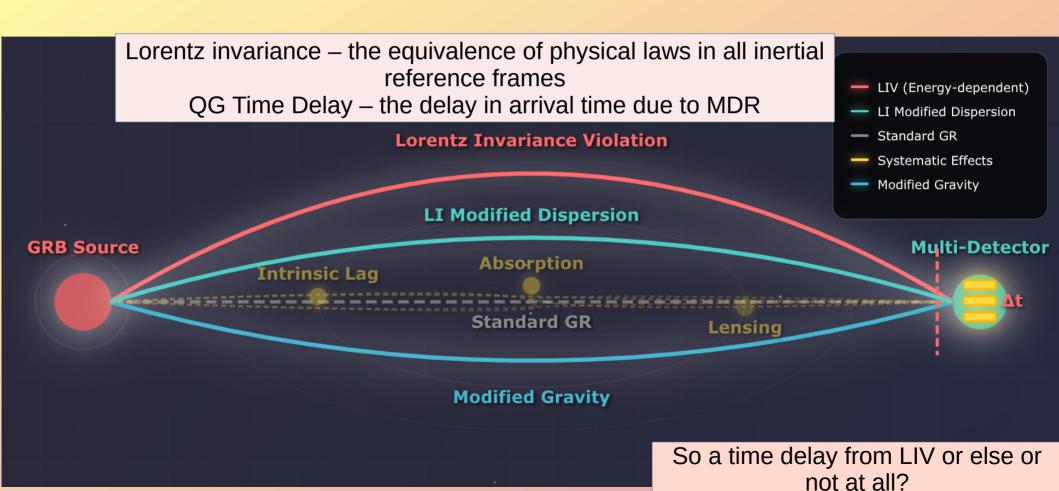
Beyond Standard Cosmology: New Statistical Approaches to Lorentz Invariance Violation

Denitsa Staicova

Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences


Based on Universe 11 (2025) 68 (arXiv:2501.06022) and Physics of the Dark Universe (arXiv: 2504.18416)

1th Annual BridgeQG conference. Paris, France, 7-10.07.2025

The possible origins of apparent time delays

QGTime delays

Some quantum gravity theories predict modified dispersion relation

$$E^2 = p^2 c^2$$

$$E^2 = p^2 c^2 \qquad \qquad \qquad E^2 = p^2 c^2 \left[1 - s_{\pm} \left(\frac{E}{\xi_n E_{QG}} \right)^n \right] ,$$

This leads to changed group velocity

$$v(E) = \frac{\partial E}{\partial p} \simeq c \left[1 - s_{\pm} \frac{n+1}{2} \left(\frac{E}{E_{\rm QG,n}} \right)^n \right] \, .$$

The modified velocity leads to a modified time of flight of the photons:

$$=\int_{0}^{z} \left[1 + \frac{E}{E_{OG}}(1+z')\right] \frac{dz'}{H(z')}$$

$$t = \int_0^z [1 + \frac{E}{E_{QG}}(1 + z')] \frac{dz'}{H(z')} \qquad \Delta t_{LIV} = \frac{\pm s \Delta E}{E_{QG}} \int_0^z (1 + z') \frac{dz'}{H(z')}$$

Addazi et al, Prog.Part.Nucl.Phys. 125 (2022)arXiv: 2111.05659

$$\frac{\Delta t_{obs}}{1+z} = a_{LIV}K + \beta , \qquad K \equiv \frac{1}{1+z} \int_0^z \frac{(1+\tilde{z}) d\tilde{z}}{h(\tilde{z})} .$$

$$a_{LIV} \equiv \Delta E / (H_0 E_{QG})$$

The GRBs Pros/Cons/Complications

- Pros:
 - -- high energies (E_{iso}>10⁵²erg)
 - -- high redshifts (z~9)
 - -- very high energy emissions (~TeV)
 - -- numerous observations
- Cons:
 - no ultimate GRB model, intinsic lag?
 - propagational effects
 - signal extraction
- Cosmology?

