Precision Tests of the MSSM at LHC

Luminita Mihaila

Universität Karlsruhe

Outline:

- Higgs boson mass in the MSSM
- Coupling constant unification in the MSSM

The SM is amazingly successful:

[LEP and TEVATRON data]

Motivation

The SM has deficiencies. Many open questions:

_ ...

- What is the origin of the mass spectrum?
- What is really the Higgs?
- Are the fundamental forces unified?
- What is the dark matter?
- Why is there matter-antimatter asymmetry?

_ ...

Possible answers in physics Beyond the Standard Model

Supersymmetry, GUT, Extra Dimensions, String Theory, ...

Unification of all forces of Nature \rightsquigarrow include Gravity around $M_{Plank} \simeq 10^{19} \text{ GeV}$.

Difficulty: graviton has spin=2 while the weak gauge bosons have spin=1.

Unification of all forces of Nature \rightsquigarrow include Gravity around $M_{Plank} \simeq 10^{19} \text{ GeV}$.

- Difficulty: graviton has spin=2 while the weak gauge bosons have spin=1.
- Unification of spin 2 and spin 1 gauge fields within supersymmetry algebra

Unification of all forces of Nature \rightsquigarrow include Gravity around $M_{Plank} \simeq 10^{19} \text{ GeV}$.

- Difficulty: graviton has spin=2 while the weak gauge bosons have spin=1.
- Unification of spin 2 and spin 1 gauge fields within supersymmetry algebra
 SUSY generators:

 $Q \mid boson > = \mid fermion > \quad Q \mid fermion > = \mid boson >$

 \Rightarrow a partial unification of matter(fermions) with forces (bosons) naturally achieved.

Unification of all forces of Nature \rightsquigarrow include Gravity around $M_{Plank} \simeq 10^{19} \text{ GeV}$.

- Difficulty: graviton has spin=2 while the weak gauge bosons have spin=1.
- Unification of spin 2 and spin 1 gauge fields within supersymmetry algebra
- SUSY Models [Wess, Zuminno '74]:
 - Number of bosonic and fermionic degrees of freedom are equal.
 - Associate known bosons with new fermions.
 - Associate known fermions with new bosons.

Unification of all forces of Nature \rightsquigarrow include Gravity around $M_{Plank} \simeq 10^{19} \text{ GeV}$.

- Difficulty: graviton has spin=2 while the weak gauge bosons have spin=1.
- Unification of spin 2 and spin 1 gauge fields within supersymmetry algebra
- SUSY Models [Wess, Zuminno '74]:
 - Number of bosonic and fermionic degrees of freedom are equal.
 - Associate known bosons with new fermions.
 - Associate known fermions with new bosons.

- No experimental signature of superpartners until now
- If SUSY exists it must be broken $M_{\rm SUSY} \simeq 1 \text{TeV}$

- No experimental signature of superpartners until now
- If SUSY exists it must be broken $M_{\rm SUSY} \simeq 1 {
 m TeV}$
- Minimal Supersymmetric extension of SM (MSSM)

	Bosons (spin=0)	Bosons(spin=1)	Fermions
Gauge			
		gluon	gluino
		weak	wino, zino
		photon	photino
Matter			
	sleptons		leptons
	squarks		quarks
Higgs			
	Higgses		higgsinos

- SUSY can naturally address some of the basic questions:
 - the hierarchy problem ($M_W \ll M_{GUT}$) become natural
 - dark matter candidate
 - predicts a light Higgs boson !!
 - predicts gauge coupling unification !!
 - predicts SUSY particles at about 1 TeV
 - **9** ...

Higgs boson mass in the MSSM

SM Higgs Search

at present: direct searches

Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹

electroweak precision data: $m_H = 87^{+36}_{-27} \text{ GeV}$

SM Higgs Search

expected soon at the LHC

• the light CP-even Higgs is SM like \Rightarrow same channels to search for

- the light CP-even Higgs is SM like \Rightarrow same channels to search for
- if discovered \Rightarrow its mass is a precision measurement

- the light CP-even Higgs is SM like \Rightarrow same channels to search for
- **\square** if discovered \Rightarrow its mass is a precision measurement

- the light CP-even Higgs is SM like \Rightarrow same channels to search for
- if discovered \Rightarrow its mass is a precision measurement
- Higgs mass is very sensitive to top/stop sector through radiative corrections
 - \Rightarrow the mass of the light Higgs used as a consistency check of the MSSM
- MSSM electroweak precision data + heavy flavour + dark matter:

