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Background
• Intersection b/w GR+QM is still unknown
• Low-energy experiments have been proposed (“table-top”)
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In the theory of general relativity, time is not a global background 
parameter but !ows at di"erent rates depending on the space– 
time geometry. Although veri#ed to high precision in various 

experiments1, this prediction (as well as any other general relativistic 
e"ect) has never been tested in the regime where quantum e"ects 
become relevant. $ere is, in general, a fundamental interest in 
probing the interplay between gravity and quantum mechanics2. $e 
reason is that the two theories are grounded on seemingly di"erent 
premises and, although consistent predictions can be extrapolated 
for a large range of phenomena, a uni#ed framework is still missing 
and fundamentally new physics is expected to appear at some scale.

One of the promising experimental directions is to reveal,  
through interferometric measurements, the phase acquired by a par-
ticle moving in a gravitational potential3,4. Typically considered is 
a Mach–Zehnder type interferometer (Fig. 1), placed in the Earth’s 
gravitational #eld, where a particle travels in a coherent superposi-
tion along the two interferometric paths γ1, γ2 that have di"erent 
proper lengths. $e two amplitudes in the superposition acquire dif-
ferent, trajectory-dependent phases Φi, i = 1, 2. In addition, the parti-
cle acquires a controllable relative phase shi% ϕ. Taking into account 
the action of the #rst beam splitter and denoting by |ri〉 the mode 
associated with the respective path γi, the state inside the Mach– 
Zehnder setup |ΨMZ〉, just before it is recombined, can be written as 
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Finally, the particle can be registered by one of the two detectors  
D ±  with corresponding probabilities P ± : 
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2

1
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where ∆Φ:= Φ1 − Φ2. $e phase Φi is proportional to the action 
along the corresponding (semiclassical) trajectory γi on which the 
particle moves. For a free particle on an arbitrary space–time back-
ground, the action can be written in terms of the proper time τ that 
elapsed during the travel, S mci i= 2− ∫g td . $is might suggest that 
the measurement of ∆Φ is an experimental demonstration of the 
general relativistic time dilation.

$ere is, however, a conceptual issue in interpreting experiments 
measuring a gravitationally induced phase shi% as tests of the rela-
tivistic time dilation. $e action Si above can be written in terms of 
an e"ective gravitational potential on a !at space–time. $us, all 
the e"ects resulting from such an action are fully described by the 
Schödinger equation with the corresponding gravitational potential 
and where the time evolution is given with respect to the global time. 
Note that a particle in a #eld of arbitrary nature is subject to a Hamil-
tonian where the potential energy is proportional to the #eld’s charge 
and a position-dependent potential. $erefore, even in a homogene-
ous #eld, the particle acquires a trajectory-dependent phase although 
the force acting on it is the same at any point—the phase arises only 
because of the potential. For a homogeneous electric #eld, this rela-
tive phase is known as the electric Aharonov–Bohm e"ect5. $e case 
of Newtonian gravity is directly analogous—the role of the particle’s 
electric charge and of the Coulomb potential are taken by the par-
ticle’s mass and the Newtonian gravitational potential, respectively 6. 
All quantum interferometric experiments performed to date (see for 
example, refs 7–9) are fully explainable by this gravitational analogue 
of the electric Aharonov–Bohm e"ect. Moreover, even if one includes 
non-Newtonian terms in the Hamiltonian, this dichotomy of interpre-
tations is still present. Again, one can interpret the phase shi% ∆Φ as 
a type of an Aharanov–Bohm phase, which a particle moving in a !at 
space–time acquires because of an e"ective, non-Newtonian, gravita-
tional potential (at least for an e"ective gravitational potential arising 
from the typically considered Kerr or Schwarzschild space–times).