Intrinsic lag

Standard assumption – constant
 term Ellis et al. 2005, Shao 0911.2276

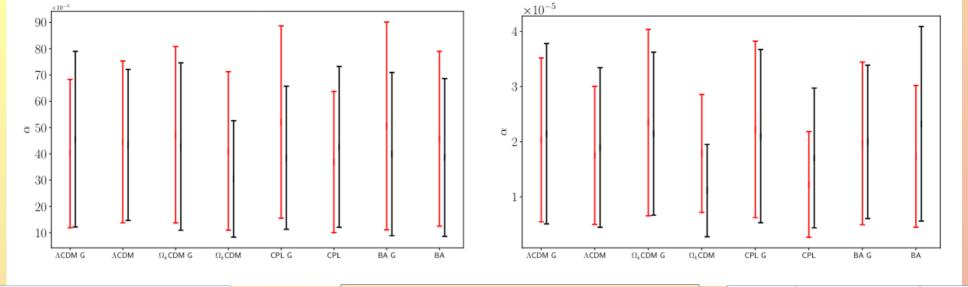
$$\frac{\Delta t_{obs}}{1+z} = a_{LIV}K + \beta \,,$$

■ For a single GRB in multiple channels or multiple GRBs — energy fit: Du et al. 2010.16029, Wei 1612.09425, Desai et al. 2205.12780, Xiao et al. 2022, Agrawal 2102.11248

$$\Delta t_{\rm int,z}(E) = \tau \left[\left(\frac{\mathcal{E}_0}{1 \text{ keV}} \right)^{-\alpha} - \left(\frac{E}{1 \text{ keV}} \right)^{-\alpha} \right],$$

Luminosity dependence Vardanyan et al.

$$\tau_{\rm RF}^{{\rm int},i} = \frac{\tau_{\rm obs}^{{\rm int},i}}{1+z} = \beta_{\rm long} \left(\frac{L_{\rm iso}^i}{L_*}\right)^{\gamma},$$


$$\Delta t_{\rm obs} = \Delta t_{\rm int} + \Delta t_{\rm QG} + \Delta t_{\rm spec} + \Delta t_{\rm DM} + \Delta t_{\rm gra}$$

Let's include cosmology properly...

For all, we solve the Friedmann equations:

$$H(z)/H_0 = E(z)$$
 $E(z)^2 = \Omega_r(1+z)^4 + \Omega_m(1+z)^3 + \Omega_k(1+z)^2 + \Omega_{DE}(z),$

 35.8 ± 27.1

 1.01 ± 0.735

 35.8 ± 27.1

 74.6 ± 55.9

 1.51 ± 1.09

 74.6 ± 55.9

	10		1	1	1	1-	41	-1			•		1		I+		-			
	ACDM G	ЛСDМ	$Ω_k$ CDM G	$Ω_k$ CDM	CPL G	CPL	BA G	ВА	Λ	CDM G	ЛСDМ	$Ω_k$ CDM G	Ω_kCDM	CPL G	CPL	BA G	BA			
TD1: Ellis et al. 2006 35 GRBs,							βaı	nd y	weakly		Vardanyan et al. 202 49 GRBs,									
wavelet method															descrete CCF					
	Datasa	+	[min,SA	× 10	17 Cox	., _E 1	max,S2	4 × 10 ¹⁷	Cox	, _	min,EA	v 10	17 Cox	, _{E¹}	nax,EA	· v 10	170	7	

	Λ CDM G Λ CDM Ω_k	CDM G Ω_k C	DM CPLG	CPL	BA G	BA		ACDM G	ACDM	$Ω_k$ CDM G	$\Omega_k CDM$	CPL G	CPL	BA G	BA		
	TD1: Ellis et al. 20 35 GRBs,			β and γ weakly constrained								Vardanyan et al. 2022, 49 GRBs, descrete CCF					
wavelet method													aes	crete	CCF	-	
	Dataset	E_{QG}^{min}	$SA \times 10^{-3}$) ¹⁷ Gev	$\mid E_{\zeta}^{n}$	nax,SA QG	$\times 10$) ¹⁷ Gev	v E	min,EA	$^{1} \times 10$	¹⁷ Gev	$r \mid E$	max,EA QG	× 10	¹⁷ Gev	7
	$H_0 = 73.04 \pm 1.04$																
TD1 1.14 ± 0			1.14 ± 0.0	.84		0.81	$1\pm0.$	57		1.3	$9 \pm 1.$	01		0.93	3 ± 0.6	58	

