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Introduction

1. INTRODUCTION

Quantum Gravity Theories

o Attempts of unification of QFT and GR: string theory, loop quantum
gravity, supergravity, causal set theory...

o In most of them a minimal length appears =—> Planck length (Ip)??

o BORN’S IDEA: maybe a curved momentum space leads to noncom-
mutative spacetime, avoiding the divergencies of QFT — QG?

o Cotangent bundle geometries can describe deformed relativistic ki-
nematics of DSR
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1. INTRODUCTION

o Kinematics of SR are deformed by including a high-energy scale A
o Deformed dispersion relation
ko 2

C(k) :kS—E2+K+... =m

@ Deformed conservation laws (composition law of momenta)

Prqo
A

o Dispersion relation and conservation law compatible with relativity
principle — deformed Lorentz transformations

Total momentum = (p® q)p = Pu + qu + + ...

4
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1. INTRODUCTION

DEFORMED
RELATIVISTIC
KINEMATICS

GEOMETRIC
APPROACH

Squared distance to

Casimir of Paincaré
the origin

algebra

Deformed dispersion
relation

Deformed composition Translations

Coproduct of momenta
law

Isometries leaving

+ relativity principle
the origin invariant

{Lorentz transtormations)

Coproduct of Lorentz
generators
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1. INTRODUCTION

Deformed kinematics from geometric elements (tetrad, connection, metric)

o Starting with a maximally symmetric momentum metric g, (k)
o Computing the Casimir by using

190(k)
2 0k,

Ck) = fH(k)gu (k) f"(k),  fH(k) =
o Computing the composition law and tetrad through

ope®a),
0qp

Ip®q),
0qs

_ 9099,

8q”’ q—0

g (P q) = 9o (q) eu(p) :

o Compute the Lorentz transformations by means of

ok, oK’ .
guv (k') = aTcugpo(k)aT where ki, =k, + €ap T’
P o

1J.M. Carmona, J.L. Cortés and J.J Relancio. Phys. Rev. D 100 (2019)
2J.J. Relancio and S. Liberati. Phys. Rev. D 101 (2020)
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Different kinematics from the same metric

o Particular example:
@ De Sitter metric
guv (k) = nuw + kuku//\2
@ Snyder kinematic’s isometry generators®

T = 4/1+ E i TH = k,(85nHP — 5unup)i
® A2 Ok, ' PER Ak

satisfying

a jaﬁ a a a
[T5’77—5/‘8}: A2 ) [737\7ﬁ’y]:nﬁ7—,;‘y777’y7’ﬁ7

[jal?7 J%] — nﬁvjaé _ navjﬁé _ nﬁ5jav 4 nw?jﬁv

@ Deformed composition law

2 pnv
q Pun™q
o9 =pu[/1+5+ b

A2 p2 (1+ m)

© Noncommutativity of the spacetime coordinates — [zH, z¥] = iTH¥ /A

+qp.

SM.V. Battisti and S. Meljanac. Phys. Rev. D 82 (2010) 7/20
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1. INTRODUCTION

Different kinematics from the same metric

o Particular example:
@ De Sitter metric
Q;W(k) = Nuv + kuku//\2
@ k-Poincaré kinematic’s isometry generators®
(ol ‘7“& v v v 0
TE=Ts +na——, TH = kp(6Xn"* = 65n"") 7~
A Ok
satisfying (n, := (1,0,0,0))
n
72, 78] = 5L (TenP? - TEn*7)
n
(78,77 = 00Ty =772 + =2 (n?P g7 — 1 707)
[Jaﬂ’ \776} —_ nﬂ'yjaé _ na'yjﬂé _ nﬁéja'y + naéj,B'y

@ Deformed composition law

@ 7> a0
(r®a);, = ppu 14 el + N +aptnp

@ Noncommutativity of the spacetime coordinates — [z0, 2] = —iz?/A

1— 52 /A2 A

V14 p2/A2 — pg/A aan®Ppg
q0 + — 40

4A. Borowiec and A. Pachol. J. Phys. A 43 (2010) 820



Definition (Cotangent bundle)

The cotangent bundle T M is a structure (M, w, T, M) formed by the
union of all the cotangent spaces T, M placed at each point p of a smooth
4-dimensional manifold M. The bundle projection is 7 : T*M — M.

