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1. Introduction

QuantumGravity and Quantum Information both call for a generalization of the concept
of reference frame, and with it, of reference frame transformations.

In QuantumGravity: Quantum-spacetime reference frames.

The quantum properties of spacetime affect the description of spacetime events.

Quantum groups can define quantum-spacetime reference frame transformations.

In Quantum Information: Quantum-mechanical reference frames.

The quantum properties of the reference frame affect the description of quantum systems.

The (centrally extended) Galilei group is the Lie group of CRF transformations.

QRF transformations also close a Lie group, but different from the Galilei group.

What if a quantum group structure underlies the Lie group of QRF transformations?
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2. QuantumReference Frames
The (1+1) centrally extended Galilei Lie group

• The Lie algebra 𝔤:

[𝑃0, 𝑃1] = 0 , [𝐾, 𝑃0] = 𝑃1 , [𝐾, 𝑃1] = 𝑀 , [𝑀, ⋅] = 0 .

• The Lie group 𝐺 = exp 𝔤:
𝐺 = 𝑒𝜃𝑀 𝑒𝑏𝑃0 𝑒𝑎𝑃1 𝑒𝑣𝐾 .

• The Lie group product 𝐺 = 𝐺′ ⋅ 𝐺″:

𝑒𝜃𝑀 𝑒𝑏𝑃0 𝑒𝑎𝑃1 𝑒𝑣𝐾 = 𝑒𝜃′𝑀 𝑒𝑏′𝑃0 𝑒𝑎′𝑃1 𝑒𝑣′𝐾 ⋅ 𝑒𝜃″𝑀 𝑒𝑏″𝑃0 𝑒𝑎″𝑃1 𝑒𝑣″𝐾 ,

(𝜃, 𝑏, 𝑎, 𝑣) = (𝜃′ + 𝜃″ + 𝑣′𝑎″ + 1
2 𝑣′2𝑏″, 𝑏′ + 𝑏″, 𝑎′ + 𝑎″ + 𝑣′𝑏″, 𝑣′ + 𝑣″) .

• The Lie algebra representation 𝜌 ∶ 𝔤 → End(ℋ):

𝜌(𝑀) = 𝑚 ̂1 , 𝜌(𝑃0) = ̂𝑝2

2𝑚 , 𝜌(𝑃1) = ̂𝑝 , 𝜌(𝐾) = −𝑚 ̂𝑞 + 𝑡 ̂𝑝 ,

with [ ̂𝑞, ̂𝑝] = 𝑖ℏ ̂1.
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2. QuantumReference Frames
CRF transformations

Let 𝑂, 𝑂′ be classical reference frames. Let |Ψ⟩𝐵 ∈ ℋ𝐵 be the quantum state of a system
𝐵 with respect to 𝑂.

A CRF transformation from 𝑂 to 𝑂′ is

̂𝑈 ∶ ℋ𝐵 → ℋ𝐵 ,
|Ψ⟩𝐵 ↦ |Ψ′⟩𝐵 = ̂𝑈 |Ψ⟩𝐵 ,

with ̂𝑈 ∈ 𝒰(ℋ𝐵).

Examples:

• ̂𝑈𝑃1
= 𝑒 𝑖

ℏ 𝑎�̂�𝐵 , with 𝑎 the relative position between 𝑂 and 𝑂′.

• ̂𝑈𝐾 = 𝑒 𝑖
ℏ 𝑣�̂�𝐵 , with 𝑣 the relative velocity between 𝑂 and 𝑂′.
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2. QuantumReference Frames
QRF transformations

Let 𝐴, 𝐵, 𝐶 be quantum systems. We now attach the reference frame 𝑂 to system 𝐶, so
that |Φ⟩𝐴 ⊗ |Ψ⟩𝐵 ∈ ℋ𝐴 ⊗ ℋ𝐵 is the quantum state of the system 𝐴 ⊗ 𝐵 with respect to
𝑂(𝐶).

A QRF transformation from 𝑂(𝐶) to 𝑂′(𝐴) is

̂𝑈 ∶ ℋ𝐴 ⊗ ℋ𝐵 → ℋ𝐶 ⊗ ℋ𝐵 ,
|Φ⟩𝐴 ⊗ |Ψ⟩𝐵 ↦ |Φ′⟩𝐶 ⊗ |Ψ′⟩𝐵 = ̂𝑈(|Φ⟩𝐴 ⊗ |Ψ⟩𝐵) ,

with ̂𝑈 ∈ 𝒰(ℋ𝐴 ⊗ ℋ𝐵).

Extended Galilei transformations:

̂𝑈𝑃1
= 𝑒 𝑖

ℏ ̂𝑞𝐴⊗�̂�𝐵 , ̂𝑈𝐾 = 𝑒
𝑖
ℏ

1
𝑚𝐴

�̂�𝐴⊗�̂�𝐵 ,

with [ ̂𝑞𝐴, ̂𝑝𝐴] = 𝑖𝜅 ̂1𝐴 and [ ̂𝑞𝐵, ̂𝑝𝐵] = 𝑖ℏ ̂1𝐵.

