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Canonical analysis of classical General Relativity (GR) in
Hamiltonian formulation

Studying Einstein's Eq. = constrained theory

Foliation of space-time:
M =3 x R with
2>+t = const
Induced spatial metric et
hab = gab + nanp ”"I N
Time-evolution vector '
field t? = Nn? + N2

a. .
ek ei; i gabef’ej’ = ny n®: normal vector, N: lapse

) . o function, N?: shift vector.
New covariant derivative
~\ Dav’ = Vav’ + wa’J v’
N——
‘ connection

1-form
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Generalization of the Einstein-Hilbert action: Holst action
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Generalization of the Einstein-Hilbert action: Holst action

1
S=o- / d*x |dete| ef e} Py F1i' (w)
where
T (Y R T —
P KL—6K5L_%€ kL,  K&=8rG,
FPw) = do” + 0™ nwk?,  wl =e"V.ep

From variation of the action w.r.t. wLJ,

)
~\ PKL D, (]det e\e}[?eLb]) =0

b
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Using the parametrization
ef =& —nn
where £/n, = Ef'n’ =0.

Imposing the time gauge:
e =n" = nl =6}

Figure: Time-gauge: & (green) is the frame
after the gauge fixing.
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Using the parametrization
ef =& —n?n

where £n, = Ef’n’ =0.

Imposing the time gauge:
e =n = nl = 5(’) Figure: Time-gauge: & (green) is the frame
after the gauge fixing.

Introducing the following variables

i 0i
K, =uw,,
. 1. .
i i, k
r;= —5€ Kl

Al = BKI 4+ I Ashtekar-Barbero connection
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Vacuum Constraints

After imposing the compatibility condition

< gG[A E] B (A)Ea_ GiijgE;f
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After imposing the compatibility condition

1 1 g
GEIA E] = —=DWE? = Z¢; *KIE]
K

KB
1 apb
G S L Y | k _ 2\ k myen
HOIAE] = 5 B W{ F(A) = (14 )k mak K |
]_ .
* HIAEl = S EPFL(A)
where F1,(A) = 20,A} + &' juALA.
)
Hence
~\ /d3 /\QG—I—NHG—i—NaHG)

\ \Wlth N = Buwd — 1e .
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Covariant derivative in curved space-time (signature (— + ++))
Lo
D,V =9,V + iwa oV

(1

W ) and gamma
R

with o/ = %[’yl,w], Dirac spinors W = (

matrices defined as

0 __ 0 1 i 0 —O'i
T=1 o T\ 0

which satisfy the Clifford algebra {+*,~+"} = —2nH".
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Covariant derivative in curved space-time (signature (— + ++))
Loy
D,V =9,V + iwa oV

(1

W ) and gamma
R

with o/ = %[’}/[,’YJ], Dirac spinors W = <

matrices defined as

0 __ 0 1 i 0 —O'i
T=1 o T\ 0

which satisfy the Clifford algebra {+*,~+"} = —2nH".

— fermionic action in curved space-time

Sk = /d4x]det e|{é (ef@’y’@a\v — ef@y'W) - mW\U}
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Fermionic Field Minimally Coupled to Gravity

o Seir = [d* |dete|{ - efeb Pl FiL(w)

|4 (/V1'D,V - D0/ V) — mvy] |

0S6+F
ol

« From = 0, new compatibility condition:

Ds(|det eleffer’) = 75 + 2 ldetel (e et
1
~ 5 (e~ el )

with J! = U5/ W fermionic axial current

— connection must be modified




New Ashtekar Connection

dSG1F

s = 0 & modified compatibility condition

From

New spin connection

. . K 52 i 10 1 . ik
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New Ashtekar Connection

dSG1F

s = 0 & modified compatibility condition

From

New spin connection

. - 52 A

Modified Ashtekar connection
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Decomposing the space-time as before and imposing the new
compatibility condition

- 1 2
GETFIA E, W, V] = +21f52\/detfu,-
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Decomposing the space-time as before and imposing the new
compatibility condition

