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1. INTRODUCTION

Quantum Gravity Theories

Attempts of unification of QFT and GR: string theory, loop quantum
gravity, supergravity, causal set theory...

In most of them a minimal length appears =⇒ Planck length (lP )??

BORN’S IDEA: maybe a curved momentum space leads to noncom-
mutative spacetime, avoiding the divergencies of QFT → QG?

Cotangent bundle geometries can describe deformed relativistic ki-
nematics of DSR
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1. INTRODUCTION

Doubly Special Relativity (DSR)

Kinematics of SR are deformed by including a high-energy scale Λ

Deformed dispersion relation

C(k) = k2
0 − ~k2 +

k3
0

Λ
+ ... = m2

Deformed conservation laws (composition law of momenta)

Total momentum = (p⊕ q)µ = pµ + qµ +
pµq0

Λ
+ ...

Dispersion relation and conservation law compatible with relativity
principle → deformed Lorentz transformations
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1. INTRODUCTION

Deformed kinematics from geometric elements (tetrad, connection, metric)

Starting with a maximally symmetric momentum metric gµν(k)

Computing the Casimir by using

C(k) = fµ(k)gµν(k)fν(k) , fµ(k) :=
1

2

∂C(k)

∂kµ

Computing the composition law and tetrad through

gµν (p⊕ q) =
∂ (p⊕ q)µ

∂qρ
gρσ(q)

∂ (p⊕ q)ν
∂qσ

; eµν(p) :=
∂ (p⊕ q)ν

∂qµ

∣∣∣∣
q→0

Compute the Lorentz transformations by means of

gµν(k′) =
∂k′µ
∂kρ

gρσ(k)
∂k′ν
∂kσ

where k′µ = kµ + εαβJ αβµ

1
J.M. Carmona, J.L. Cortés and J.J Relancio. Phys. Rev. D 100 (2019)

2
J.J. Relancio and S. Liberati. Phys. Rev. D 101 (2020)
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1. INTRODUCTION

Different kinematics from the same metric

Particular example:
1 De Sitter metric

gµν(k) = ηµν + kµkν/Λ
2

2 Snyder kinematic’s isometry generators3

T λS =

√
1 +

k̄2

Λ2

∂

∂kλ
, J µν = kρ(δνλη

µρ − δµλη
νρ)

∂

∂kλ
,

satisfying

[T αS , T
β
S ] =

J αβ

Λ2
, [T αS ,J

βγ ] = ηαβT γS − η
αγT βS ,

[J αβ ,J γδ] = ηβγJ αδ − ηαγJ βδ − ηβδJ αγ + ηαδJ βγ

3 Deformed composition law

(p⊕ q)Sµ = pµ

√1 +
q2

Λ2
+

pµηµνqν

Λ2
(

1 +
√

1 + p2/Λ2
)
+ qµ

4 Noncommutativity of the spacetime coordinates → [xµ, xν ] = iJ µν/Λ
3
M.V. Battisti and S. Meljanac. Phys. Rev. D 82 (2010)
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1. INTRODUCTION

Different kinematics from the same metric

Particular example:
1 De Sitter metric

gµν(k) = ηµν + kµkν/Λ
2

2 κ-Poincaré kinematic’s isometry generators4

T µκ = T µS + nα
J µα

Λ
, J µν = kρ(δνλη

µρ − δµλη
νρ)

∂

∂kλ
,

satisfying (nµ := (1, 0, 0, 0))

[T ακ , T βκ ] =
nγ

Λ

(
T ακ ηβγ − T βκ ηαγ

)
,

[T αS ,J
βγ ] = ηαβT γκ − ηαγT βκ +

nδ

Λ

(
ηδβJ αγ − ηδγJ αβ

)
[J αβ ,J γδ] = ηβγJ αδ − ηαγJ βδ − ηβδJ αγ + ηαδJ βγ

3 Deformed composition law

(p⊕q)κµ = pµ


√√√√

1 +
q2

Λ2
+
q0

Λ

+qµ+nµ


√

1 + p2/Λ2 − p0/Λ

1 − ~p2/Λ2

q0 +
qαη

αβpβ

Λ

 − q0


4 Noncommutativity of the spacetime coordinates → [x0, xi] = −ixi/Λ

4
A. Borowiec and A. Pachol. J. Phys. A 43 (2010)
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Definition (Cotangent bundle)

The cotangent bundle T ∗M is a structure (M,π, T ∗pM) formed by the
union of all the cotangent spaces T ∗pM placed at each point p of a smooth
4-dimensional manifold M . The bundle projection is π : T ∗M →M .