[F. Giacomini, E. Castro-Ruiz, C. Brukner, Nat. Commun. 10(1), 494 (2019)]
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2. QuantumReference Frames
Lie group structure

The Galilei Lie group is lost.

What about the group structure?

We consider the algebra structure on ℋ𝐴 ⊗ ℋ𝐵 and define

̂𝑃𝐴𝐵 = ̂𝑞𝐴 ⊗ ̂𝑃𝐵 , �̂�𝐴𝐵 = 1
𝑚𝐴

̂𝑝𝐴 ⊗ �̂�𝐵 .

Can we close a Lie algebra with them?

The dynamical Lie algebra 𝒟(7) ⊂ 𝔰𝔭(4, ℝ), with 5 more elements:

�̂�𝐴 = 1
2 ( ̂𝑞𝐴 ̂𝑝𝐴 + ̂𝑝𝐴 ̂𝑞𝐴) ⊗ ̂1𝐵 , �̂�𝐵 = ̂1𝐴 ⊗ 1

2 ( ̂𝑞𝐵 ̂𝑝𝐵 + ̂𝑝𝐵 ̂𝑞𝐵) ,

�̂�𝐴 = ̂𝑝2
𝐴

2𝑚𝐴
⊗ ̂1𝐵 , �̂�𝐵 = ̂1𝐴 ⊗ ̂𝑝2

𝐵
2𝑚𝐵

,

̂𝑇 = ̂𝑝𝐴 ⊗ ̂𝑝𝐵 .

The Galilei Lie algebra is recovered as a subalgebra in the limit 𝜅 → 0.

[Á. Ballesteros, F. Giacomini, G. Gubitosi, Quantum 5, 470 (2021)]
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3. Quantum group structure
Preliminaries

Apparently, the dynamical Lie group 𝐷(7) and the Galilei Lie group are unrelated.

What if 𝐷(7) emerges from (a particular limit of) a quantumGalilei group?

• A quantum group 𝐺𝛼:
𝐺𝛼 = 𝑒𝜃⊗𝑀 𝑒𝑏⊗𝑃0 𝑒𝑎⊗𝑃1 𝑒𝑣⊗𝐾 .

• The group structure 𝐺𝛼 = 𝐺′
𝛼 ⋅ 𝐺″

𝛼:

𝑒𝜃⊗𝑀 𝑒𝑏⊗𝑃0 𝑒𝑎⊗𝑃1 𝑒𝑣⊗𝐾 = 𝑒𝜃′⊗𝑀 𝑒𝑏′⊗𝑃0 𝑒𝑎′⊗𝑃1 𝑒𝑣′⊗𝐾 ⋅ 𝑒𝜃″⊗𝑀 𝑒𝑏″⊗𝑃0 𝑒𝑎″⊗𝑃1 𝑒𝑣″⊗𝐾 ,

(𝜃, 𝑏, 𝑎, 𝑣) = (𝜃′ + 𝜃″ + 𝑣′𝑎″ + 1
2 𝑣′2𝑏″, 𝑏′ + 𝑏″, 𝑎′ + 𝑎″ + 𝑣′𝑏″, 𝑣′ + 𝑣″) + 𝒪(𝛼) .

• The quantum algebra 𝑈𝛼(𝔤):

[𝑃0, 𝑃1] = 𝒪(𝛼) , [𝐾, 𝑃0] = 𝑃1 + 𝒪(𝛼) , [𝐾, 𝑃1] = 𝑀 + 𝒪(𝛼) , [𝑀, ⋅] = 𝒪(𝛼) .

In the context of Hopf algebras, there is a canonical element formalizing these properties:
The Hopf algebra dual form.

[Á. Ballesteros, DFS, F. Giacomini, G. Gubitosi, arXiv: 2504.00569 (2025)]
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3. Quantum group structure
A quantumGalilei group with commutative time

The Galilei Lie group admits 26 inequivalent quantum group structures.*

Which one?

We ask 2 requirements based on the structure of QRF transformations:

• The coordinate 𝑏 is a central element.
• The commutator [𝑎, 𝑣] is nonzero.

Any solution? One!

The noncommutative algebra of coordinates of this quantumGalilei group is

[𝜃, 𝑎] = −𝑖𝜅𝛼𝜃 , [𝜃, 𝑣] = 1
2 𝑖𝜅𝛼𝑣2 , [𝑎, 𝑣] = 𝑖𝜅𝛼𝑣 , [𝑏, ⋅] = 0 ,

where:

• 𝛼 is the deformation parameter.
• 𝜅 is the quantization parameter.

It is compatible with the Galilei Lie group composition of coordinates.

