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Black hole entropy in (3+1) dimensions  Sgy = E ~ L2M}2) scales like the entropy of a 3d QFT
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—> gravity has the same number of d.o.f. as a quantum theory in one lower number of dimensions
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['he holographnic principle
Black hole entropy in (3+1) dimensions  Sgy = 1. L2M}2) scales like the entropy of a 3d QFT
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Holography in asymptotically flat spacetimes?

] — infinity of " infrared” symmetries in 3+1 dimensions ~ symmetries of 2d CFT
Outline

l — related to observables, such as gravitational memory effects

— rich vacuum structure — observables beyond quantized linearized metric perturbation (graviton)

(?

Short distances < > Long distances




Asymptotically flat spacetimes (4d)

- Gauge fix: g, = g,, = 0 (radial propagation of GW)

0,det (r~?g,5) = 0 (spherical wavefronts) [BBMS '62]

—  ds? = e?’Vdu? — 2e?’dudr + gAB(dxA — Uu)(dx® — UBdu)




Asymptotically flat spacetimes (4d)

- Gauge fix: g, = g,, = 0 (radial propagation of GW)

0,det (r~?g,5) = 0 (spherical wavefronts) [BBMS '62]
u=1t—r
j+
x = (z,2) —  ds? = e?’Vdu? — 2e?’dudr + gAB(dxA — U%du)(dx® — UPdu)
\Cb - Solve the Einstein equations
-

v=1I+r
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Asymptotically flat spacetimes (4d)

¥ =(z,2)

- Gauge fix: g, = g,, = 0 (radial propagation of GW)

0,det (r~?g,5) = 0 (spherical wavefronts) [BBMS '62]

—  ds? = e?’Vdu? — 2e?’dudr + gAB(dxA — U%du)(dx® — UPdu)

-+ Solve the Einstein equations

- Impose boundary conditions:

— allow for gravitational waves (not too fast fall-off in 7~ 1)

— finite asymptotic charges (energy, angular momentum, ...)

= asymptotic expansion of V, g, U* and g, inr~!
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Asymptotically flat spacetimes (4d)

1
Expand G, =R, — Eg””R = 0 (no matter) in powers of r~!. ds® = e?Vdu? — 2e*’dudr + g, x(dx* — U du)(dx® — UPdu)
_ AB _
G,=0 @ O(0™): gp=ryp+rCp+ -+ — O(r=?) Transverse traceless d.of. (free data)
Rlyl K 2M 2 | -
V=-— — + — + Or™) Bondi mass aspect (ADM mass - radiation)
A 1 BA 2 A 1 AB N C —4
Us = - ﬁDBC =33 N* — EC D=Cgc ) + O(r™) Angular momentum aspect

G.=Gu=G=0 @ O : time evolution equations for M, N* and T, eg.

oM = ZDADBNAB — gNABNAB [flux-balance law for Bondi mass aspect]



-+ Analysis increasingly tedious at subleading orders in r—

Towers of symmetries

1

- Simplification in the Newman-Penrose formalismm — non-trivial components of the gravitational field encoded in
the Weyl tensor components:
\PO — C//wpofﬂmyfpma = Cfmfm {f, n,m, n_”l} null frame:

\Ijl — Cfnfm’ lP2 - = Cfmn'm’ lPB’ lI14 Sab = ~ fanb - nafb T mamb T mbma
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- Simplification in the Newman-Penrose formalismm — non-trivial components of the gravitational field encoded in

the Weyl tensor components:
\PO — C//wpafﬂmyfpma = Cfmfm {f, n,m, n_’l} null frame:
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Leading components ¥ of ¥;in a r~! expansion are 4d Lorentz primaries at retarded time u = 0:
QY‘PZ(.O) = (YAﬁA + ho,Y* + B@ZYZ)‘PZ(.O), 1 =0,1,2 [Freidel, Pranzetti '21]

For Y* e {1,2,z%}, Yie{l1,77%), & =Y, + - generate 4d Lorentz transformations ~ 2d global conformal transformations



Towers of symmetries

A=h+h s=h—h
M- M =M+ %CABNAB Re¥( =/ = Q, 3 0
Ny = Fa=- YO =m' 7, = 0 3 :
Tip— T 4= ‘Pg)) = m*mPT ., = 0, 3 2

[Freidel, Pranzetti '21]

INn terms of the Newman-Penrose variables, the flux balance laws become:

1 1
d@ 1 + Q_==—DN, Q,=—0,N
\Y — D@S_l I ( 2 S) C@S_z, ¢ = 0,1,2 2 2

u N = m*mBo, C,;




Quantization

(1 + )

C@S—Z ’

s =0,1,2

- C,N are canonically conjugate variables:

{Nu,z,7),Cu’,7.,7)} = 162G(u — u)6?(z — 7)

 Flux-balance laws impose a constraint on asymptotic states (phase space)

[Ashtekar * 82; lyer, Wald, Zoupas '92]
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Charge prackets
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Charge prackets

de 1+
s = D@+ . Dew . s=012

- Solve recursion relations to express Q(u, z,Z) interms of N, C = lm Q(N,C] = ¢(z,2) + divergentAerms for s > 1
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Qg = [ d*zf(z,7)qy(z,Z7) and Qg = J d*zY(z,7)q,(z,Z7) obey the 4d 10, O} = Ope )
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[Barnich, Troessaert 2011]

eBMS generators: & = f(z,2)0, + Y(z,2)0, + -

Superrotations
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Physical implication [: gravitational memory

<< n

Net relative displacement
Al /\/\/V e

\/ \j Vl 5 between asymptotic observers

|
|

_ _ 1 1
Oy = [52 d’2f(2, 9027 n (D7AC% + D:ACT) — n JduNZZNZZ

Qsoft_J 422 1(z Z)l (D7AC%+ h.c.) generates the transformation:
ST — Y Z T .

