

Universidad de Burgos Mathematical Physics Group

NOS

IMPULS

Castilla v León

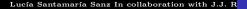
GENERALIZED COTANGENT GEOMETRY AND ITS APPLICATIONS IN QUANTUM GRAVITY

Lucía Santamaría Sanz

In collaboration with J.J. Relancio

2025 COST Action CA23130 First Annual Conference

July 2025. Paris



2 Construction of cotangent bundle geometries and DSR

3 Isometries of cotangent bundle geometries and DSR

Construction of cotangent bundle geometries and DSR Isometries of cotangent bundle geometries and DSR Conclusions

2 Construction of cotangent bundle geometries and DSR

③ Isometries of cotangent bundle geometries and DSR

Construction of cotangent bundle geometries and DSR Isometries of cotangent bundle geometries and DSR Conclusions

1. INTRODUCTION

Quantum Gravity Theories

- Attempts of **unification** of QFT and GR: string theory, loop quantum gravity, supergravity, causal set theory...
- In most of them a minimal length appears \implies Planck length (l_P) ??
- **BORN'S IDEA:** maybe a curved momentum space leads to noncommutative spacetime, avoiding the divergencies of QFT → QG?
- **Cotangent bundle geometries** can describe deformed relativistic kinematics of DSR

Construction of cotangent bundle geometries and DSR Isometries of cotangent bundle geometries and DSR Conclusions

1. INTRODUCTION

Doubly Special Relativity (DSR)

- \bullet K inematics of SR are deformed by including a high-energy scale Λ
- Deformed dispersion relation

$$C(k) = k_0^2 - \vec{k}^2 + \frac{k_0^3}{\Lambda} + \dots = m^2$$

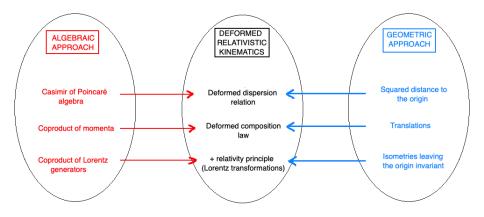
• Deformed conservation laws (composition law of momenta)

Total momentum =
$$(p \oplus q)_{\mu} = p_{\mu} + q_{\mu} + \frac{p_{\mu}q_0}{\Lambda} + \dots$$

• Dispersion relation and conservation law compatible with relativity principle \rightarrow deformed Lorentz transformations

Construction of cotangent bundle geometries and DSR Isometries of cotangent bundle geometries and DSR Conclusions

1. INTRODUCTION



Construction of cotangent bundle geometries and DSR Isometries of cotangent bundle geometries and DSR Conclusions

1. INTRODUCTION

Deformed kinematics from geometric elements (tetrad, connection, metric)

- Starting with a maximally symmetric momentum metric $g_{\mu\nu}(k)$
- Computing the **Casimir** by using

$$C(k) = f^{\mu}(k)g_{\mu\nu}(k)f^{\nu}(k), \qquad f^{\mu}(k) := \frac{1}{2}\frac{\partial C(k)}{\partial k_{\mu}}$$

• Computing the **composition law** and tetrad through

$$g_{\mu\nu}\left(p\oplus q\right) = \left.\frac{\partial\left(p\oplus q\right)_{\mu}}{\partial q_{\rho}}g_{\rho\sigma}(q)\frac{\partial\left(p\oplus q\right)_{\nu}}{\partial q_{\sigma}}; \qquad e^{\mu}{}_{\nu}(p):=\left.\frac{\partial\left(p\oplus q\right)_{\nu}}{\partial q_{\mu}}\right|_{q\to 0}$$

• Compute the Lorentz transformations by means of

$$g_{\mu\nu}(k') = \frac{\partial k'_{\mu}}{\partial k_{\rho}} g_{\rho\sigma}(k) \frac{\partial k'_{\nu}}{\partial k_{\sigma}} \quad \text{where} \quad k'_{\mu} = k_{\mu} + \epsilon_{\alpha\beta} \mathcal{J}^{\alpha\beta}_{\mu}$$

¹J.M. Carmona, J.L. Cortés and J.J Relancio. Phys. Rev. D 100 (2019)

²J.J. Relancio and S. Liberati. Phys. Rev. D 101 (2020)

Construction of cotangent bundle geometries and DSR Isometries of cotangent bundle geometries and DSR Conclusions