*[A. Opanowicz, J. Phys. A 31(41), 8387 (1998)]
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3. Quantum group structure
A quantumGalilei group with commutative time

The Galilei Lie algebra also turns into a quantumGalilei algebra, such that

[𝑃0, 𝑃1] = 0 , [𝐾, 𝑀] = 1
2 𝑖𝜅𝛼𝑒 𝜅

ℏ 𝛼𝑃1 𝑀2 , [𝐾, 𝑃0] = 𝑖ℏ 1 − 𝑒 𝜅
ℏ 𝛼𝑃1

𝜅
ℏ 𝛼 , [𝐾, 𝑃1] = −𝑖ℏ𝑒 𝜅

ℏ 𝛼𝑃1 𝑀 .
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3. Quantum group structure
Phase space realization of the quantumGalilei group

According to the QRF formalism, the quantumGalilei group coordinates are realized in
phase space:

̂𝜃 = 1
4 𝜙( ̂𝑞𝐴𝑒𝛼�̂�𝐴 + 𝑒𝛼�̂�𝐴 ̂𝑞𝐴) , �̂� = 𝑡 , ̂𝑎 = ̂𝑞𝐴 , ̂𝑣 = 𝜙𝑒𝛼�̂�𝐴 ,

with [ ̂𝑞𝐴, ̂𝑝𝐴] = 𝑖𝜅 ̂1𝐴, and 𝜙 with dimensions of velocity.

Note that:

• The coordinate 𝑎 is realized as the position operator ̂𝑞𝐴.

• The coordinate 𝑣 is not realized as the velocity operator ̂𝑣𝐴 = �̂�𝐴
𝑚𝐴

.

At first order in 𝛼,
̂𝑣 ≈ 𝜙(1 + 𝛼𝑚𝐴 ̂𝑣𝐴) ,

and, by taking 𝛼 = 1
𝑚𝐴𝜙 ,

̂𝑣 ≈ ̂𝑣𝐴 + 𝜙 ≡ ̂𝑣′
𝐴 .
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3. Quantum group structure
Phase space realization of the quantumGalilei group

Analogously, the quantumGalilei group generators are realized in phase space:

�̂� = 𝑚𝐵𝑒− 𝜅
2ℏ 𝛼�̂�𝐵 , ̂𝑃0 = 1

𝑚𝐵( 𝜅
2ℏ 𝛼)2 (cosh ( 𝜅

2ℏ 𝛼 ̂𝑝𝐵) − 1) ,

̂𝑃1 = ̂𝑝𝐵 , �̂� = − 1
2 𝑚𝐵 (𝑒 𝜅

2ℏ 𝛼�̂�𝐵 ̂𝑞𝐵 + ̂𝑞𝐵𝑒 𝜅
2ℏ 𝛼�̂�𝐵 ) + 𝑡 ̂𝑝𝐵 ,

with [ ̂𝑞𝐵, ̂𝑝𝐵] = 𝑖ℏ ̂1𝐵.
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3. Quantum group structure
The connection between the dynamical Lie group and the quantumGalilei group

According to the QRF formalism, let us consider the quantumGalilei group element

̂𝐺𝛼 = 𝑒 𝑖
ℏ

̂𝜃⊗�̂� 𝑒 𝑖
ℏ �̂�⊗�̂�0 𝑒 𝑖

ℏ �̂�⊗�̂�1 𝑒 𝑖
ℏ ̂𝑣⊗�̂� ,

and define the operators

�̂�𝛼
𝐴𝐵 ≡ ̂𝜃 ⊗ �̂� , ̂𝑃 𝛼

0 𝐴𝐵 ≡ �̂� ⊗ ̂𝑃0 , ̂𝑃 𝛼
1 𝐴𝐵 ≡ ̂𝑎 ⊗ ̂𝑃1 , �̂�𝛼

𝐴𝐵 ≡ ̂𝑣 ⊗ �̂� .

At first order in 𝛼, with 𝛼 = 1
𝑚𝐴𝜙 , and with ̂𝑝′

𝐴 the physical momentum operator:

�̂�𝛼
𝐴𝐵 = 1

2
𝑚𝐵
𝑚𝐴

(�̂�𝐴 − 𝜅
2ℏ

̂𝑃𝐴𝐵) ,
̂𝑃 𝛼
0 𝐴𝐵 = 𝑡�̂�𝐵 ,
̂𝑃 𝛼
1 𝐴𝐵 = ̂𝑃𝐴𝐵 ,

�̂�𝛼
𝐴𝐵 = �̂�𝐴𝐵 − 𝜅

2ℏ
𝑚𝐵
𝑚𝐴

�̂�𝐵 .

Finally, {�̂�𝛼
𝐴𝐵, ̂𝑃 𝛼

0 𝐴𝐵, ̂𝑃 𝛼
1 𝐴𝐵, �̂�𝛼

𝐴𝐵} closes a higher-dimensional Lie algebra, which is
(isomorphic to) the dynamical Lie algebra 𝒟(7).
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4. Outlook

A quantum group structure underlies the Lie group of QRF transformations.

The dynamical Lie group emerges from (the 1st-order of) a quantumGalilei group.

What about the action of the quantumGalilei group transformations on quantum states?

The Poisson–Lie Galilei group arises when the QRF is in a semiclassical state.

The dynamical Lie group arises when the QRF is in a superposition of semiclassical states.

Conjecture: The all-order quantumGalilei group describes QRF transformations when
the QRF is in a generic quantum state.

A 1st-step toward bridging the quantization of physical reference frames and the
quantization of spacetime.

[Á. Ballesteros, DFS, F. Giacomini, G. Gubitosi, arXiv: 2504.00569 (2025)]
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