 $m_h = 110^{+10}_{-8} \pm 3$ (th) GeV

- Exact 1-loop [Chankowski, Pokorski and Rosiek '92], [Brignole '92], [Dabelstein '94]
- 2-loop $\mathcal{O}(\alpha_t \alpha_s, \alpha_t^2, \alpha_b \alpha_s, \alpha_b \alpha_t)$ in effective potential approximation ($p^2 = 0$) [Haber, Hempfling, Hoang '96], [Heinemeyer, Hollik and Weiglein '98], [Degrassi, Slavich, Zwirner '01], [Espinosa and Zang '00], [Brignole, Degrassi, Slavich, Zwirner '02], [Carena et al '00], [Heinemeyer et al '05], [S. Martin '03]
- Momentum-dependent corrections ($p^2 = m_h^2$): 2-loop SUSY-QCD [S.Martin '05]
- 3-loop LL and NLL $O(\alpha_t \alpha_s^2, \, \alpha_t^2 \alpha_s, \, \alpha_t^3)$ [S. Martin '07]

- Exact 1-loop [Chankowski, Pokorski and Rosiek '92], [Brignole '92], [Dabelstein '94]
- P 2-loop $O(\alpha_t \alpha_s, \alpha_t^2, \alpha_b \alpha_s, \alpha_b \alpha_t)$ in effective potential approximation ($p^2 = 0$) [Haber, Hempfling, Hoang '96], [Heinemeyer, Hollik and Weiglein '98], [Degrassi, Slavich, Zwirner '01], [Espinosa and Zang '00], [Brignole, Degrassi, Slavich, Zwirner '02], [Carena et al '00], [Heinemeyer et al '05], [S. Martin '03]
- Momentum-dependent corrections ($p^2 = m_h^2$): 2-loop SUSY-QCD [S.Martin '05]
- **9** 3-loop LL and NLL $\mathcal{O}(\alpha_t \alpha_s^2, \, \alpha_t^2 \alpha_s, \, \alpha_t^3)$ [S. Martin '07]
- Missing contributions: $\delta m_h^{
 m th} \simeq 3-5\,{
 m GeV}$ [G. Degrassi et al '02], [Allanach et al '04]
 - full 2-loop corrections
 - dominant 3-loop corrections

- Exact 1-loop [Chankowski, Pokorski and Rosiek '92], [Brignole '92], [Dabelstein '94]
- P 2-loop $O(\alpha_t \alpha_s, \alpha_t^2, \alpha_b \alpha_s, \alpha_b \alpha_t)$ in effective potential approximation ($p^2 = 0$) [Haber, Hempfling, Hoang '96], [Heinemeyer, Hollik and Weiglein '98], [Degrassi, Slavich, Zwirner '01], [Espinosa and Zang '00], [Brignole, Degrassi, Slavich, Zwirner '02], [Carena et al '00], [Heinemeyer et al '05], [S. Martin '03]
- Momentum-dependent corrections ($p^2 = m_h^2$): 2-loop SUSY-QCD [S.Martin '05]
- **9** 3-loop LL and NLL $\mathcal{O}(\alpha_t \alpha_s^2, \alpha_t^2 \alpha_s, \alpha_t^3)$ [S. Martin '07]
- Missing contributions: $\delta m_h^{
 m th} \simeq 3-5\,{
 m GeV}$ [G. Degrassi et al '02], [Allanach et al '04]
 - full 2-loop corrections
 - dominant 3-loop corrections
- 3-loop SUSY-QCD corrections: $\delta m_h^{
 m th} \simeq 50 \, {
 m MeV}$ [R. Harlander, P.Kant, L. M., M. Steinhauser '08]

MSSM: SUSY \Rightarrow two free parameters: $\tan \beta = v_2/v_1$, $M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$

MSSM: SUSY \Rightarrow two free parameters: $\tan \beta = v_2/v_1$, $M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$ CP-even Higgs $\phi_{1,2}$:

$$\mathcal{M}_{H,\text{tree}}^2 = \frac{\sin 2\beta}{2} \times \left(\begin{array}{cc} M_Z^2 \cot\beta + M_A^2 \tan\beta & -M_Z^2 - M_A^2 \\ -M_Z^2 - M_A^2 & M_Z^2 \tan\beta + M_A^2 \cot\beta \end{array} \right)$$

MSSM: SUSY \Rightarrow two free parameters: $\tan \beta = v_2/v_1$, $M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$ CP-even Higgs $\phi_{1,2}$:

$$\mathcal{M}_{H,\text{tree}}^2 = \frac{\sin 2\beta}{2} \times \left(\begin{array}{cc} M_Z^2 \cot\beta + M_A^2 \tan\beta & -M_Z^2 - M_A^2 \\ -M_Z^2 - M_A^2 & M_Z^2 \tan\beta + M_A^2 \cot\beta \end{array} \right)$$

Higher order corrections

$$\mathcal{M}_{H}^{2} = \mathcal{M}_{H,\text{tree}}^{2} - \begin{pmatrix} \hat{\Sigma}_{\phi_{1}} & \hat{\Sigma}_{\phi_{1}\phi_{2}} \\ \hat{\Sigma}_{\phi_{1}\phi_{2}} & \hat{\Sigma}_{\phi_{2}} \end{pmatrix}$$

