 - can incorporate the new concepts from ESRF-ET
- Dataset Individuals
 - created manually or templated
 - scripts or Beamline ontologies could help to capture beamline specific information and connect datasets to ESRF-ET and PaNET
 - Note that Beamline ontologies are inherently time-dependent

