

Advancing superluminal neutrino constraints with UHE events

J.M. Carmona, J.L. Cortés, M.A. Reyes 8th July, 2025

Contents

- 1. Superluminal neutrinos
 - Decay processes of superluminal neutrinos
 - Cohen&Glashow result and later approaches
- 2. KM3-230213A constraints
 - KM3NeT analysis
 - Alternative analyses and open issues
- 3. Addressing limitations in previous approaches
 - Including cosmic expansion effects
 - Including threshold effects
- 4. Improved constraints with future UHE neutrino events
 - New analysis in the constant-velocity scenario
 - Extending the analysis to the energy-dependent case
- 5. Conclusions and future work

Superluminal neutrinos

Decay Processes of Superluminal Neutrinos

Lorentz-invariance violating (LIV) dispersion relations:

• Energy-independent LIV (n=0) :

$$E^2 = \vec{\rho}^2 (1 + \delta)$$
 $v = 1 + \delta/2$

Decay Processes of Superluminal Neutrinos

Lorentz-invariance violating (LIV) dispersion relations:

• Energy-independent LIV (n=0) :

$$E^2 = \vec{p}^2 (1 + \delta)$$
 $v = 1 + \delta/2$

• High-energy LIV (n>0) :

$$E^{2} = \vec{p}^{2} \left[1 + \left(\frac{|\vec{p}|}{\Lambda} \right)^{n} \right] \qquad v = 1 + \frac{(n+1)}{2} \left(\frac{|\vec{p}|}{\Lambda} \right)^{n}$$

Decay Processes of Superluminal Neutrinos

Lorentz-invariance violating (LIV) dispersion relations:

• Energy-independent LIV (n=0) :

$$E^2 = \vec{p}^2 (1 + \delta)$$
 $v = 1 + \delta/2$

• High-energy LIV (n>0) :

$$E^{2} = \vec{p}^{2} \left[1 + \left(\frac{|\vec{p}|}{\Lambda} \right)^{n} \right] \qquad v = 1 + \frac{(n+1)}{2} \left(\frac{|\vec{p}|}{\Lambda} \right)^{n}$$

Vacuum pair emission (VPE)

Neutrino splitting (n>0 only)

Cohen & Glashow (CG) Result and Later Approaches

• Vacuum pair emission $\mathbf{v}_{\alpha} \to \mathbf{v}_{\alpha} e^- e^+$ occurs above a threshold $E > E_{\text{th}}^{(n)} \doteq \left(4m_e^2 \Delta_{(n)}^{-1}\right)^{1/(n+2)}$, where $\Delta_{(0)} \doteq \delta$, $\Delta_{(n\neq 0)} \doteq \Lambda^{-n}$ Cohen & Glashow (CG) Result and Later Approaches

• Vacuum pair emission $\mathbf{v}_{\alpha} \to \mathbf{v}_{\alpha} e^- e^+$ occurs above a threshold $E > E_{\text{th}}^{(n)} \doteq \left(4m_e^2 \Delta_{(n)}^{-1}\right)^{1/(n+2)}$, where $\Delta_{(0)} \doteq \delta$, $\Delta_{(n\neq 0)} \doteq \Lambda^{-n}$

(Cohen:2011hx]: For the n = 0 case $\Gamma_{CG}(E > E_{th}^{(0)}) = \frac{1}{14} \frac{G_F^2}{192\pi^3} E^5 \delta^3$ (no explicit calculation is given) Cohen & Glashow (CG) Result and Later Approaches

- Vacuum pair emission $\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\alpha} e^{-} e^{+}$ occurs above a threshold $E > E_{\text{th}}^{(n)} \doteq \left(4m_e^2 \Delta_{(n)}^{-1}\right)^{1/(n+2)}$, where $\Delta_{(0)} \doteq \delta$, $\Delta_{(n\neq 0)} \doteq \Lambda^{-n}$
- (Cohen:2011hx]: For the n = 0 case $\Gamma_{CG}(E > E_{th}^{(0)}) = \frac{1}{14} \frac{G_F^2}{192\pi^3} E^5 \delta^3$ (no explicit calculation is given)