 $\hat{\Sigma}_{\phi_i} = \text{renormalized self-energies}$

MSSM: SUSY \Rightarrow two free parameters: $\tan \beta = v_2/v_1$, $M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$ CP-even Higgs $\phi_{1,2}$:

$$\mathcal{M}_{H,\text{tree}}^2 = \frac{\sin 2\beta}{2} \times \left(\begin{array}{cc} M_Z^2 \cot\beta + M_A^2 \tan\beta & -M_Z^2 - M_A^2 \\ -M_Z^2 - M_A^2 & M_Z^2 \tan\beta + M_A^2 \cot\beta \end{array} \right)$$

Higher order corrections

$$\mathcal{M}_{H}^{2} = \mathcal{M}_{H,\text{tree}}^{2} - \begin{pmatrix} \hat{\Sigma}_{\phi_{1}} & \hat{\Sigma}_{\phi_{1}\phi_{2}} \\ \hat{\Sigma}_{\phi_{1}\phi_{2}} & \hat{\Sigma}_{\phi_{2}} \end{pmatrix}$$

 $V_{\rm eff}$ -approximation: $p^2 = 0 \Rightarrow \hat{\Sigma}_i(0) = \Sigma_i(0) - \delta V_i$

MSSM: SUSY \Rightarrow two free parameters: $\tan \beta = v_2/v_1$, $M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$ CP-even Higgs $\phi_{1,2}$:

$$\mathcal{M}_{H,\text{tree}}^2 = \frac{\sin 2\beta}{2} \times \left(\begin{array}{cc} M_Z^2 \cot\beta + M_A^2 \tan\beta & -M_Z^2 - M_A^2 \\ -M_Z^2 - M_A^2 & M_Z^2 \tan\beta + M_A^2 \cot\beta \end{array} \right)$$

Higher order corrections

$$\mathcal{M}_{H}^{2} = \mathcal{M}_{H,\text{tree}}^{2} - \begin{pmatrix} \hat{\Sigma}_{\phi_{1}} & \hat{\Sigma}_{\phi_{1}\phi_{2}} \\ \hat{\Sigma}_{\phi_{1}\phi_{2}} & \hat{\Sigma}_{\phi_{2}} \end{pmatrix}$$

 $V_{\rm eff}$ -approximation: $p^2 = 0 \Rightarrow \hat{\Sigma}_i(0) = \Sigma_i(0) - \delta V_i$

 $\Sigma_i(0) =$ bare self-energies

 δV_i = Higgs potential counterterms

MSSM: SUSY \Rightarrow two free parameters: $\tan \beta = v_2/v_1$, $M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$ CP-even Higgs $\phi_{1,2}$:

$$\mathcal{M}_{H,\text{tree}}^2 = \frac{\sin 2\beta}{2} \times \left(\begin{array}{cc} M_Z^2 \cot\beta + M_A^2 \tan\beta & -M_Z^2 - M_A^2 \\ -M_Z^2 - M_A^2 & M_Z^2 \tan\beta + M_A^2 \cot\beta \end{array} \right)$$

Higher order corrections

$$\mathcal{M}_{H}^{2} = \mathcal{M}_{H,\text{tree}}^{2} - \begin{pmatrix} \hat{\Sigma}_{\phi_{1}} & \hat{\Sigma}_{\phi_{1}\phi_{2}} \\ \hat{\Sigma}_{\phi_{1}\phi_{2}} & \hat{\Sigma}_{\phi_{2}} \end{pmatrix}$$

 V_{eff} -approximation: $p^2 = 0 \Rightarrow \hat{\Sigma}_i(0) = \Sigma_i(0) - \delta V_i$

Approximations:

Approximations:

Computation of $\hat{\Sigma}_{\phi_{ij}}(0)$ at 3-loops:

Approximations:

Computation of $\hat{\Sigma}_{\phi_{ij}}(0)$ at 3-loops:

1-loop:

Approximations:

Computation of $\hat{\Sigma}_{\phi_{ij}}(0)$ at 3-loops:

2-loops:

Approximations:

Computation of $\hat{\Sigma}_{\phi_{ij}}(0)$ at 3-loops:

3-loops:

Approximations:

Computation of $\hat{\Sigma}_{\phi_{ij}}(0)$ at 3-loops:

- ho \simeq 28.000 diagrams
- Computer programs: QGRAF, PERL, FORM, MINCER, MATAD, EXP, ...
 [Noguiera; Vermaseren; Harlander; Larin, Tkachov; Steinhauser; Seidensticker, Harlander; ...]

