Les nuages moléculaires, révélateurs de rayons

cosmiques dans les vestiges de supernovae?

F. Feinstein LPTA, Montpellier

HESS : High Energy Stereoscopic System

- Quatre télescopes imageurs Tcherenkov atmosphériques
- Khomas Highlands en Namibie à 1800 m d'altitude
 Hémisphère Sud => partie centrale du plan de la Galaxie
 => la plupart des sources

Finalisé en décembre 2003 => plus de 4 ans de données en configuration complète

Principe de l'imagerie Tcherenkov

Interaction du rayon gamma

dans la haute atmosphère

Propagation du flash Tcherenkov jusqu'au sol

Image de la gerbe au foyer du réflecteur

Observation stéréoscopique

Performances du télescope H.E.S.S.

champ de vue 5°, caméras de 960 pixels : - électronique intégrée, échantillonnage à 1 ns

Résolution: Δθ~0.15°
 Domaine d'énergie : 0.2 - 50 TeV;
 ΔΕ/Ε ~15%

L'origine des rayons cosmiques

- Découverts en 1912 par V. HESS
 - Mesures en ballon
- Jusqu'à l'échelle du PeV :
 - contenus par le champ magnétique dans la Galaxie
 origine galactique
- Quels sont les accélérateurs de hadrons ?
- Hypothèse prometteuse :
 - vestiges de supernovae

Energie [eV]

Démarches expérimentales

- Pb: rayons cosmiques défléchis par les champs magnétiques
- Plusieurs messagers utilisables :
 - Neutrinos
 - Rayons cosmiques (E >10¹⁸ eV)
 - Rayons gamma

Vestiges de supernovae et rayons cosmiques

Ondes de choc à travers le milieu interstellaire

⇒ accélérateurs de rayons cosmiques plausibles

Mécanisme de Fermi du 1^{er} ordre

gain d'énergie par le passage répété au travers du choc supersonique (typ. 5000 km/s)

~ 10% de l'énergie de l'explosion accélère les hadrons

puissance suffisante pour compenser l'échappement des rayons cosmiques de la Galaxie

Toujours pas de preuve expérimentale indiscutable

⇒ les rayons γ de très haute énergie sont de bons traceurs pour un tel mécanisme

Les rayons cosmiques et les rayons γ

Un signal ambigü provenant :

Vestiges de supernovae

Deux vestiges de supernovae en coquille

- RX J1713.7-3946 et Vela Junior (RX J0852-4622)

Aharonian et al. A&A 464, 235 (2007)

Premier vestige en coquille résolu

- indice spectral proche de 2 jusqu'à 30 TeV
- => particules accélérées au delà de 100 TeV
- corrélation avec des rayons X non thermiques

Vestiges de supernovae

Forte corrélation avec les nuages de gaz denses sur 300 pc => suggère une production par interaction p-p Masse de gaz bombardée: 2 à 4 10⁷ masses solaires Source proche... mais inconnue !

Les nuages moléculaires

- Masses de gaz dense > 10³/cm³ (milieu IS 1/cm³) => molécules
- Détection
 - Spectres rotationnels en radio (CO, CS)
 - ⇒intensité des raies prop. à la densité de colonne de H₂ (composant principal)
- > 10³,10⁵ masses solaires
- estimation de distance :

 vitesse radiale (effet Doppler)
 ambiguïté
 C.G.

Association avec des vestiges de SN

- Association naturelle
 - zone de naissance d'étoiles massives finissant en SN
 - durée de cohésion du nuage > vie de l'étoile
- Révélateurs de hadrons accélérés
 - cibles pour les particules $\rightarrow \pi^0 \rightarrow \gamma \gamma$
 - corrélation entre densité de matière et émission γ
 - ⇒associations accélérateur-cible discrimine hadrons et électrons
- Mais incertitude des distances des vestiges de SN :
 - diamètre apparent : récent et proche ou ancien et lointain ?
 - absorption X : dépend de la colonne densité
 - ⇒comment distinguer les associations véritables?

L'indication du maser OH (A. Fiasson)

- inversion de population du radical OH (niveaux rotationnels)
- mécanisme unique : pompage collisionnel avec H₂

Elitzur M. ApJ, 203, 124 (1976)

- conditions spécifiques : $10^3 10^5$ cm⁻³,T ~ 25 K 200 K
 - => une onde de choc à travers un nuage moléculaire
- effet maser

si ligne de visée tangente à l'onde de choc

- origine de OH :
 - formation de H₂O dans la compression
 - émission X thermique dans le choc en retour (en aval)
 - dissociation H₂O en OH

Détection du maser OH 1720 MHz

- forte suppression hors de ces conditions : pas de masers OH dans tous les chocs
- MAIS ! détection => vraie interaction
- pas d'associations fortuites à cause de distances imprécises
- Plusieurs relevés pointés sur les vestiges de SN