(1)(1)

(2)(2)

Here we predict a quantum e"ect that cannot be explained with-
out the general relativistic notion of proper time and thus show how 
it is possible to unambiguously distinguish between the two inter-
pretations discussed above. We consider a Mach–Zehnder interfer-
ometer placed in the gravitational potential and with a ‘clock’ used 
as an interfering particle. By ‘clock’ we mean some evolving internal 
degree of freedom of the particle. If there is a di"erence in proper 
time elapsed along the two trajectories, the ‘clock’ will evolve into 
di"erent quantum states for the two paths of the interferometer.  
Because of quantum complementarity between interference and 
which-path information the interferometric visibility will decrease 
by an amount given by the which-way information accessible from 
the #nal state of the clock10–12. Such a reduction in the visibility is a 
direct consequence of the general relativistic time dilation, which 
follows from the Einstein equivalence principle. Seeing the Ein-
stein equivalence principle as a corner stone of general relativity, 
observation of the predicted loss of the interference contrast would 
be the #rst con#rmation of a genuine general relativistic e"ect in 
quantum mechanics.

One might sustain the view that the interference observed with 
particles without evolving degrees of freedom is a manifestation of 
some intrinsic oscillations associated with the particle and that such 
oscillations can still be seen as the ticking of a clock that keeps track 
of the particle’s time. If any operational meaning was to be attributed 
to this clock, it would imply that which-way information is, in prin-
ciple, accessible. One should then either assume that proper time is 
a quantum degree of freedom, in which case, there should be a drop 
in the interferometric visibility, or that the quantum complementa-
rity relation (between which-path information and interferometric 
visibility) would be violated when general relativistic e"ects become 
relevant. Our proposed experiment allows to test these possibilities. 
$e hypothesis that proper time is a degree of freedom has indeed 
been considered in various works13–15.

$e above considerations are also relevant in the context of 
the debate over ref. 16 (determination of the gravitational redshi% 
by reinterpreting interferometric experiment9 that measured the  
acceleration of free fall). It was pointed out in refs 17–20 that only 
states non-trivially evolving in time can be referred to as ‘clocks’. In 
ref. 18, the interference in such a case was discussed, however, the 
role of the interferometric visibility as a witness of proper time in 
quantum mechanics and as a tool to test new hypotheses has not 
been previously considered.
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Figure 1 | Mach–Zehnder interferometer in the gravitational field. 
The setup considered in this work consists of two beam splitters (BS), a 
phase shifter (PS) and two detectors D ± . The PS gives a controllable phase 
difference ϕ between the two trajectories γ1 and γ2, which both lie in the x − y 
plane. A homogeneous gravitational field (g) is oriented antiparallel to the 
x direction. The separation between the paths in the direction of the field is 
∆h. General relativity predicts that the amount of the elapsed proper time is 
different along the two paths. In our approach, we will consider interference 
of a particle (which is not in free fall) that has an evolving internal degree 
of freedom that acts as a ‘clock’. Such an interference experiment will 
therefore not only display a phase shift, but also reduce the visibility of the 
interference pattern to the extent to which the path information becomes 
available from reading out the proper time of the ‘clock’.

show, in Supplemental Material [31], that off-diagonal
terms between coherent states (a signature of the quantum
superposition principle) of the Newtonian gravitational
field are necessary for the development of the entanglement
between the test masses.
Our proposal relies on two simple assumptions: (a) the

gravitational interaction between two masses is mediated
by a gravitational field (in other words, it is not a direct
interaction at a distance) and (b) the validity of a central
principle of quantum information theory: entanglement
between two systems cannot be created by local operations
and classical communication (LOCC) [38]. It can readily
be proved that, in the absence of closed timelike loops [39]
(i.e., under the assumption of validity of the chronology
protection conjecture [40]) and as long as the notion of
classicality itself is not extended significantly [41], LOCC
keeps any initially unentangled state separable. Translating
to our setting of two test masses in adjacent interferometers
any external fields (including the gravitational fields from
other masses around them) can only make LOs on their
states, while a classical gravitational field propagating
between the test masses can only give a CC channel
between them. These LOCC processes cannot entangle
the states of the masses. Thus it immediately follows that
if the mutual gravitational interaction entangles the state of
two masses, then the mediating gravitational field is
necessarily quantum mechanical in nature.