Approximations:

Computation of $\hat{\Sigma}_{\phi_{ij}}(0)$ at 3-loops:

- ho \simeq 28.000 diagrams
- Computer programs: QGRAF, PERL, FORM, MINCER, MATAD, EXP,
 [Noguiera; Vermaseren; Harlander; Larin, Tkachov; Steinhauser; Seidensticker, Harlander; ...]
- Asymptotic expansion ~> 3-loop tadpole integrals ~> MATAD

Numerical Results (no stop-mixing)

Input SM parameters: $\mu = M_t = 172.4 \text{ GeV}$ $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$ $M_Z = 91.1876 \text{ GeV}$ $\alpha_s^{(5)}(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926$ MSSM parameters: $M_A = 1 \text{ TeV}$ $\tan \beta = 40$; $A_t = 0$ $M_{\tilde{t}_2} = M_{\tilde{t}_1} = M_{\tilde{g}} = M_{\text{SUSY}}$

OS-scheme

$$\Delta M_h^{(n)} \equiv M_h^{(n-\text{loop})} - M_h^{\text{tree}}$$
MSSM parameters:

Input SM parameters: $\mu = M_t = 172.4 \text{ GeV}$ $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$ $M_Z = 91.1876 \text{ GeV}$ $\alpha_s^{(5)}(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926$ $M_A = 1 \text{ TeV}$ $\tan \beta = 40$; $A_t = 0$ $M_{\tilde{q}} = 2 \text{ TeV}$ $M_{\tilde{t}_2} = M_{\tilde{t}_1} = M_{\tilde{g}} = M_{\rm SUSY}$

MSSM parameters:

Input SM parameters: $\mu = M_t = 172.4 \text{ GeV}$ $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$ $M_Z = 91.1876 \text{ GeV}$ $\alpha_s^{(5)}(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926$ $M_A = 1 \text{ TeV}$ $\tan \beta = 40$; $A_t = 0$ $M_{\tilde{q}} = 2 \text{ TeV}$ $M_{\tilde{t}_2} = M_{\tilde{t}_1} = M_{\tilde{g}} = M_{\rm SUSY}$

Input SM parameters:

MSSM parameters:

$$\begin{split} \mu &= M_t = 172.4 \ \text{GeV} \quad G_F = 1.16637 \times 10^{-5} \ \text{GeV}^{-2} \\ M_Z &= 91.1876 \ \text{GeV} \quad \alpha_s^{(5)}(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926 \\ M_A &= 1 \ \text{TeV} \quad \tan \beta = 40 \quad ; \quad A_t = 0 \quad M_{\tilde{q}} = 2 \ \text{TeV} \\ M_{\tilde{t}_2} &= M_{\tilde{t}_1} = M_{\tilde{g}} = M_{\text{SUSY}} \end{split}$$

$$\Delta M_h^{(n)} \equiv M_h^{(n-\text{loop})} - M_h^{\text{tree}}$$

Input SM parameters: $\mu = M_t = 172.4 \text{ GeV}$ $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$ $M_Z = 91.1876 \text{ GeV}$ $\alpha_s^{(5)}(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926$ $M_A = 1 \text{ TeV} \qquad \tan \beta = 40 \qquad ; \qquad A_t = 0 \qquad M_{\tilde{q}} = 2 \text{ TeV}$ MSSM parameters: $M_{\tilde{t}_2} = M_{\tilde{t}_1} = M_{\tilde{g}} = M_{\rm SUSY}$

$$\Delta M_h^{(n)} \equiv M_h^{(n-\text{loop})} - M_h^{\text{tree}}$$

$$M_{
m SUSY} = 0.3 - 1 \text{ TeV}$$
 : $\Delta M_h^{(3)} \simeq 500 \text{ MeV}$

Input SM parameters:	$M_t = 172.4 \text{ GeV}$ $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$				
	$M_Z = 91.1876$ (GeV $\alpha_s^{(5)}(M)$	$(I_Z) =$	$0.1189 \Rightarrow \alpha_s$	$(M_t) = 0.0926$
MSSM parameters:	$M_A = 1 \text{ TeV}$	$\tan\beta = 40$;	$A_t = 0$	$M_{\widetilde{q}} = 2 \text{ TeV}$

Input SM parameters: $M_t = 172.4 \text{ GeV}$ $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$ $M_Z = 91.1876 \text{ GeV}$ $\alpha_s^{(5)}(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926$ MSSM parameters: $M_A = 1 \text{ TeV}$ $\tan \beta = 40$; $A_t = 0$ $M_{\tilde{q}} = 2 \text{ TeV}$