N,.,/0k,

TiwyT"M = V(4 1) ® Hep ) = span {0"= 0/0k, } & span {6,= 0, + Nyu(z, k)0"}
G = guv(z, k)dz"dz” + g"" (z, k)dk,.dky, 8k, = dk;, — Nou(x, k) dz”

5R. Miron et al. The Geometry of Hamilton and Lagrange Spaces (2001). 9/20
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© Construction of cotangent bundle geometries and DSR
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Construction of cotangent bundle geometries and DSR

NEW DEVELOPMENTS IN GENERALIZED HAMILTON SPACES

Difficulty — one cannot determine neither the nonlinear coefficients nor
the horizontal affine connection directly from the metric, contrary to what
happens in Hamilton spaces

@ Defining the affine coefficients in momentum space from
v 1 a ov ar o No v
CPLL (‘rvk) = _igpd (aMg (as,k:)—l—8 g M(I7k) -0 gu (l‘,k))

@ Obtaining the squared geodesic distance in momentum space (which will
be identified with the Hamiltonian #) from the geodesic equations

Ey—CL (x, k)kvke =0
@ Computing the nonlinear coefficients from
1 ~ ~
Nuw = —7 ({guv, H} + 9up0° 0 H + 910”0 H)
@ Determining the affine coefficients in spacetime through

le»“/(xv k) = 5PNHV(xv k)

6J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)
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Construction of cotangent bundle geometries and DSR

CONSTRUCTION OF THE METRIC

o Trajectories in GR are described by geodesic equations

@ One obtains the same result from Hamilton equations with Casimir

C(z, k) = kua"” (x)ky

o It is possible to pass from SR to GR by replacing| k, — ko (z) = kel ()
so that

C(a,k) = kan" ks

12/20



Construction of cotangent bundle geometries and DSR

CONSTRUCTION OF THE METRIC

o We move from DSR to DGR by replacing H (k) — H(k) and hence

the metric goes from | g(k) — g(z, k)

-Hamilton equations <= geodesic motion
-Distance in momentum space is conserved
along horizontal curves

-Casimir as the square of such distance

o g(z,k) in DGR satisfies

-Invariant under spacetime diffeomorphisms
o Properties of g(z, k) -If the starting momentum space is maximally
symmetric we can define a relativistic kinematics

For autoparallel Hamiltonians

kaa®’k 1 kaa®Pk
g (T, k) = apw () f1 (Tﬁ> + pkukuﬁ (Tﬁ>
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Isometries of cotangent bundle metries and DSR

SPACETIME ISOMETRIES

e Transformations of the form

ox¥
e I r_
2t =2t (z), ku——awlM L,

implying
ozx' , 0z’
D Guv (T, k) e Gpo (T, k)

@ Metrics of the form
kaa®Pkg 1 kaa“Pkg
Guv (T, k) = auw () fi (Tj) + nzbubv f2 (T)

have the same number of spacetime isometries as a,.(z) in GR

6J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)
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Isometries of cotangent bundl >metries and DSR

MOMENTUM ISOMETRIES

e Transformations of the form

implying oK, /
ok,
gl“/(x k ) ak gPO'(x k‘) ak

o Isometries in momentum space when spacetime is also curved are the
same ones as in flat spacetimes but replacing n*”
A
Na = Za = nxe’a(x)

— a"” as well as

o r-Poincaré composition laws depends on the tetrad (observer) — Snyder
kinematics are privileged

6J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)

16/20



Isometries of cotangent bundle metries and DSR

NONCOMMUTATIVITY OF SPACETIME

o First option: generators of translations in momentum space
XO( — TC(
o Second option: tetrad of the cotangent bundle metric

X = eau(:zc,k)i

,  with eau(x,k)nageﬁy(:c,k)):gu,,(x,k)
Ok,

o r-Poincaré noncommutativity depends on the tetrad (observer) — Sny-
der kinematics are privileged

N

x5, 8] = FOR) T

6J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)
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e Conclusions
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CONCLUSIONS

o We have shown how to construct the geometrical structure of genera-
lized Hamilton spaces

o Applications to QG. Lifting symmetries to curved spacetimes leads
to a restriction of kinematics

o Noncommutative spacetimes can be induced in the cotangent bund-
le geometry framework

e Snyder kinematics are privileged from geometrical arguments

o Future application to the study of phenomenological consequences of
DSR, such as time delays of massless particles with different energies
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