(Bezrukov:2011qn], [Carmona:2012tp]: Γ_{CG} results from a prescription that is not derived from a Lagrangian. A correct calculation gives:

$$\Gamma_{(n=0)}(E \gg E_{\rm th}^{(0)}) = \frac{17}{420} \frac{G_F^2}{192\pi^3} E^5 \delta^3$$

The computation assumes $m_e = 0$: it is an asymptotic result only valid sufficiently above the threshold

Generalization to high-energy LIV

• [Carmona:2012tp] generalized the VPE decay width of SuL neutrinos to the $n \neq 0$ case, through the neutral current only

• This was used by [Stecker:2014oxa] to compare the IceCube spectrum with LIV predictions

Generalization to high-energy LIV

• [Carmona:2012tp] generalized the VPE decay width of SuL neutrinos to the $n \neq 0$ case, through the neutral current only

• This was used by [Stecker:2014oxa] to compare the IceCube spectrum with LIV predictions

• [Carmona:2022dtp] used the $m_e = 0$ approximation to include the charge current contribution and the neutrino splitting decay process:

$$\Gamma_{\alpha,n}^{(i)}(E) \approx K_{\alpha,n}^{(i)} \frac{G_F^2}{192\pi^3} E^{5+3n} \Delta_{(n)}^3 \qquad (i) = \{ \text{VPE}, \text{NSpl} \}$$

$\mathcal{K}_{lpha, n}^{(i)}$	VPE, $\alpha = (\mu, \tau)$	VPE, $\alpha = e$	NSpl, α
<i>n</i> = 0	17/420	221/420	0
<i>п</i> = 1	121/1680	1573/1680	22/75
<i>n</i> = 2	81/910	81/70	1422/5005

KM3-230213A constraints

KM3NeT analysis

- S KM3-230213A: $E_{\text{UHE}} = 220^{+570}_{-110} \text{ PeV}$
- **•** n=0 case, upper limit on δ : [KM3NeT:2025mfl]

$$\boxed{L\Gamma_{CG} < 10} \Rightarrow \delta < \frac{\delta_{u.l.}}{K_{CG} \cdot G_F^2 \cdot E^5 \cdot L} \right)^{1/3}, \quad K_{CG} = \frac{1}{14}$$

KM3NeT analysis

- S KM3-230213A: $E_{\text{UHE}} = 220^{+570}_{-110} \text{ PeV}$
- **•** n=0 case, upper limit on δ : [KM3NeT:2025mfl]

$$\boxed{L\Gamma_{CG} < 10} \Rightarrow \delta < \frac{\delta_{u.l.}}{K_{CG} \cdot G_F^2 \cdot E^5 \cdot L} \right)^{1/3}, \quad K_{CG} = \frac{1}{14}$$

Alternative analyses and open issues

[KM3NeT:2025mfl]

- uses an incorrect expression for the decay with Γ
- does not take into account the cosmic expansion
- does not incorporate the VPE threshold in the plot
- only considers the n = 0 scenario

[Satunin:2025uui]

- does not take into account the cosmic expansion
- derives incorrect limits for the n = 1 case

[Yang:2025kfr]

- only studies the n = 2 case
- uses an incorrect expression for the decay with Γ

Alternative analyses and open issues

[KM3NeT:2025mfl]

- uses an incorrect expression for the decay with Γ
- does not take into account the cosmic expansion
- does not incorporate the VPE threshold in the plot
- only considers the n = 0 scenario

[Satunin:2025uui]

- does not take into account the cosmic expansion
- derives incorrect limits for the n = 1 case

[Yang:2025kfr]