Theoretical uncertainties : $\delta \Delta M_h^{(3)} \simeq 35 \text{ MeV}$

Input SM parameters:	$M_t = 172.4 \text{ GeV}$ $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$					
	$M_Z = 91.1876 \; {\rm GeV}$	$\checkmark \qquad \alpha_s^{(5)}(M)$	$_{Z}) = 0.1$	$1189 \Rightarrow \alpha_s(.$	$M_t) = 0.0926$	
MSSM parameters:	$M_A = 1 \text{ TeV}$	$\tan\beta = 40$;	$A_t = 0$	$M_{\tilde{q}} = 2 \; \mathrm{TeV}$	
Theoretical uncertainties : $\delta \Delta M_h^{(3)} \simeq 35 \text{ MeV}$						
Parametric uncertainties	: dominated by	dominated by M_t				
	$\delta\Delta M_t^{\rm LHC}\simeq 1$	$-2 \text{ GeV} \Rightarrow$	$\delta \Delta M$	$I_h \simeq 1 - 2$ (GeV	

Input SM parameters:	$\mu = M_t = 172.4$ (GeV $G_F = 1$	1.1663	$7 imes 10^{-5}$ Ge	V^{-2}
	$M_Z = 91.1876 \; {\rm GeV}$	$\checkmark \qquad \alpha_s^{(5)}(N)$	$I_Z) =$	$0.1189 \Rightarrow \alpha_s$	$_{s}(M_{t}) = 0.0926$
MSSM parameters:	$M_A = 1 \text{ TeV}$	$\tan\beta = 40$	•	$A_t = 0$	$M_{\widetilde{q}} = 2 \text{ TeV}$

Input SM parameters: $\mu = M_t = 172.4 \text{ GeV}$ $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$ $M_Z = 91.1876 \text{ GeV}$ $\alpha_s^{(5)}(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926$ MSSM parameters: $M_A = 1 \text{ TeV}$ $\tan \beta = 40$; $A_t = 0$ $M_{\tilde{q}} = 2 \text{ TeV}$

Renormalization scheme dependence:

OS

DR

Input SM parameters: $\mu = M_t = 172.4 \text{ GeV}$ $G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2}$ $M_Z = 91.1876 \text{ GeV}$ $\alpha_s^{(5)}(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926$ MSSM parameters: $M_A = 1 \text{ TeV}$ $\tan \beta = 40$; $A_t = 0$ $M_{\tilde{q}} = 2 \text{ TeV}$

Sensitivity to M_t renormalization scheme :

 m_t in DR-scheme: TSIL [S. Martin '05]

Input SM parameters:

MSSM parameters:

$$\begin{split} \mu &= M_t = 172.4 \ \text{GeV} \quad G_F = 1.16637 \times 10^{-5} \ \text{GeV}^{-2} \\ M_Z &= 91.1876 \ \text{GeV} \qquad \alpha_s^{(5)}(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926 \\ M_A &= 1 \ \text{TeV} \qquad \tan \beta = 40 \ ; \qquad M_{\tilde{q}} = 2 \ \text{TeV} \\ m_{\tilde{t}_2}(\mu) &= 1 \ \text{TeV} \qquad m_{\tilde{t}_1}(\mu) = m_{\tilde{g}}(\mu) = 0.5 \ \text{TeV} \end{split}$$

Input SM parameters:

 μ

MSSM parameters:

$$\begin{split} \mu &= M_t = 172.4 \text{ GeV} \quad G_F = 1.16637 \times 10^{-5} \text{ GeV}^{-2} \\ M_Z &= 91.1876 \text{ GeV} \qquad \alpha_s^{(5)}(M_Z) = 0.1189 \Rightarrow \alpha_s(M_t) = 0.0926 \\ M_A &= 1 \text{ TeV} \qquad \tan \beta = 40 \ ; \qquad M_{\tilde{q}} = 2 \text{ TeV} \\ m_{\tilde{t}_2}(\mu) &= 1 \text{ TeV} \qquad m_{\tilde{t}_1}(\mu) = m_{\tilde{g}}(\mu) = 0.5 \text{ TeV} \\ A_t &= 0 \ : \pm 2 \text{ TeV} \ ; \qquad \Delta M_h^{(3)} = 0.5 - 1.5 \text{ GeV} \end{split}$$

DR scheme

Conclusions

- m_h to 3-loop accuracy
 - 3-loop effects larger than experimental accuracy expected at LHC & ILC
 - 3-loop corrections stabilize the perturbative series
 - Stop-mixing & large $|A_t|$: $\Delta M_h^{(3)} \simeq 1.5 \text{ GeV}$

- JoDo:
 - **\square** Computer code to compute m_h for realistic SUSY mass spectrum
 - 3-loop effects due to CP-violation in the MSSM

Coupling constant unification

Open Questions

Grand Unification

Gauge symmetry increases with energy [Georgi, Quinn, Weinberg '74]

	Low energy		\Rightarrow	High energy
$SU_c(3)\otimes$	$SU_L(2)\otimes$	$U_Y(1)$	\Rightarrow	G_{GUT}
gluons	W, Z	photon	\Rightarrow	gauge bosons
quarks	leptons		\Rightarrow	fermions
g_3	g_2	g_1	\Rightarrow	g_{GUT}