1. INTRODUCTION

Different kinematics from the same metric

- Particular example:
 - O De Sitter metric

$$g_{\mu\nu}(k) = \eta_{\mu\nu} + k_{\mu}k_{\nu}/\Lambda^2$$

2 Snyder kinematic's isometry generators³

$$\mathcal{T}_{S}^{\lambda} = \sqrt{1 + \frac{\bar{k}^{2}}{\Lambda^{2}}} \frac{\partial}{\partial k_{\lambda}}, \qquad \mathcal{J}^{\mu\nu} = k_{\rho} (\delta^{\nu}_{\lambda} \eta^{\mu\rho} - \delta^{\mu}_{\lambda} \eta^{\nu\rho}) \frac{\partial}{\partial k_{\lambda}}$$

satisfying

$$\begin{split} [\mathcal{T}_{S}^{\alpha},\mathcal{T}_{S}^{\beta}] &= \frac{\mathcal{J}^{\alpha\beta}}{\Lambda^{2}} \,, \qquad [\mathcal{T}_{S}^{\alpha},\mathcal{J}^{\beta\gamma}] = \eta^{\alpha\beta}\mathcal{T}_{S}^{\gamma} - \eta^{\alpha\gamma}\mathcal{T}_{S}^{\beta} \,, \\ [\mathcal{J}^{\alpha\beta},\mathcal{J}^{\gamma\delta}] &= \eta^{\beta\gamma}\mathcal{J}^{\alpha\delta} - \eta^{\alpha\gamma}\mathcal{J}^{\beta\delta} - \eta^{\beta\delta}\mathcal{J}^{\alpha\gamma} + \eta^{\alpha\delta}\mathcal{J}^{\beta\gamma} \end{split}$$

Observed composition law

$$(p \oplus q)^S_{\mu} = p_{\mu} \left(\sqrt{1 + \frac{q^2}{\Lambda^2}} + \frac{p_{\mu} \eta^{\mu\nu} q_{\nu}}{\Lambda^2 \left(1 + \sqrt{1 + p^2/\Lambda^2}\right)} \right) + q_{\mu}$$

() Noncommutativity of the spacetime coordinates $\rightarrow [x^{\mu}, x^{\nu}] = i \mathcal{J}^{\mu\nu} / \Lambda$

³M.V. Battisti and S. Meljanac. Phys. Rev. D 82 (2010)

Construction of cotangent bundle geometries and DSR Isometries of cotangent bundle geometries and DSR Conclusions

1. INTRODUCTION

Different kinematics from the same metric

- Particular example:
 - O De Sitter metric

$$g_{\mu\nu}(k) = \eta_{\mu\nu} + k_{\mu}k_{\nu}/\Lambda^2$$

2 κ -Poincaré kinematic's isometry generators⁴

$$\mathcal{T}^{\mu}_{\kappa} = \mathcal{T}^{\mu}_{S} + n_{\alpha} \frac{\mathcal{J}^{\mu\alpha}}{\Lambda} , \qquad \mathcal{J}^{\mu\nu} = k_{\rho} (\delta^{\nu}_{\lambda} \eta^{\mu\rho} - \delta^{\mu}_{\lambda} \eta^{\nu\rho}) \frac{\partial}{\partial k_{\lambda}}$$

satisfying $(n_{\mu}:=(1,0,0,0))$

$$\begin{split} [\mathcal{T}^{\alpha}_{\kappa},\mathcal{T}^{\beta}_{\kappa}] &= \frac{n_{\gamma}}{\Lambda} \left(\mathcal{T}^{\alpha}_{\kappa} \eta^{\beta\gamma} - \mathcal{T}^{\beta}_{\kappa} \eta^{\alpha\gamma} \right) \,, \\ [\mathcal{T}^{\alpha}_{S},\mathcal{J}^{\beta\gamma}] &= \eta^{\alpha\beta}\mathcal{T}^{\gamma}_{\kappa} - \eta^{\alpha\gamma}\mathcal{T}^{\beta}_{\kappa} + \frac{n_{\delta}}{\Lambda} \left(\eta^{\delta\beta}\mathcal{J}^{\alpha\gamma} - \eta^{\delta\gamma}\mathcal{J}^{\alpha\beta} \right) \\ [\mathcal{J}^{\alpha\beta},\mathcal{J}^{\gamma\delta}] &= \eta^{\beta\gamma}\mathcal{J}^{\alpha\delta} - \eta^{\alpha\gamma}\mathcal{J}^{\beta\delta} - \eta^{\beta\delta}\mathcal{J}^{\alpha\gamma} + \eta^{\alpha\delta}\mathcal{J}^{\beta\gamma} \end{split}$$