- only studies the n = 2 case
- uses an incorrect expression for the decay with Γ
- Further limitations of all previous studies:
 - limits focused on the KM3-230213A event
 - they ignore *m_e* effects, relevant close to the threshold
 - they ignore neutrino flavor effects

Addressing limitations in previous approaches

Including cosmic expansion effects

Solution $L\Gamma < 10$ can be written as

$$\mathcal{P}_n^{SV}(E,L) = \exp\left(-L \cdot \Gamma_n(E)\right) > \exp(-10)$$

Including cosmic expansion effects

• The survival condition $L\Gamma < 10$ can be written as

$$\mathcal{P}_n^{SV}(E,L) = \exp\left(-L \cdot \Gamma_n(E)\right) > \exp(-10)$$

With cosmic expansion, this needs to be replaced by

$$\mathcal{P}_n^{SV}(E_d, z_s) = \exp\left(-\int_0^{z_s} dz \; \frac{\Gamma_n\left((1+z)E_d\right)}{(1+z)H_0 h(z)}\right) > \exp(-10),$$

with $h(z) = \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$

In the local universe, $L = z_s/H_0$. If $L \gg 10^{17}$ m, neutrinos oscillate several times during propagation, and we can define a *mean* VPE decay width:

$$\Gamma_{n}^{(\text{VPE})}(E) \approx K_{n}^{(\text{VPE})} \frac{G_{F}^{2}}{192\pi^{3}} E^{5+3n} \Delta_{(n)}^{3} \quad \left[K_{n}^{(\text{VPE})} = \frac{1}{3} \left(K_{e,n}^{(\text{VPE})} + K_{\mu,n}^{(\text{VPE})} + K_{\tau,n}^{(\text{VPE})} \right) \right]$$

Including threshold effects

• Threshold effects in the VPE decay width can be encoded in the function $f^{(n)}(x)$, $0 < x \le 1$:

$$\Gamma_n^{\text{VPE}}(E) = \mathcal{K}_n^{\text{VPE}} \frac{G_F^2}{192\pi^3} \cdot E^{5+3n} \cdot \Delta_{(n)}^3 \cdot f^{(n)} \left(\frac{E}{E_{\text{th}}}\right)$$

where $f^{(n)}(1) = 0$ and $\lim_{x \to \infty} f^{(n)}(x) = 1$.

The function f⁽ⁿ⁾ takes into account a change in the partial decay widths and in the integration limits. The result is [in preparation]:

Improved constraints with future UHE neutrino events

New analysis in the constant-velocity scenario

Curves $\delta(z_s)$ for fixed detected energy $E_d = 1 \text{ PeV} - 10 \text{ EeV}$

- The curves are no longer straight lines
- Threshold effects appear when $E_d \sim E_{th}(\delta)$
- Cosmic expansion changes slope at high redshift

New analysis in the constant-velocity scenario

A heat-map plot (E_d, δ, z_s) allows to get a limit on δ for a specific E_d event, depending on its source redshift z_s $E_{\rm th}$ [eV] 10¹⁷ 10¹⁶ 1019 1018 1015 10^{14} 10¹⁹ $d_s[m]$ or z_s 10²⁶ 10¹⁸ 1025 1024 -1023 E_d [eV] 10¹⁷ 1022 1021 . - 10⁻⁶ 1020. - 10⁻⁷ 10¹⁹ -10¹⁶ 10¹⁸ -1017. 10¹⁵ 10-2610-2510-2410-2310-2210-2110-2010-1910-1810-1710-16

Extending the analysis to the energy-dependent case

n = 2 case: curves $\Lambda(z_s)$ for fixed detected energy E_d

 z_s

11

Extending the analysis to the energy-dependent case

n = 2 case: heat-map plot (E_d , Λ , z_s)

Conclusions and future work

Conclusions

- Many works in the literature still rely on the Cohen & Glashow (C&G) expression to study LIV-induced superluminal neutrino decay, overlooking the fact that:
 - It assumes a decay amplitude not derived from a Lagrangian
 - It neglects the charged current contribution to the decay important for flavor-sensitive simulations
 - It is limited to the n = 0 case, whereas more general, quantum-gravity-motivated scenarios with n > 0 allow for additional processes such as neutrino splitting