Grand Unification

Gauge symmetry increases with energy [Georgi, Quinn, Weinberg '74]

	Low energy		\Rightarrow	High energy
$SU_c(3)\otimes$	$SU_L(2)\otimes$	$U_Y(1)$	\Rightarrow	G_{GUT}
gluons	W, Z	photon	\Rightarrow	gauge bosons
quarks	leptons		\Rightarrow	fermions
g_3	g_2	g_1	\Rightarrow	g_{GUT}

Low energy interactions = branches of the unique interaction of a simple gauge group.

$$lpha_i \equiv g_i^2/4\pi$$
: $lpha_1(M_Z) = 0.017$,
 $lpha_2(M_Z) = 0.034$,
 $lpha_3(M_Z) = 0.118$,
 $M_Z = 91.1876$ GeV.

MSSM and LEP data

[Amaldi, Furstenau, de Boer] [Langacker, Luo] [Ellis, Kelley, Nanopoulos]

- Gauge Coupling unification within SM excluded by about 12σ .
- Gauge coupling Unification within SUSY GUTs works extremely well: it fits within 3σ the present low energy data.

High precision data

- Computation: common SUSY mass scale $\simeq 1$ TeV 2-loop Renormalization Group Running 1-loop threshold corrections at the weak scale (M_Z)
- **Our aim:** improve theoretical accuracy on $\alpha_s(M_{GUT})$ calculated from $\alpha_s(M_Z)$

 $M_{\rm GUT}$: $\simeq 2 \times 10^{16}$ GeV in SUSY GUTs $\simeq 10^{15}$ GeV in nonSUSY GUTs
 SUSY GUTs:

$$\Delta/\alpha_G \simeq 3 - 4\%, \qquad \alpha_G = \alpha(M_{\rm GUT})$$

 $\begin{array}{ccc} {\scriptstyle \bullet} & M_{\rm GUT} \ : \ \simeq 2 \times 10^{16} \ {\rm GeV} & {\rm in \ SUSY \ GUTs} \\ & \simeq & 10^{15} \ {\rm GeV} & {\rm in \ nonSUSY \ GUTs} \end{array}$

SUSY GUTs:

$$\Delta/\alpha_G \simeq 3 - 4\%, \qquad \alpha_G = \alpha(M_{\rm GUT})$$

GUT threshold effects

1-loop [K.Hagiwara, Y. Yamada '93],[J.Hisano, M. Murayama '94]:

$$\Delta \sim \alpha_G \ln\left(\frac{M_X}{M_{\rm GUT}}\right)$$
 $X =$ gauge bosons, Higgs , . . .

 $M_{\rm GUT}$: $\simeq 2 \times 10^{16}$ GeV in SUSY GUTs $\simeq 10^{15}$ GeV in nonSUSY GUTs
 SUSY GUTs:

$$\Delta/\alpha_G \simeq 3 - 4\%, \qquad \alpha_G = \alpha(M_{\rm GUT})$$

- GUT threshold effects
- Proton decay in GUT:

$$\tau_p = f(\alpha_G, M_{\rm GUT}, M_X, \ldots)$$

Superiment (Super-Kamiokande): $\tau_{p \to e^+\pi^0} > 5. \times 10^{33}$ yrs (at 90% CL)

 $M_{\rm GUT}$: $\simeq 2 \times 10^{16}$ GeV in SUSY GUTs $\simeq 10^{15}$ GeV in nonSUSY GUTs
 SUSY GUTs:

$$\Delta/\alpha_G \simeq 3 - 4\%, \qquad \alpha_G = \alpha(M_{\rm GUT})$$

- GUT threshold effects
- Proton decay in GUT:

$$\tau_p = f(\alpha_G, M_{\rm GUT}, M_X, \ldots)$$

Superiment (Super-Kamiokande): $\tau_{p \to e^+\pi^0} > 5. \times 10^{33}$ yrs (at 90% CL)

 \Rightarrow severe constraints on possible local gauge symmetries in GUTs

Running of couplings

Running = variation of coupling strength with the energy.

Quantum Field Theory :

Running of couplings

Running = variation of coupling strength with the energy.

- Quantum Field Theory :
 - Vacuum is a dynamical medium full of particle-antiparticle fluctuations.

Running of couplings

Running = variation of coupling strength with the energy.

- Quantum Field Theory :
 - Vacuum is a dynamical medium full of particle-antiparticle fluctuations.
 - Vacuum can screen or anti-screen the gauge charges.
 - Anti-screening gives rise to the asymptotic freedom of strong interactions.