GEHFIA E, W, 0] = + %1 f; V/det hJj
HEHFIA E, W, 0] = _ éEf’ (w"DS,A)\U - D;S‘”\U)
- %eijkE,aKng + gEﬁKa"JO + Vdet hm WV
% HSHF[A, E, ¥, U] = HE[A, E] + é (wyngA)w - D,-E,A)\U'yolll>

= gx/det hK:J;

with DYV = 9,W — Al 500, ¥




Issue

Until now the canonical pairs are (AL, Ejb), (W, IT) with

IT = iv/det hUT

In this case, the fermionic symplectic term is

= /d4xﬂﬂl+énﬂ/d4x\w\|}e£ E,a—/d‘*xct(nw)

= Al acquires
an imaginary correction
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Half-Density Fermions

Problem solved by half-density fermions

E=VdethV — 7=t
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Problem solved by half-density fermions
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Problem solved by half-density fermions

€= VdethV — 7 =i¢t

New fermionic symplectic term
© = [ d*x (miéy + mac)
and anti-Poisson brackets
{€a(x), ma(y)}+ = daBd(x — y)
]

N\ | |
\ J =Vdeth) = —iny%ys7'¢
\\ \ 7° = Vdeth J° = —iny0ys5~0¢

Components of the
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Fermionic EOM in Curved Spacetime

Via Euler-Lagrange (E-L) eq. and considering foliation of
space-time

Dirac EOM in curved spacetime
3 1 i can i
(17 = N)[in°DIVE — 5 8K 5] — Nliefy DIV

1 1
+ §€'jkeiaKé’757k5 - §ﬂe}3K575705 —m¢] =0
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Fermionic EOM in Curved Spacetime

Via Euler-Lagrange (E-L) eq. and considering foliation of
space-time

Dirac EOM in curved spacetime
(12 — N*)[in®D{E — 5 3K isic] — Niet DY
+ 56 et ks E — 2 Bet Kol — me] = 0
Via
Substituting & in HC+F and HEHF

Using the anti-Poisson brackets
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Via Euler-Lagrange (E-L) eq. and considering foliation of
space-time

Dirac EOM in curved spacetime
(1 — N)in® DI — 2 pKinsi€] — Nt DYV
+ 56 et ks E — 2 Bet Kol — me] = 0
Via
Substituting & in HC+F and HEHF

Using the anti-Poisson brackets

)
Y — fermionic EOM from Hamiltonian consistent with those from

) \ E-L method

VA






Sen = Sg + S + 5
/d4 |dete| —e, eJ ;ff(w)%— B (ef@v’@aw
U = 1
— iUy \V) - mww} } + / d*x\/—detg (—4g“gbd chFab>
where

~ 1
DV =9,V + —w, Yo W+ igAV
2 2

QED
interaction
) term

~ Fab - (vaAb - vbAa)
\ 7? = V/det hh®n°Fy

M



St 0SF
dw, [ Sw, 1y

Constraints

1
—Z|e|e;"<eK wlt =

photons do not modify
compatibility condition
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St 0SF
dw, [ Sw, 1y

Total constraints:

NGMIA E, W, IT, A, 7] =

Constraints

1
—Z|e|e;}eK wlt =

photons do not modify
compatibility condition

YA, (vawa - \/Mquﬂw)
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\

O0Stan  OSF 1

a_K L photons do not modify
= = ——|elege” - =
dwa¥  Sw, M 4| ek

compatibility condition

Total constraints:

/\gfu”[A’ E7 \U,H, Aa,ﬂ'a] — +At <Va7ra _ @q\lﬂ'\l})
/}_[fu||[/47 E, \U,H, Aa,ﬂ-a] = + \/t?hachbdFCdFab
1

— = h.mmP L gEPALT]
2V det h ab i e

= WA E W T, Ay, 7] = HEHF — VdethgA,J° + Fapr®
with 7' = Wy/'w
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Fermionic field

Via E-L eq., fermionic EOM in curved space-time

(2~ W) 0D — DKy "] — N[iet DYV

1
+ 3¢ et Kinsyhe - ﬁeaK'v A% — mé ]=0

Via Hamiltonian formulation
Substituting ¢ in H™!" and #fu!