 35.5 ± 25.5

 0.88 ± 0.62

 35.5 ± 25.5

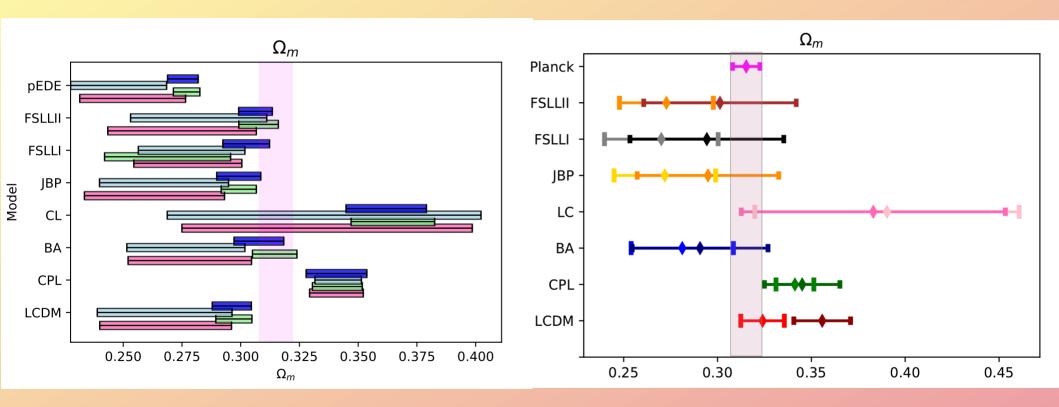
TD2

 $H_0 = 67.4 \pm 0.5$

TD1

TD2

 48.0 ± 35.6

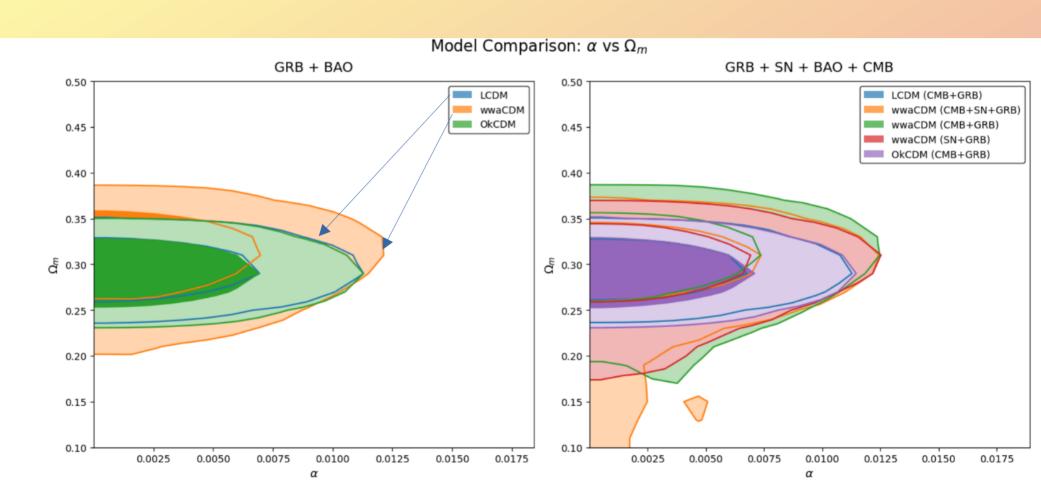