Evolution of the strong coupling

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha_s(\mu) = \beta(\alpha_s)$$

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha_s(\mu) = \beta(\alpha_s)$$

Running in SM: computed up to 4-loop

[v. Ritbergen, Vermaseren, Larin '97], [Czakon '05]

[Harlander, Jones, Kant, L.M., Steinhauser '06], [Jack, Jones, Kant, L.M. '07]

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha_s(\mu) = \beta(\alpha_s)$$

Running in SM: computed up to 4-loop

[v. Ritbergen, Vermaseren, Larin '97], [Czakon '05]

[Harlander, Jones, Kant, L.M., Steinhauser '06], [Jack, Jones, Kant, L.M. '07]

Running in MSSM: computed up to 3-loop

[Jack, Jones, North '96], [Harlander, L.M., Steinhauser (in preparation)]

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha_s(\mu) = \boldsymbol{\beta}(\alpha_s)$$

Running in SM: computed up to 4-loop

[v. Ritbergen, Vermaseren, Larin '97], [Czakon '05]

[Harlander, Jones, Kant, L.M., Steinhauser '06], [Jack, Jones, Kant, L.M. '07]

Running in MSSM: computed up to 3-loop

[Jack, Jones, North '96], [Harlander, L.M., Steinhauser (in preparation)]

1-loop:

Running of α_s

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha_s(\mu) = \boldsymbol{\beta}(\alpha_s)$$

Running in SM: computed up to 4-loop

[v. Ritbergen, Vermaseren, Larin '97], [Czakon '05]

[Harlander, Jones, Kant, L.M., Steinhauser '06], [Jack, Jones, Kant, L.M. '07]

Running in MSSM: computed up to 3-loop

[Jack, Jones, North '96], [Harlander, L.M., Steinhauser (in preparation)]

2-loops:

Running of α_s

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \alpha_s(\mu) = \beta(\alpha_s)$$

Running in SM: computed up to 4-loop
 [v. Ritbergen, Vermaseren, Larin '97], [Czakon '05]
 [Harlander, Jones, Kant, L.M., Steinhauser '06], [Jack, Jones, Kant, L.M. '07]

Running in MSSM: computed up to 3-loop

[Jack, Jones, North '96], [Harlander, L.M., Steinhauser (in preparation)]

- **9** 3-loop β_s in the MSSM
 - $m Imes \simeq 100.000$ diagrams
 - Computer programs: QGRAF, FORM, MINCER, MATAD, EXP,
 [Noguiera; Vermaseren; Larin, Tkachov; Steinhauser; Seidensticker, Harlander; ...]

Effective Field Theory:

Effective Field Theory:

 $\mathcal{L}_{\mathrm{MSSM}}(\alpha_s^{(\mathrm{full})},\ldots) \longrightarrow \mathcal{L}(\alpha_s^{(5)},\ldots)$ at energy μ

"Matching": low energy physics must be unchanged !!

$$\alpha_{s}^{(5)} = \boldsymbol{\zeta}_{s} \alpha_{s}^{(\text{full})}$$

$$\vdots$$

$$\boldsymbol{\zeta}_{s} = \boldsymbol{\zeta}_{s} (\alpha_{s}, M_{\text{SUSY}}, m_{t}, \mu)$$

$$\boldsymbol{\zeta}_{s} = \text{matching coefficient}$$

Effective Field Theory:

 $\mathcal{L}_{\mathrm{MSSM}}(\alpha_s^{(\mathrm{full})},\ldots) \longrightarrow \mathcal{L}(\alpha_s^{(5)},\ldots)$ at energy μ

"Matching": low energy physics must be unchanged !!

$$\alpha_s^{(5)} = \boldsymbol{\zeta}_s \, \alpha_s^{\text{(full)}}$$

$$\vdots$$

$$\boldsymbol{\zeta}_s = \boldsymbol{\zeta}_s (\alpha_s, M_{\text{SUSY}}, m_t, \mu)$$

$$\boldsymbol{\zeta}_s = \text{matching coefficient}$$

- \bullet µ not predicted by theory
- Physical quantities must be independent of μ
- Quantum corrections improve stability

Relate Green functions computed in the full and effective theory.

Matching coefficient independent of external momenta $\Rightarrow p^2 = 0$

- Matching coefficient independent of external momenta $\Rightarrow p^2 = 0$
 - **J**-loop ζ_s in MSSM [Pierce et al '95]

- Matching coefficient independent of external momenta $\Rightarrow p^2 = 0$
 - **9** 1-loop ζ_s in MSSM [Pierce et al '95]
 - **2-loop** ζ_s in MSSM [R. Harlander, L. M., M. Steinhauser '05, '07] [A. Bauer, L. M., J. Salomon '08]

- Matching coefficient independent of external momenta $\Rightarrow p^2 = 0$
 - **1**-loop ζ_s in MSSM [Pierce et al '95]
 - **2-loop** ζ_s in MSSM [R. Harlander, L. M., M. Steinhauser '05, '07] [A. Bauer, L. M., J. Salomon '08]

$$\zeta_s^{(5)} = 1 + \frac{\alpha_s}{\pi} \zeta_{s1}^{(5)} + \left(\frac{\alpha_s}{\pi}\right)^2 \zeta_{s2}^{(5)} + \cdots$$