SZ

C.(u,2,7) = C,(u,2,Z) + D7 f(z,7)
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Physical implication II: soft graviton theorem

*g-priori supertranslations act independently at #*

dp (2,2) - antipodal matching = supertranslations are a symmetry of scattering:
|

4o (2, Z) use the constraints under the assumption that Q, vanish at 3

—> charges are conserved in time, so they should commute with S-matrix

1 1 .
do < 7 (D7AC* + D:ACE) — " [duNZZNZZ (out|gy§ — S¢qq |in) =0

Zero energy graviton
n ppHpVsT
PiPi¢€
& Iim — Z i X +@(q0) [Weinberg '65; Strominger et. al “14]

q—0 —1 Pi 4




Imply new soft theorems:

Tower of soft theorems

@, (1 + 5)
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- conservation of superrotation charge g; = subleading soft graviton theorem

[Cachazo, Strominger "14]

- conservation of g, = sub-subleading soft graviton theorem

[Freidel, Pranzetti, A.R. '21]



Imply new soft theorems:

Tower of soft theorems

(1+5)

- conservation of superrotation charge g; = subleading soft graviton theorem

[Cachazo, Strominger "14]

- conservation of g, = sub-subleading soft graviton theorem

[Freidel, Pranzetti, A.R. '21]

+conservation of g, § > 3 == tower of (sub)’- leading soft graviton theorems

[Freidel, Pranzetti, A.R. '22]

— Z a)”S(”)(pi) X + loop + other corrections



Tower of soft theorems

CQ._,+ -,

* g, generate a wy_ ., algebra on the gravitational phase space:
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quadratic components

+conservation of g, § > 3 == tower of (sub)’- leading soft graviton theorems

[Freidel, Pranzetti, A.R. '22]
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— Z a)”S(”)(pl) X + loop + other corrections
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Tower of soft theorems

CQ._,+ -,

* g, generate a wy_ ., algebra on the gravitational phase space:

— | T~

Bracket of linear and
{4,(2), g} = (s + Dg'),_ (@D,6P(z—2) = (' + 1)q'),_ WDV (z—2))

S+S

quadratic components

+conservation of g, § > 3 == tower of (sub)’- leading soft graviton theorems

/ ° °
. [Freidel, Pranzetti, A.R. '22]
All orders in @ ~

graviton! — Z 0"S"(p,) X + loop + other corrections




From IR to UV and back
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- s > 2 charges are related to ¥, components to higher orders in a »~! expansion;

inear components = multipole moments of the gravitational field [Compere, Oliveri, Seraj, 22]
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G =G =Gap=0 @ 007 = {4,2.9)} PV = s+ gV, @D,60(—2) = (s'+ gV, @D6P—2). s+5 <3
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- s > 2 charges are related to ¥, components to higher orders in a »~! expansion;

inear components = multipole moments of the gravitational field [Compere, Oliveri, Seraj, 22]

- g, from increasingly subleading terms in the collinear expansion of two conformal primary gravitons:

(Zla 21)
n+1

<
GX_(Zl)G (ZZ) ~ — EZ_ 2 B(Zhl +14+n 2h2_,_ 1) 12 an A (Zz) + @(le
12 =0

(Zza Zz)
A =1—s: (sub)’-leading soft mode,  ¢,(z,Z) ~ Res,_;_,T*Gr(z,2)

[Guevara, Himwich, Pate, Strominger "21]



From IR to UV and back

subleading term in z;, ~ long-distance effect in CFT, < > subleading term in 7~ ! ~ short-distance effect in 4d AFS

Seems to resonate with UV-IR relation in AdS/CFT?

Ad gravity picture - s > 2 charges are related to ¥, components to higher orders in a »~! expansion;

inear components = multipole moments of the gravitational field [Compere, Oliveri, Seraj, "22]

- ¢, from increasingly subleading terms in the collinear expansion of two conformal primary gravitons:

(Zlazl)
—— ++ Zi/lg_l n
GA (Zl)G (ZZ) ~ = ZZ_U%B(Zhl + 1 + n 2h2_|_ + 1 n. a G 1+A2(Zz)l+ @(le
2d CFT picture )
; | (Zza Zz)
A =1—s: (sub)’-leading soft mode,  ¢,(z,7) ~ Resy_;_,0*Gr (2, 2)

[Guevara, Himwich, Pate, Strominger "21]



Quantum spacetime tluctuations?

- ¢, and correlators thereof may capture quantum features of spacetime

- Leading soft sector:  C.. = —2DC(z,7) + D*N(z,2)O(u — u;)

C (Goldstone mode) qg"ft (memory mode)  are canonically paired
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n A
Shares similarities with area operator whose fluctuations (0] AQ; | 0) o —> seem to be [He, A.R., Zurek "24]
pP



Outlook

- Infrared sector of gravity in 3+1-dimensions is very rich:

— infinite-dimensional asymptotic symmetry algebra [eBMS]

— modes of graviton to all orders in a low energy expansion ~ higher-spin symmetry on phase space

— phase-space symmetries related to chiral algebras in 2d CFT ~ ——  holography, UV-IR connection?

- Correlators of towers of charges in infinity of gravitational vacua are potentially observables of guantum gravity

— fluctuations in quantum soft BMS charges naively enhanced by IR scale

— can we measure them?
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