Conclusions

- Many works in the literature still rely on the Cohen & Glashow (C&G) expression to study LIV-induced superluminal neutrino decay, overlooking the fact that:
 - It assumes a decay amplitude not derived from a Lagrangian
 - It neglects the charged current contribution to the decay important for flavor-sensitive simulations
 - It is limited to the n = 0 case, whereas more general, quantum-gravity-motivated scenarios with n > 0 allow for additional processes such as neutrino splitting

Moreover, the C&G expression — like other formulas for the decay width — is an asymptotic result, valid only well above threshold. Near threshold, corrections can be significant, especially in the n = 0 case.

Conclusions

• Many works in the literature still rely on the Cohen & Glashow (C&G) expression to study LIV-induced superluminal neutrino decay, overlooking the fact that:

- It assumes a decay amplitude not derived from a Lagrangian
- It neglects the charged current contribution to the decay important for flavor-sensitive simulations
- It is limited to the n = 0 case, whereas more general, quantum-gravity-motivated scenarios with n > 0 allow for additional processes such as neutrino splitting

Moreover, the C&G expression — like other formulas for the decay width — is an asymptotic result, valid only well above threshold. Near threshold, corrections can be significant, especially in the n = 0 case.

• Our reanalysis may become relevant with the detection of future UHE neutrino events — a population we now know exists.

Outlook: superluminal cascades

• The previous analysis is based on the survival probability of a neutrino detected with energy E_d . However, the probability of detection after propagation from a source at a (local) distance *L* is

$$\mathcal{P}^{(0)}(E_d,L) = \mathcal{P}_e(E_d) e^{-L \, \Gamma(E_d)}$$

where $\mathcal{P}_e(E_d)$ is the emission probability and one is assuming that the neutrino has propagated from the source without any decay

• The previous analysis is based on the survival probability of a neutrino detected with energy E_d . However, the probability of detection after propagation from a source at a (local) distance *L* is

 $\mathcal{P}^{(0)}(E_d,L) = \mathcal{P}_e(E_d) e^{-L \, \Gamma(E_d)}$

where $\mathcal{P}_e(E_d)$ is the emission probability and one is assuming that the neutrino has propagated from the source without any decay

• We can now consider the probability that the neutrino has been produced in a cascade containing a single decay at a distance *xL*: $\mathcal{P}^{(1)}(E_d, L) = \int_0^1 dy f(y) \mathcal{P}_e(E_d/y) \int_0^1 dx \, e^{-(1-x)L\Gamma(E_d/y)} L\Gamma(E_d/y) \, e^{-xL\Gamma(E_d)}$ where f(y) is the energy distribution of the neutrino in the decay • The previous analysis is based on the survival probability of a neutrino detected with energy E_d . However, the probability of detection after propagation from a source at a (local) distance *L* is

 $\mathcal{P}^{(0)}(E_d,L) = \mathcal{P}_e(E_d) e^{-L \, \Gamma(E_d)}$

where $\mathcal{P}_e(E_d)$ is the emission probability and one is assuming that the neutrino has propagated from the source without any decay

• We can now consider the probability that the neutrino has been produced in a cascade containing a single decay at a distance *xL*: $\mathcal{P}^{(1)}(E_d, L) = \int_0^1 dy f(y) \mathcal{P}_e(E_d/y) \int_0^1 dx \, e^{-(1-x)L\Gamma(E_d/y)} L\Gamma(E_d/y) \, e^{-xL\Gamma(E_d)}$ where f(y) is the energy distribution of the neutrino in the decay

• The sum of the probabilities $\sum_{n} \mathcal{P}^{(n)}(E_d, L)$ will give the spectral flux of detected neutrinos from a source at a distance *L*

Thank you for your attention