- Matching coefficient independent of external momenta $\Rightarrow p^2 = 0$
 - 1-loop ζ_s in MSSM [Pierce et al '95]
 - **2-loop** ζ_s in MSSM [R. Harlander, L. M., M. Steinhauser '05, '07] [A. Bauer, L. M., J. Salomon '08]

$$\zeta_s^{(5)} = 1 + \frac{\alpha_s}{\pi} \,\zeta_{s1}^{(5)} + \left(\frac{\alpha_s}{\pi}\right)^2 \,\zeta_{s2}^{(5)} + \cdots$$

$$\begin{split} \zeta_{s1}^{(5)} &= -\frac{1}{6} \ln \frac{\mu^2}{m_t^2} - \ln \frac{\mu^2}{\tilde{M}^2}, \qquad \tilde{M} = M_{\text{SUSY}} \\ \zeta_{s2}^{(5)} &= -\frac{215}{96} - \frac{19}{24} \ln \frac{\mu^2}{m_t^2} - \frac{5}{2} \ln \frac{\mu^2}{\tilde{M}^2} + \left[\frac{1}{6} \ln \frac{\mu^2}{m_t^2} + \ln \frac{\mu^2}{\tilde{M}^2}\right]^2 \\ &+ \left(\frac{m_t}{\tilde{M}}\right)^2 \left(\frac{5}{48} + \frac{3}{8} \ln \frac{m_t^2}{\tilde{M}^2}\right) - \frac{7\pi}{36} \left(\frac{m_t}{\tilde{M}}\right)^3 \\ &+ \left(\frac{m_t}{\tilde{M}}\right)^4 \left(\frac{881}{7200} - \frac{1}{80} \ln \frac{m_t^2}{\tilde{M}^2}\right) + \frac{7\pi}{288} \left(\frac{m_t}{\tilde{M}}\right)^5 \end{split}$$

Input: $\alpha_s^{\overline{\mathrm{MS}},(5)}(M_Z) = 0.1189 \pm 0.001$ [Bethke '06], $M_Z = 91.1876~\mathrm{GeV}$,

MSSM parameters: SPS1a' scenario

Sensitivity of $\alpha_s(M_{GUT})$ to SUSY-mass scale:

Bottom quark mass

- (SUSY)GUT models \Rightarrow predictions for $m_{\rm t}, m_{\rm b}/m_{ au}$
- Bottom quark mass in SM: known with 4-loop accuracy $\delta m_b^{\overline{\text{MS}}}(m_b) = 25 \text{ MeV [J. H. Kühn, M. Steinhauser, C. Sturm '07]}$
- **9** Bottom quark in MSSM (models with large $\tan \beta$)
 - SUSY mass spectrum sensitive to bottom Yukawa coupling
 - $Y_b(\mu) \leftrightarrow m^{\overline{\text{DR}}}(\mu)$ affected by large SUSY radiative corrections

$m_b(M_{\rm GUT})$

Input:
$$\alpha_s^{\overline{\text{MS}},(5)}(M_Z) = 0.1189 \pm 0.001$$
 [Bethke '06], $M_Z = 91.1876 \text{ GeV}$,
 $m_b^{\overline{\text{MS}}}(m_b) = 4.164 \pm 0.025 \text{ GeV}$ [Kühn, Steinhauser, Sturm '07]

simplified assumptions for the MSSM parameters

$m_b(M_{\rm GUT})$

Input:

 $lpha_s^{\overline{ ext{MS}},(5)}(M_Z) = 0.1189 \pm 0.001$ [Bethke '06], $M_Z = 91.1876$ GeV, $m_b^{\overline{ ext{MS}}}(m_b) = 4.164 \pm 0.025$ GeV [Kühn, Steinhauser, Sturm '07]

simplified assumptions for the MSSM parameters

[A. Bauer, L. M., J. Salomon '08]

Conclusions

- $\alpha_{\rm s}^{\overline{\rm DR}}(M_{\rm GUT})$
 - In the 3-loop effects comparable with the experimental accuracy for α_s
 - $\alpha_{\rm s}(M_{
 m GUT})$ very sensitive to SUSY-mass scale
- $m_b^{\overline{\text{DR}}}(M_{\text{GUT}})$
 - MSSM with large $\tan \beta$: **3-loop** effects reach up to 30%

- Jodo:
 - combine: 3-loop running analysis for the strong sector
 - known 2-loop running for the electroweak sector
 - extend analysis to SUSY-GUT models

"With the LHC, we will expand the frontiers of fundamental physics.

... We will learn whether existing indications for unification and supersymmetry have been Nature teaching us or Nature teasing us."

[Franck Wilczek, SUSY'07]