Entanglement due to gravitational interaction.—We first
consider a schematic version that clarifies how the states of
two neutral test masses 1 and 2 (masses m1 and m2), each
held steadily in a superposition of two spatially separated
states jLi and jRi as shown in Fig. 1(a) for a time τ, get
entangled. Imagine the centers of jLi and jRi to be
separated by a distance Δx, while each of the states jLi
and jRi is a localized Gaussian wave packet with widths
≪ Δx so that we can assume hLjRi ¼ 0. There is a
separation d between the centers of the superpositions as
shown in Fig. 1(a) so that even for the closest approach of
the masses (d − Δx), the short-range Casimir-Polder force
is negligible. Distinct components of the superposition
have distinct gravitational interaction energies as the
masses are separated by different distances and thereby
have different rates of phase evolution. Under these
circumstances, the time evolution of the joint state of the
two masses is purely due to their mutual gravitational
interaction, and given by

jΨðt ¼ 0Þi12 ¼
1ffiffiffi
2

p ðjLi1 þ jRi1Þ
1ffiffiffi
2

p ðjLi2 þ jRi2Þ ð1Þ

→ jΨðt ¼ τÞi12 ¼
eiϕffiffiffi
2

p
"
jLi1

1ffiffiffi
2

p ðjLi2 þ eiΔϕLR jRi2Þ

þ jRi1
1ffiffiffi
2

p ðeiΔϕRL jLi2 þ jRi2Þ
#
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where ΔϕRL ¼ ϕRL − ϕ, ΔϕLR ¼ ϕLR − ϕ, and

ϕRL ∼
Gm1m2τ
ℏðd − ΔxÞ

; ϕLR ∼
Gm1m2τ
ℏðdþ ΔxÞ

;

ϕ ∼
Gm1m2τ

ℏd
:

One can now think of each mass as an effective “orbital
qubit” with its two states being the spatial states jLi and
jRi, which we can call orbital states. As long as
1=

ffiffiffi
2

p
ðjLi2 þ eiΔϕLR jRi2Þ and 1=

ffiffiffi
2

p
ðeiΔϕRL jLi2 þ jRi2Þ

are not the same state (which is very generic, happening
for any ΔϕLR þ ΔϕRL ≠ 2nπ, with integral n), it is clear
that the state jΨðt ¼ τÞi12 cannot be factorized and is
thereby an entangled state of the two orbital qubits.
Witnessing this entanglement then suffices to prove that
a quantum field must have mediated the gravitational
interaction between them.
It makes sense to start with particles of the largest

possible masses, namely, m1 ∼m2 ∼ 10−14 kg for which
there have already been realistic proposals for creating
superpositions of spatially separated states such as jLi and
jRi [26]. Note that we are constrained to design an
experiment in which only the gravitational interaction is
active. This means that the allowed distance of closest
approach is d − Δx ≈ 200 μm, which is the distance at
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FIG. 1. Adjacent interferometers to test the quantum nature of
gravity: (a) Two test masses held adjacently in superposition of
spatially localized states jLi and jRi. (b) Adjacent Stern-Gerlach
(SG) interferometers in which initial motional states jCij of
masses are split in a spin dependent manner to prepare states
jL;↑ij þ jR;↓ij (j ¼ 1, 2). Evolution under mutual gravitational
interaction for a time τ entangles the test masses by imparting
appropriate phases to the components of the superposition. This
entanglement can only result from the exchange of quantum
mediators—if all interactions aside gravity are absent, then this
must be the gravitational field (labeled h00 where hμν are weak
perturbations on the flat space-time metric ημν). This entangle-
ment between test masses evidencing quantized gravity can be
verified by completing each interferometer and measuring spin
correlations.
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Post-Newtonian gravity + QM?
• Previously

• Only Newtonian (with few exceptions)
• Low-energy regime accessible in laboratories

• But if restricted in the Newtonian regime
✘ “Dynamical” aspects of gravity
✘ Quantumness of gravity ⇒ quantumness of spacetime

• Detectability of QM+gravity ?  in a regime where
• Lower-order post-Newtonian effect
• Relatively low-energy scale



Outline of this research

Interferometric 
visibility

Gravity mediated 
entanglement

Quantum
Equivalence 

principle

Gravitomagnetic clock effect
(post-Newtonian)

Quantum clock interferometry



Gravitomagnetic clock effect
• Frame dragging

• Spacetime around a rotating mass is “dragged” 
(Lense-Thirring 1918)