T(x,k)T
∗M = V(x,k) ⊕H(x,k) = span

{
∂̄µ= ∂/∂kµ

}
⊕ span

{
δµ= ∂µ +Nνµ(x, k)∂̄ν

}
G = gµν(x, k)dxµdxν + gµν(x, k)δkµδkν , δkµ = dkµ −Nνµ(x, k) dxν

5
R. Miron et al. The Geometry of Hamilton and Lagrange Spaces (2001). 9/20
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NEW DEVELOPMENTS IN GENERALIZED HAMILTON SPACES

Difficulty → one cannot determine neither the nonlinear coefficients nor
the horizontal affine connection directly from the metric, contrary to what
happens in Hamilton spaces

1 Defining the affine coefficients in momentum space from

Cρ
µν(x, k) = −1

2
gρσ

(
∂̄µgσν(x, k) + ∂̄νgσµ(x, k)− ∂̄σgµν(x, k)

)
2 Obtaining the squared geodesic distance in momentum space (which will

be identified with the Hamiltonian H) from the geodesic equations

k̈µ − Cµνσ(x, k)k̇ν k̇σ = 0

3 Computing the nonlinear coefficients from

Nµν = −1

4

(
{gµν ,H}+ gµρ∂̄

ρ∂νH+ gνρ∂̄
ρ∂µH

)
4 Determining the affine coefficients in spacetime through

Hρ
µν(x, k) = ∂̄ρNµν(x, k)

6
J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)
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CONSTRUCTION OF THE METRIC

Trajectories in GR are described by geodesic equations

One obtains the same result from Hamilton equations with Casimir

C(x, k) = kµa
µν(x)kν

It is possible to pass from SR to GR by replacing kµ 7→ k̄α(x) = kµe
µ
α(x)

so that
C(x, k) = k̄αη

αβ k̄β
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CONSTRUCTION OF THE METRIC

We move from DSR to DGR by replacing H(k) 7→ H(k̄) and hence

the metric goes from g(k)→ g(x, k)

g(x, k) in DGR satisfies


-Hamilton equations ⇐⇒ geodesic motion
-Distance in momentum space is conserved
along horizontal curves
-Casimir as the square of such distance

Properties of g(x, k)


-Invariant under spacetime diffeomorphisms
-If the starting momentum space is maximally
symmetric we can define a relativistic kinematics

For autoparallel Hamiltonians

gµν(x, k) = aµν(x)f1

(
kαa

αβkβ
Λ2

)
+

1

Λ2
kµkνf2

(
kαa

αβkβ
Λ2

)
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SPACETIME ISOMETRIES

Transformations of the form

x′µ = x′µ(x) , k′µ =
∂xν

∂x′µ
kν

implying
∂x′µ

∂xρ
gµν(x′, k′)

∂x′ν

∂xσ
= gρσ(x, k)

Metrics of the form

gµν(x, k) = aµν(x)f1

(
kαa

αβkβ
Λ2

)
+

1

Λ2
kµkνf2

(
kαa

αβkβ
Λ2

)
have the same number of spacetime isometries as aµν(x) in GR

6
J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)
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MOMENTUM ISOMETRIES

Transformations of the form

x′µ = x , k′µ = k′µ(x, k)

implying

gµν(x, k′) =
∂k′µ
∂kρ

gρσ(x, k)
∂k′ν
∂kσ

Isometries in momentum space when spacetime is also curved are the
same ones as in flat spacetimes but replacing ηµν → aµν as well as
nα → Zα = nλe

λ
α(x)

κ-Poincaré composition laws depends on the tetrad (observer)→ Snyder
kinematics are privileged

6
J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)
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NONCOMMUTATIVITY OF SPACETIME

First option: generators of translations in momentum space

Xα = T α

Second option: tetrad of the cotangent bundle metric

Xα = eα µ(x, k)
∂

∂kµ
, with eα µ(x, k)ηαβe

β
ν(x, k) = gµν(x, k)

κ-Poincaré noncommutativity depends on the tetrad (observer) → Sny-
der kinematics are privileged

[XαS ,X βS ] = f(k̄2)
J αβ

Λ2
,

6
J.J. Relancio and L. Santamaria-Sanz arXiv:2407.18819 (2024)
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CONCLUSIONS

We have shown how to construct the geometrical structure of genera-
lized Hamilton spaces

Applications to QG. Lifting symmetries to curved spacetimes leads
to a restriction of kinematics

Noncommutative spacetimes can be induced in the cotangent bund-
le geometry framework

Snyder kinematics are privileged from geometrical arguments

Future application to the study of phenomenological consequences of
DSR, such as time delays of massless particles with different energies

19/20



Introduction
Construction of cotangent bundle geometries and DSR

Isometries of cotangent bundle geometries and DSR
Conclusions

Thanks for your attention!
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