Observed composition law

$$(p \oplus q)_{\mu}^{\kappa} = p_{\mu} \left(\sqrt{1 + \frac{q^2}{\Lambda^2}} + \frac{q_0}{\Lambda} \right) + q_{\mu} + n_{\mu} \left[\frac{\sqrt{1 + p^2 / \Lambda^2} - p_0 / \Lambda}{1 - \vec{p}^2 / \Lambda^2} \left(q_0 + \frac{q_{\alpha} \eta^{\alpha \beta} p_{\beta}}{\Lambda} \right) - q_0 \right]$$

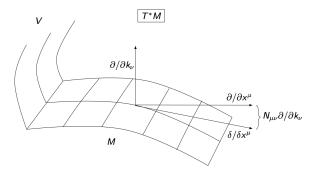
(Noncommutativity of the spacetime coordinates $\rightarrow [x^0, x^i] = -ix^i/\Lambda$

⁴A. Borowiec and A. Pachol. J. Phys. A 43 (2010)

Construction of cotangent bundle geometries and DSR Isometries of cotangent bundle geometries and DSR Conclusions

Definition (Cotangent bundle)

The cotangent bundle T^*M is a structure (M, π, T_p^*M) formed by the union of all the cotangent spaces T_p^*M placed at each point p of a smooth 4-dimensional manifold M. The bundle projection is $\pi: T^*M \to M$.



 $T_{(x,k)}T^*M = \mathcal{V}_{(x,k)} \oplus \mathcal{H}_{(x,k)} = \operatorname{span}\left\{\bar{\partial}^{\mu} = \partial/\partial k_{\mu}\right\} \oplus \operatorname{span}\left\{\delta_{\mu} = \partial_{\mu} + N_{\nu\mu}(x,k)\bar{\partial}^{\nu}\right\}$ $\mathcal{G} = g_{\mu\nu}(x,k)dx^{\mu}dx^{\nu} + g^{\mu\nu}(x,k)\delta k_{\mu}\delta k_{\nu}, \qquad \delta k_{\mu} = dk_{\mu} - N_{\nu\mu}(x,k)dx^{\nu}$

⁵R. Miron et al. The Geometry of Hamilton and Lagrange Spaces (2001).

2 Construction of cotangent bundle geometries and DSR

③ Isometries of cotangent bundle geometries and DSR

NEW DEVELOPMENTS IN GENERALIZED HAMILTON SPACES

Difficulty \rightarrow one cannot determine neither the nonlinear coefficients nor the horizontal affine connection directly from the metric, contrary to what happens in Hamilton spaces

() Defining the **affine coefficients** in momentum space from

$$C_{\rho}^{\ \mu\nu}(x,k) = -\frac{1}{2}g_{\rho\sigma}\left(\bar{\partial}^{\mu}g^{\sigma\nu}(x,k) + \bar{\partial}^{\nu}g^{\sigma\mu}(x,k) - \bar{\partial}^{\sigma}g^{\mu\nu}(x,k)\right)$$

② Obtaining the squared geodesic distance in momentum space (which will be identified with the **Hamiltonian** \mathcal{H}) from the geodesic equations

$$\ddot{k}_{\mu} - C_{\mu}{}^{\nu\sigma}(x,k)\dot{k}_{\nu}\dot{k}_{\sigma} = 0$$

Outputing the nonlinear coefficients from

$$N_{\mu\nu} = -\frac{1}{4} \left(\{ g_{\mu\nu}, \mathcal{H} \} + g_{\mu\rho} \bar{\partial}^{\rho} \partial_{\nu} \mathcal{H} + g_{\nu\rho} \bar{\partial}^{\rho} \partial_{\mu} \mathcal{H} \right)$$

(Determining the **affine coefficients** in spacetime through

$$H^{\rho}{}_{\mu\nu}(x,k) = \bar{\partial}^{\rho} N_{\mu\nu}(x,k)$$

 $^{^{6}}$ J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)

CONSTRUCTION OF THE METRIC

- Trajectories in GR are described by geodesic equations
- One obtains the same result from Hamilton equations with Casimir

$$C(x,k) = k_{\mu}a^{\mu\nu}(x)k_{\nu}$$

• It is possible to pass from SR to GR by replacing $k_{\mu} \mapsto \bar{k}_{\alpha}(x) = k_{\mu}e_{\alpha}^{\mu}(x)$ so that

$$C(x,k) = \bar{k}_{\alpha} \eta^{\alpha\beta} \bar{k}_{\beta}$$

Construction of cotangent bundle geometries and DSR

CONSTRUCTION OF THE METRIC

• We move from DSR to DGR by replacing $\mathcal{H}(k) \mapsto \mathcal{H}(\bar{k})$ and hence the metric goes from $g(k) \to g(x, k)$