Frail et al. 1996, Green et al. 1997, Claussen et al. 1997, Koralesky et al. 1998, Yusef-Zadeh et al. 1999

- 18 vestiges émettent à 1720 MHz
 - Sans doute d'autres à découvrir
- un programme d'observation gamma ciblé
- analyse du relevé systématique de HESS

W28 (SNR G6.4-0.1)

- Champ de vue complexe en multi- λ
 - Plusieurs vestiges
 - Régions de formation d'étoiles
 - Régions H_{II}
- Signal Nord coïncide avec une source EGRET
- Interaction (masers OH) avec un nuage moléculaire dense vu en CO par les observations NANTEN
- Emission gamma Nord coïncide avec le nuage
 - => Energie compatible avec des RC accélérés par le vestige et interagissant avec le nuage
 - => Scenario hadronique probable
 - 2% du flux du Crabe

HESS J1714-385 & CTB 37A

Aharonian et al. Astron. Astrophys. 490 (2008) 685-693

Rayons Cosmiques et nuages moléculaires ?

- Vestige interagit avec plusieurs
 nuages moléculaires
 - 🗗 Masers OH (1720 MHz)
 - Nuages moléculaires denses détectés dans la raie CO
- Interactions hadroniques possibles
 - Flux γ compatible avec des RCs accélérés par CTB 37A
 - => entre 4% et 30% de l'énergie d'explosion en RCs

Ou nébuleuse de pulsar ?

- Observations X Chandra & XMM-Newton
- Emission thermique de l'intérieur du vestige
- Candidat nébuleuse de pulsar découverte
 - Association possible avec CTB 37A
 - Luminosité X implique une décélération de rotation de 10³⁷erg/s, forte puissance
 - => ~ 0.1% conversion en rayons γ
 - ⇒ Scenario leptonique possible

HESS J1745-303

¹²⁰ Découvert par relevé galactique en 100 2004

- 2005 2007 : statistiques augmentées
 - \Rightarrow morphologie complexe,

probablement multiple

 \Rightarrow non identifié

• Power law of index $\Gamma = 2.71 \pm 0.1$

-40 Candidat pour la partie A ?

- source EGRET sans contrepartie
 - (contour 95% CL)
 - flux EGRET compatible
 - pas de contrepartie XMM
 - 1.5% du flux du Crabe

RCs accélérés par G359.1-0.5 ?

Aharonian et al. A&A 483, 509A (2008)

• SNR G359.1-0.5

abs. H1 => près du CG : 7,6 ± 0,4 kpc

- Choc interagit avec un nuage
 - masers OH à 1720 MHz sur le bord du vestige
 - observations CO [-100 km/s, -60 km/s], comp. avec CG, coïncidentes avec la source γ
- Interaction hadrons-nuage ?
 - ⇒ 15% à 60% de l'énergie de l'explosion en rayons cosmiques

Un nouveau candidat: HESS J1923+141

- relevé 2007 + observations 2008
 - 16.5 heures live-time
 - Significativité pic de 6.7σ
 (suréchantillonnage 0.22)
 - \Rightarrow 4.4 σ après essais
 - nuage à 60-80 km/s ¹³CO (DENSE !)
- maser à 70 km/s
- Source plus large que la PSF

3 % du flux du Crabe

=> Découverte d'une nouvelle source γ THE par H.E.S.S.

HESS J1923+141: contreparties possibles

- Etude morphologique en cours
- Plusieurs contreparties possibles
 - Nébuleuse de pulsar Chandra CXO J192318.5+1403035
 - Luminosité X implique une décélération de rotation
 - ~ 3x10³⁶ erg/s à 6 kpc
 - => conversion < 0,1 % de cette énergie en rayons gamma
 - Nuage moléculaire choqué par SNR G49.2-0.7
 - Masers OH 1720 MHz coïncident avec le bord du vestige
 - Nuage moléculaire allongé coïncident avec le bord du vestige et les masers
 - => dans le sens d'un scenario hadronique

=> nouvelle source H.E.S.S. coïncidente un vestige associé à un maser OH

Résumé et perspectives

- De nombreux vestiges de SN sont des sources gamma de THE
- Quatre observés par HESS sont en interaction avec un nuage moléculaire
- Des masers OH à 1720 MHz assurent la réalité de l'interaction
- Des sources EGRET correspondent
- Les bilans énergétiques sont compatibles avec une accélération de hadrons
- Une nébuleuse de pulsar est souvent présente aussi => leptons ?
- Manque de résolution angulaire pour distinguer
- Toutes ces sources ont un flux faible et sont étendues : qques % Crabe
- Progrès futurs :
 - HESS 2 : sensibilité et résolution x 2
 - EGRET => Fermi
 - CTA : sensibilité x10 et résolution x 4
- Des dizaines de cas => une cartographie du flux de cosmiques dans les vestiges ...