 1.24 ± 0.91

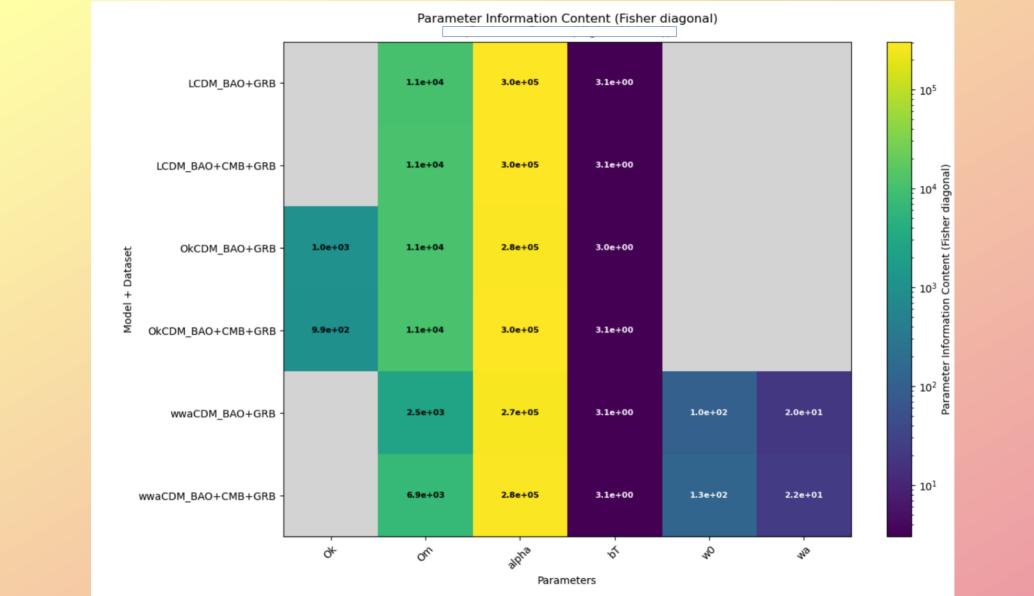
 48.0 ± 35.6

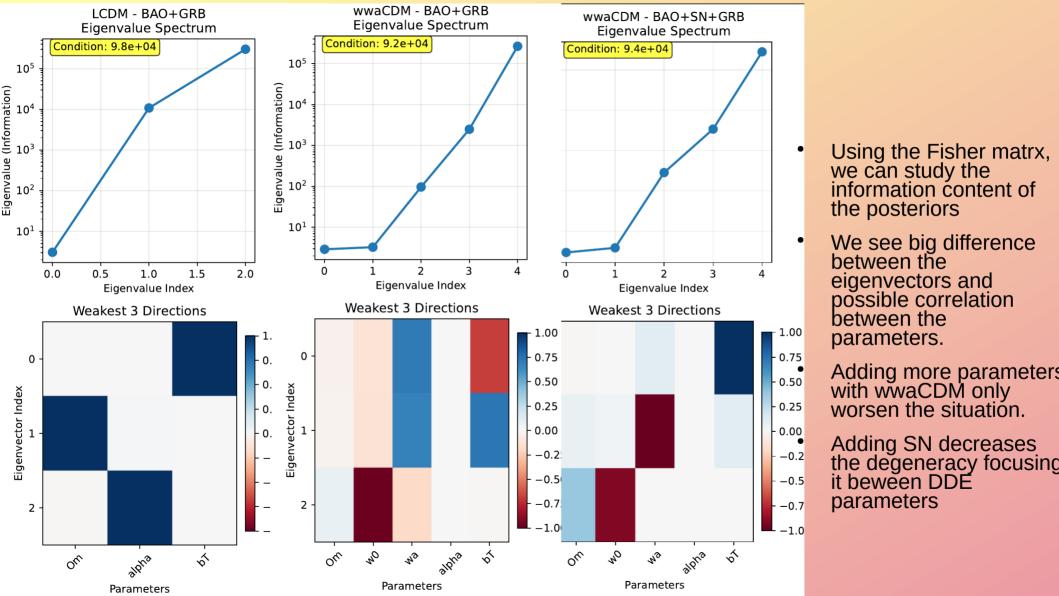
BAO+CMB (darker) and BAO+CMB+SN+GRB(lighter)