• g(x,k) in DGR satisfies $\left\{ \begin{array}{l} -\text{Hamilton equations} \iff \text{geodesic motion} \\ -\text{Distance in momentum space is conserved} \\ \text{along horizontal curves} \\ -\text{Casimir as the square of such distance} \end{array} \right.$

• Properties of g(x,k) $\begin{cases}
-Invariant under spacetime diffeomorphisms \\
-If the starting momentum space is maximally \\
symmetric we can define a relativistic kinematics
\end{cases}$

For autoparallel Hamiltonians

$$g_{\mu\nu}(x,k) = a_{\mu\nu}(x)f_1\left(\frac{k_{\alpha}a^{\alpha\beta}k_{\beta}}{\Lambda^2}\right) + \frac{1}{\Lambda^2}k_{\mu}k_{\nu}f_2\left(\frac{k_{\alpha}a^{\alpha\beta}k_{\beta}}{\Lambda^2}\right)$$

2 Construction of cotangent bundle geometries and DSR

3 Isometries of cotangent bundle geometries and DSR

SPACETIME ISOMETRIES

• Transformations of the form

$$x^{\prime \mu} = x^{\prime \mu}(x), \qquad k^{\prime}_{\mu} = \frac{\partial x^{\nu}}{\partial x^{\prime \mu}} k_{\nu}$$

implying

$$\frac{\partial x'^{\mu}}{\partial x^{\rho}}g_{\mu\nu}(x',k')\frac{\partial x'^{\nu}}{\partial x^{\sigma}} = g_{\rho\sigma}(x,k)$$

• Metrics of the form

$$g_{\mu\nu}(x,k) = a_{\mu\nu}(x)f_1\left(\frac{k_{\alpha}a^{\alpha\beta}k_{\beta}}{\Lambda^2}\right) + \frac{1}{\Lambda^2}k_{\mu}k_{\nu}f_2\left(\frac{k_{\alpha}a^{\alpha\beta}k_{\beta}}{\Lambda^2}\right)$$

have the same number of spacetime isometries as $a_{\mu\nu}(x)$ in GR

⁶J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)

MOMENTUM ISOMETRIES

• Transformations of the form

$$x'^{\mu} = x, \qquad k'_{\mu} = k'_{\mu}(x,k)$$

implying

$$g_{\mu\nu}(x,k') = \frac{\partial k'_{\mu}}{\partial k_{\rho}} g_{\rho\sigma}(x,k) \frac{\partial k'_{\nu}}{\partial k_{\sigma}}$$

- Isometries in momentum space when spacetime is also curved are the same ones as in flat spacetimes but replacing $\eta^{\mu\nu} \rightarrow a^{\mu\nu}$ as well as $n_{\alpha} \rightarrow Z_{\alpha} = n_{\lambda} e^{\lambda}{}_{\alpha}(x)$
- κ -Poincaré composition laws depends on the tetrad (observer) \rightarrow Snyder kinematics are privileged

⁶J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)

NONCOMMUTATIVITY OF SPACETIME

• First option: generators of translations in momentum space

$$\mathcal{X}^{\alpha} = \mathcal{T}^{\alpha}$$

• Second option: tetrad of the cotangent bundle metric

$$\mathcal{X}^{\alpha} = e^{\alpha}{}_{\mu}(x,k) \frac{\partial}{\partial k_{\mu}}, \quad \text{with} \quad e^{\alpha}{}_{\mu}(x,k) \eta_{\alpha\beta} e^{\beta}{}_{\nu}(x,k) = g_{\mu\nu}(x,k)$$

• κ -Poincaré noncommutativity depends on the tetrad (observer) \rightarrow Snyder kinematics are privileged

$$[\mathcal{X}_{S}^{\alpha}, \mathcal{X}_{S}^{\beta}] = f(\bar{k}^{2}) \frac{\mathcal{J}^{\alpha\beta}}{\Lambda^{2}} ,$$

⁶J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)

2 Construction of cotangent bundle geometries and DSR

③ Isometries of cotangent bundle geometries and DSR

CONCLUSIONS

- We have shown how to construct the geometrical structure of **genera**lized Hamilton spaces
- Applications to QG. Lifting symmetries to curved spacetimes leads to a restriction of kinematics
- Noncommutative spacetimes can be induced in the cotangent bundle geometry framework
- Snyder kinematics are privileged from geometrical arguments
- Future application to the study of phenomenological consequences of DSR, such as time delays of massless particles with different energies

Thanks for your attention!