Using the anti-Poisson brackets

\\ = fermionic EOM from Hamiltonian consistent with those from
E-L method
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EOM

Photon field
Via E-L eq.

Photonic EOM in curved space-time

vc (gacgbdFad) _ qe[bjl

Substituting g?® = h?® — n?n®

Ve (h*h*F, +2vc<
( 4) det

1
hn[bﬂ°]> —qePT' =0
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Photon field
Via E-L eq.
Photonic EOM in curved space-time
vc ( acgbdFad) — qelbjl

Substituting g?® = h?® — n?n®

1
Ve (h*h* Fag) + 2V ( hn[bwc]) —qefJ' =0

det
Via Hamiltonian formulation

Using photonic Poisson brackets

{Aa(X)a Wb(y)} = 656()( - y)

]
~\ from which | 5l

0A,
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Photon field
Via E-L eq.
Photonic EOM in curved space-time
vc ( acgbdFad) — qe[bjl

Substituting g?® = h?® — n?n®

1
Ve (h*h* Fag) + 2V ( hn[bwc]) —qefJ' =0

det

Via Hamiltonian formulation

Using photonic Poisson brackets

{Aa(X)a 7-rb(y)} = 656()( - y)

]
~\ from which | 5l

\ T A,
\ \:> photonic EOM from Hamiltonian consistent with those from
\ E-L method 16/18
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Parity Transformation

Fermionic contribution to extrinsic curvature

j s 1 T,

kf

a

17/18



Parity Transformation

Fermionic contribution to extrinsic curvature

j s 1 T,
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On constraint hypersurface g,.G+F =0:
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Parity Transformation

Fermionic contribution to extrinsic curvature

j s 1 T,

ki

a

On constraint hypersurface g,.G+F =0:

IPKi ki __KI_E /82 liJO—i~eij
(a+ a)_ a 41+/B2 Bea € jk€;

P (A, + Cl) =T} — 8 (Ki - 3¢ el )
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Fermionic contribution to extrinsic curvature

On constraint hypersurface gf*F =0:

. . 2
P (Ki+ k) =—Ki— = 5 <;eJ0—eJkefJ>

+ 32
P (AL + Cl) = ( - ")

All constraints are invariant

17 /18



Conclusion

+ Modification to GR constraints in QED system
« Consistent results with EOM in curved space-time

© Invariance under parity operator
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Conclusion

+ Modification to GR constraints in QED system
« Consistent results with EOM in curved space-time
© Invariance under parity operator
Future goals
« Polymerization . modification to propagators

« Transition to loop representation

Thank you!
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Consider

t2
5= / L(q, 4)dt
t:

1

0L . oL .
If det | =——=— ) = 0 — Singular system —> p, = —— not all independent
aqmoqgn aqn

Hence, there are some relations
Om(g,p) =0with m=1,... M

that follow from the definition of the momenta.
From the consistency condition

(ZB:[¢maH]+um/[¢m,¢m/]:OHQDkZOWith k=M+1,.. M+ K

with u™ Lagrange multipliers.
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Weak Equality

A function f is weakly equal to a function g
f=g

if f and g are equal on the subspace defined by the primary
constraints ¢, = 0.

"\
s
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A constraint is called * " if its Poisson bracket with all the
constraints €24 vanishes weakly,

Q. Qe ~0; Al=1,.,NY B=1_.N

First class constraints generate gauge transformations.
A constraint that is not first class is called “
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Classical Poisson algebra of field theories is not strictly an
algebra:

{hab(X), pCd(y)} = 5(Ca§g)5(xﬂ y)
To arrive at a well-defined algebra free of infinite coefficients

— smearing
BUT the space of all metrics is hard to control or to equip with
a good measure = consider connection variables (AL, Ejb)

Well-defined quantum analogs:

ho(A) = P exp < / dsaA;T,->

along a curve ¢, with 7; = —%0;, and of the densitized
triad

En(S) ::/gdzyEianafi,

with n? co-normal to the surface and f' Lie algebra-valued

smearing function. a/a
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