The results: Ω_m

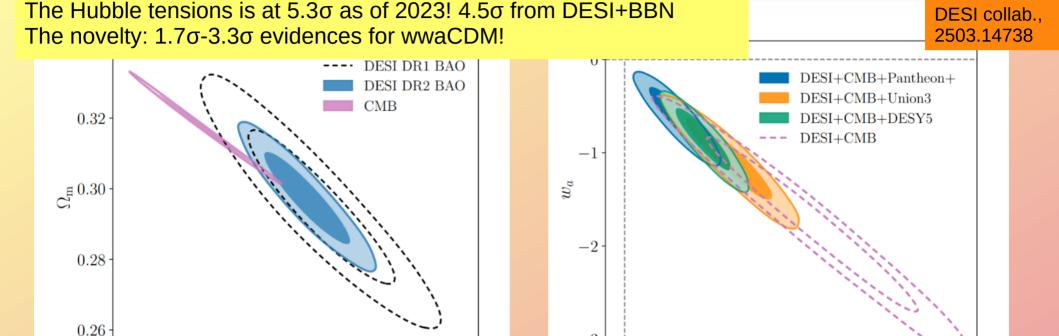
D.S., Universe 2022, 8(12), 631




With TD


Class. Quantum Grav. 40 195012, 2023

Without


Comparing the models

The state of the Hubble tension

-1.0

-0.8

-0.6

-0.4

 w_0

-0.2

0.0

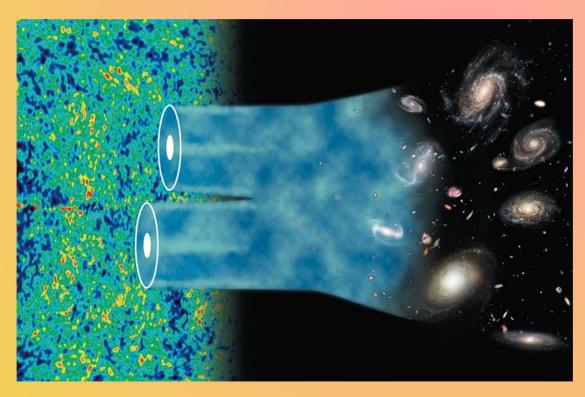
The uncertainty in cosmology makes LIV detection even harder.

 $H_0 r_d$ [100 km s⁻¹]

102

100

104


98

While α shows good statistical precision, the systematic robustness remains questionable due to the degeneracies.

106

Thank you for your attention!

The quantities we use

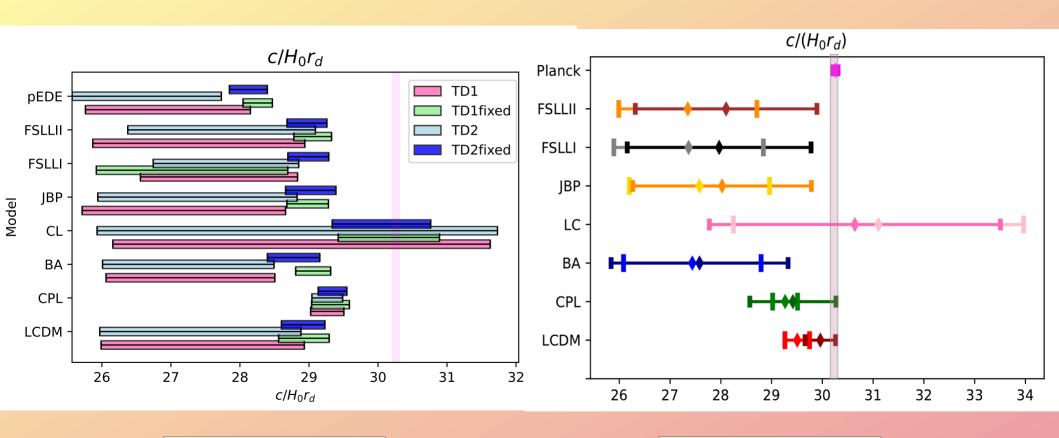
• SN/GRB

$$\mu_B(z) - M_B = 5 \log_{10} [d_L(z)] + 25,$$

CMB distance priors

$$l_{A} = (1 + z_{*}) \frac{\pi D_{A}(z_{*})}{r_{s}(z_{*})},$$

$$R \equiv (1 + z_{*}) \frac{D_{A}(z_{*}) \sqrt{\Omega_{m}} H_{0}}{c},$$


BAO

$$D_{A} = \frac{c}{(1+z)H_{0}\sqrt{|\Omega_{k}|}} \operatorname{sinn}\left[|\Omega_{k}|^{1/2} \int_{0}^{z} \frac{dz'}{E(z')}\right]$$

where $S_k(x) = \begin{cases} \frac{1}{\sqrt{\Omega_k}} \sinh\left(\sqrt{\Omega_k}x\right) & \text{if } \Omega_k > 0\\ x & \text{if } \Omega_k = 0\\ \frac{1}{\sqrt{-\Omega_k}} \sin\left(\sqrt{-\Omega_k}x\right) & \text{if } \Omega_k < 0 \end{cases}$

All depend on c/H₀r_d so we take it as 1 factor!

c/Hord

Class. Quantum Grav. 40 195012, 2023

Without

With TD