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Superluminal neutrinos



Decay Processes of Superluminal Neutrinos

Lorentz-invariance violating (LIV) dispersion relations:

¢ Energy-independent LIV (n=0) :
E? =p%(1+5) v=1+4+8/2
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Vacuum pair emission (VPE) Neutrino splitting (n>0 only)



Cohen & Glashow (CG) Result and Later Approaches

© Vacuum pair emission v, — v,e e occurs above a threshold
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Cohen & Glashow (CG) Result and Later Approaches

© Vacuum pair emission v, — v,e e occurs above a threshold
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E> Etl‘?) = (4m A where A(O) =, A(n;&O) =A"

© [Cohen:2011hx]: Forthe n = 0 case
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ealE > £5)) = 15 79973

E>5* (no explicit calculation is given)

© [Bezrukov:2011qgn], [Carmona:2012tp]: T'cg results from a
prescription that is not derived from a Lagrangian. A correct
calculation gives:

17 G s
42019273

The computation assumes m, = 0. it is an asymptotic result only valid
sufficiently above the threshold
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Generalization to high-energy LIV

© [Carmona:2012tp] generalized the VPE decay width of SuL
neutrinos to the n # 0 case, through the neutral current only

* This was used by [Stecker:20140xa] to compare the IceCube
spectrum with LIV predictions
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Generalization to high-energy LIV

© [Carmona:2012tp] generalized the VPE decay width of SuL
neutrinos to the n 4 0 case, through the neutral current only

* This was used by [Stecker:20140xa] to compare the IceCube
spectrum with LIV predictions

© [Carmona:2022dtp| used the m, — 0 approximation to include the
charge current contribution and the neutrino splitting decay process:
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KM3-230213A constraints



KM3NeT analysis

© KM3-230213A:  Eype = 2207375 PeV
© n=0case, upperlimiton &: [KM3NeT:2025mfl]
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Alternative analyses and open issues

[KM3NeT:2025mfl(]

* uses an incorrect expression for the decay with T

* does not take into account the cosmic expansion

« does not incorporate the VPE threshold in the plot
* only considers the n = 0 scenario

[Satunin:2025uui]

* does not take into account the cosmic expansion
* derives incorrect limits for the n = 1 case

[Yang:2025kfr]

* only studies the n = 2 case
« uses an incorrect expression for the decay with T’
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* uses an incorrect expression for the decay with T
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« does not incorporate the VPE threshold in the plot
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[Satunin:2025uui]

* does not take into account the cosmic expansion
* derives incorrect limits for the n = 1 case

[Yang:2025kfr]

* only studies the n = 2 case
« uses an incorrect expression for the decay with T’

© Further limitations of all previous studies:

« limits focused on the KM3-230213A event
* they ignore m, effects, relevant close to the threshold
* they ignore neutrino flavor effects
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Addressing limitations in previous
approaches




Including cosmic expansion effects

© The survival condition LT < 10 can be written as

T,S;V(E,L) = exp (—L . Fn(E)) > exp(—10)



Including cosmic expansion effects

© The survival condition LT < 10 can be written as
(P,%V(E, L) =exp (— L- Fn(E)) > exp(—10)

© With cosmic expansion, this needs to be replaced by

Sy B i Fn((1 +Z)Ed)
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with h(z) = \/Qm(1 +2)3 + Qa

In the local universe, L = z;/Hy. IFL > 10" m, neutrinos oscillate several
times during propagation, and we can define a mean VPE decay width:
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Including threshold effects

© Threshold eFFects in the VPE decay width can be encoded in the
Function /") (x), 0 < x < 1:
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where f(7 (1) = 0and limy_,oo f ) (x) = 1.

© The function f(") takes into account a change in the partial decay
widths and in the integration limits. The result is [in preparation]:
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Improved constraints with future
UHE neutrino events




New analysis in the constant-velocity scenario

Curves 5(z;) for fixed detected energy E; = 1 PeV — 10 EeV

» The curves are no longer straight lines

* Threshold effects appear when £, ~ Ey,(8)

« Cosmic expansion changes slope at high redshift
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New analysis in the constant-velocity scenario

A heat-map plot (£,, 8, z;) allows to getalimiton & for a specific £4
event, depending on its source redshift z.
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Extending the analysis to the energy-dependent case

n = 2 case: curves A(zs) for fixed detected energy £,
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Extending the analysis to the energy-dependent case

n = 2 case: heat-map plot (4, A, z)
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Conclusions and future work




Conclusions

© Many works in the literature still rely on the Cohen & Glashow
(C&Q) expression to study LIV-induced superluminal neutrino decay,
overlooking the fact that:
« It assumes a decay amplitude not derived from a Lagrangian
* It neglects the charged current contribution to the decay —
important for flavor-sensitive simulations
e Itis limited to the n — 0 case, whereas more general,
quantum-gravity-motivated scenarios with n > 0 allow for
additional processes such as neutrino splitting
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© Moreover, the C&G expression — like other formulas for the
decay width —is an asymptotic result, valid only well above
threshold. Near threshold, corrections can be significant, especially
inthe n = 0 case.



Conclusions

© Many works in the literature still rely on the Cohen & Glashow
(C&Q) expression to study LIV-induced superluminal neutrino decay,
overlooking the fact that:

« It assumes a decay amplitude not derived from a Lagrangian

* It neglects the charged current contribution to the decay —
important for flavor-sensitive simulations

e Itis limited to the n — 0 case, whereas more general,
quantum-gravity-motivated scenarios with n > 0 allow for
additional processes such as neutrino splitting

© Moreover, the C&G expression — like other formulas for the
decay width —is an asymptotic result, valid only well above
threshold. Near threshold, corrections can be significant, especially
inthe n = 0 case.

© Our reanalysis may become relevant with the detection of future
UHE neutrino events — a population we now know exists.



Outlook: superluminal cascades

© The previous analysis is based on the survival probability of a
neutrino detected with energy £4. However, the probability of
detection after propagation from a source at a (local) distance L is

POVE, L) = Po(Ey) e tTE)

where P.(E,) is the emission probability and one is assuming that the
neutrino has propagated from the source without any decay
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© We can now consider the probability that the neutrino has been
produced in a cascade containing a single decay at a distance xL:
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where f(y) is the energy distribution of the neutrino in the decay



Outlook: superluminal cascades

© The previous analysis is based on the survival probability of a
neutrino detected with energy £4. However, the probability of
detection after propagation from a source at a (local) distance L is

POVE, L) = PelEy) e HTE)

where P.(E,) is the emission probability and one is assuming that the
neutrino has propagated from the source without any decay

© We can now consider the probability that the neutrino has been
produced in a cascade containing a single decay at a distance xL:

P (Ey L) = J dy f(y) Pe(Eq/Y) J dx e~ =XLTEM ] T(E, Jy) e T(E)
where f(y) is the energy distribution of the neutrino in the decay

© The sum of the probabilities Y, P(™ (Ey, L) will give the spectral
flux of detected neutrinos from a source at a distance L



Thank you for your attention
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