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Superluminal neutrinos



Decay Processes of Superluminal Neutrinos

Lorentz-invariance violating (LIV) dispersion relations:

• Energy-independent LIV (n=0) :

E2 = ~p2 (1+ δ) v = 1+ δ/2

• High-energy LIV (n>0) :
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Cohen & Glashow (CG) Result and Later Approaches

� Vacuum pair emission να → ναe
−e+ occurs above a threshold

E > E
(n)

th

.
=
(
4m2

e ∆
−1
(n)

)1/(n+2)

, where ∆(0)
.
= δ, ∆(n6=0)

.
= Λ−n

� [Cohen:2011hx]: For the n = 0 case

ΓCG(E > E
(0)

th
) =

1

14

G2
F

192π3
E5δ3 (no explicit calculation is given)

� [Bezrukov:2011qn], [Carmona:2012tp]: ΓCG results from a

prescription that is not derived from a Lagrangian. A correct

calculation gives:

Γ(n=0)(E � E
(0)

th
) =

17

420

G2
F

192π3
E5δ3

The computation assumes me = 0: it is an asymptotic result only valid

sufficiently above the threshold
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Generalization to high-energy LIV

� [Carmona:2012tp] generalized the VPE decay width of SuL

neutrinos to the n 6= 0 case, through the neutral current only

• This was used by [Stecker:2014oxa] to compare the IceCube

spectrum with LIV predictions

� [Carmona:2022dtp] used theme = 0 approximation to include the

charge current contribution and the neutrino splitting decay process:

Γ
(i)
α,n(E) ≈ K

(i)
α,n

G2
F

192π3
E5+3n ∆3

(n) (i) = {VPE,NSpl}

K
(i)
α,n VPE, α = (µ, τ) VPE, α = e NSpl, α

n = 0 17/420 221/420 0

n = 1 121/1680 1573/1680 22/75

n = 2 81/910 81/70 1422/5005
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KM3-230213A constraints



KM3NeT analysis

� KM3-230213A: EUHE = 220+570
−110 PeV

� n=0 case, upper limit on δ: [KM3NeT:2025mfl]

LΓCG < 10 ⇒ δ < δu.l. =

(
10 · 192π3

KCG · G2
F · E5 · L

)1/3
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Alternative analyses and open issues

[KM3NeT:2025mfl]

• uses an incorrect expression for the decay with Γ

• does not take into account the cosmic expansion

• does not incorporate the VPE threshold in the plot

• only considers the n = 0 scenario

[Satunin:2025uui]

• does not take into account the cosmic expansion

• derives incorrect limits for the n = 1 case

[Yang:2025kfr]

• only studies the n = 2 case

• uses an incorrect expression for the decay with Γ

� Further limitations of all previous studies:

• limits focused on the KM3-230213A event

• they ignore me effects, relevant close to the threshold

• they ignore neutrino flavor effects
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Addressing limitations in previous

approaches



Including cosmic expansion effects

� The survival condition LΓ < 10 can be written as

PSV
n (E, L) = exp

(
− L · Γn(E)

)
> exp(−10)

� With cosmic expansion, this needs to be replaced by

PSV
n (Ed, zs) = exp

(
−

∫ zs
0

dz
Γn
(
(1+ z)Ed

)
(1+ z)H0 h(z)

)
> exp(−10),

with h(z) =
√
Ωm(1+ z)3 +ΩΛ

In the local universe, L = zs/H0. If L � 1017m, neutrinos oscillate several

times during propagation, and we can define amean VPE decay width:

Γ
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(VPE)
n
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F

192π3
E5+3n ∆3

(n) K
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1

3
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)

7



Including cosmic expansion effects

� The survival condition LΓ < 10 can be written as

PSV
n (E, L) = exp

(
− L · Γn(E)

)
> exp(−10)

� With cosmic expansion, this needs to be replaced by

PSV
n (Ed, zs) = exp

(
−

∫ zs
0

dz
Γn
(
(1+ z)Ed

)
(1+ z)H0 h(z)

)
> exp(−10),

with h(z) =
√
Ωm(1+ z)3 +ΩΛ

In the local universe, L = zs/H0. If L � 1017m, neutrinos oscillate several

times during propagation, and we can define amean VPE decay width:

Γ
(VPE)
n (E) ≈ K

(VPE)
n

G2
F

192π3
E5+3n ∆3

(n) K
(VPE)
n =

1

3

(
K

(VPE)
e,n + K

(VPE)
µ,n + K

(VPE)
τ,n

)

7



Including threshold effects

� Threshold effects in the VPE decay width can be encoded in the

function f (n)(x), 0 < x 6 1:

ΓVPEn (E) = KVPE
n

G2
F

192π3
· E5+3n · ∆3

(n) · f
(n)

(
E

Eth

)
where f (n)(1) = 0 and limx→∞ f (n)(x) = 1.

� The function f (n) takes into account a change in the partial decay

widths and in the integration limits. The result is [in preparation]:
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Improved constraints with future

UHE neutrino events



New analysis in the constant-velocity scenario

Curves δ(zs) for fixed detected energy Ed = 1PeV− 10EeV

• The curves are no longer straight lines

• Threshold effects appear when Ed ∼ Eth(δ)

• Cosmic expansion changes slope at high redshift
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New analysis in the constant-velocity scenario

A heat-map plot (Ed, δ, zs) allows to get a limit on δ for a specific Ed
event, depending on its source redshift zs
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Extending the analysis to the energy-dependent case

n = 2 case: curvesΛ(zs) for fixed detected energy Ed
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Extending the analysis to the energy-dependent case

n = 2 case: heat-map plot (Ed,Λ, zs)
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Conclusions and future work



Conclusions

� Many works in the literature still rely on the Cohen & Glashow

(C&G) expression to study LIV-induced superluminal neutrino decay,

overlooking the fact that:

• It assumes a decay amplitude not derived from a Lagrangian

• It neglects the charged current contribution to the decay —

important for flavor-sensitive simulations

• It is limited to the n = 0 case, whereas more general,

quantum-gravity-motivated scenarios with n > 0 allow for

additional processes such as neutrino splitting

� Moreover, the C&G expression — like other formulas for the

decay width — is an asymptotic result, valid only well above

threshold. Near threshold, corrections can be significant, especially

in the n = 0 case.

� Our reanalysis may become relevant with the detection of future

UHE neutrino events — a population we now know exists.
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Outlook: superluminal cascades

� The previous analysis is based on the survival probability of a

neutrino detected with energy Ed . However, the probability of

detection after propagation from a source at a (local) distance L is

P(0)(Ed, L) = Pe(Ed) e
−L Γ(Ed)

where Pe(Ed) is the emission probability and one is assuming that the

neutrino has propagated from the source without any decay

� We can now consider the probability that the neutrino has been

produced in a cascade containing a single decay at a distance xL:

P(1)(Ed, L) =

∫1
0

dy f (y)Pe(Ed/y)

∫1
0

dx e−(1−x) L Γ(Ed/y)L Γ(Ed/y) e
−xL Γ(Ed)

where f (y) is the energy distribution of the neutrino in the decay

� The sum of the probabilities
∑

n P
(n)(Ed, L)will give the spectral

flux of detected neutrinos from a source at a distance L
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Thank you for your attention
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