• Genuinely post-Newtonian effect
• Caused by 𝑔!" ≠ 0

• Gravitomagnetic clock effect
• Proper time: corotating<counterrotating

− 𝑐𝑑𝜏 ! ≈ − 1 −
2𝐺𝑀
𝑐!𝑟

𝑐𝑑𝑡 ! + 1 +
2𝐺𝑀
𝑐!𝑟

𝑑𝑟! + 𝑟! 𝑑𝜃! + sin 𝜃! 𝑑𝜙! −
4𝐺𝐽
𝑐"𝑟

sin 𝜃! 𝑐𝑑𝑡 𝑑𝜙

Schwarzschild components (⊃Newtonian) Frame dragging

Spacetime metric at a distance from the source:  

𝜏! 𝜏"
𝐽



• Setup:
• Mach-Zehnder type interferometry
• Quantum clock particle
• Source mass is rotating in a fixed direction

Interferometric visibility experiment
(An extension of IV experiment in homogeneous gravity by Zych et al. Nat. Comm. 2, 505 (2011) )

𝐿′ 𝑅′



• Setup:
• Mach-Zehnder type interferometry
• Quantum clock particle
• Source mass is rotating in a fixed direction

• Idea:
• Interference pattern as a function of width 𝑤
• Gravitomagnetic clock effect 𝜏# > 𝜏$,     ≠
• Which-path information → visibility modulation

• Point:
• Newtonian contributions cancel.

→ Any observed effect is post-Newtonian.

Interferometric visibility experiment
(An extension of IV experiment in homogeneous gravity by Zych et al. Nat. Comm. 2, 505 (2011) )

𝜏! 𝜏"
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• Description of the clock:
• Rest Hamiltonian '𝐻%&'( = 𝐸) ⟩𝑔 ⟨𝑔 + 𝐸& ⟩𝑒 ⟨𝑒
• Initial state | ⟩) ,| ⟩&

-

• Evolution of Internal State:
• 𝑈# = exp .

"ℏ
'𝐻%&'(𝜏# , 𝑈$ = exp .

"ℏ
'𝐻%&'(𝜏$

• Relative evolution 𝑈#0𝑈$ = exp .
"ℏ
'𝐻%&'(Δ𝜏

• Δ𝜏 ≡ 𝜏# − 𝜏$ =
.1234
5#6

(post-Newtonian)

• Detection Probabilities:
• Pr 𝐿′ = .

-
1 + cos ∆8∆9

ℏ
cos

:8∆9
ℏ

• Pr 𝑅′ = .
-
1 − cos ∆8∆9

ℏ
cos

:8∆9
ℏ

Interference pattern

Δ𝐸 ≡ 𝐸$ − 𝐸%, /𝐸 ≡
𝐸% + 𝐸$

2
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𝑤′ ≡ !!"
#$%&'

Pr
𝐿′ Δ𝐸 = 0

Δ𝐸 = 𝐸/24



GME experiment
• Setup:

• Source mass is in a superposition of opposite rotational 
directions | ⟩↻ ,| ⟩↺

-
• Proper times 𝜏#, 𝜏$ depend on the rotational directions

→ entanglement b/w source & clock particle
• Field-disentangling scheme

(Higgins et al. PRD 110, L101901 (2024))

• Assumptions:
• “superposition of classical gravitational fields”   

(Giacomini et al. arXiv:2012.13754 (2020))
• Negligible backaction of the clock



Entanglement generation

• ℰ=|>? = 𝐻 Pr 𝐿′ , Pr 𝑅′

• ℰ=|> = 𝐻 .
-
± .
-
1 − cos ∆8∆9

ℏ
sin

:8∆9
ℏ

-

• If Δ𝐸 = 0 :  ℰ=|>? = ℰ=|> = 𝐻 .
-
± .
-
cos

:8∆9
ℏ

• (𝐻: Shannon entropy)

| ⟩↻ + | ⟩↺
2

| ⟩𝐿 + | ⟩𝑅
2

| ⟩𝑔 + | ⟩𝑒
2

Source

Path
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QEP in nonstatic spacetime
• Time evolution of the clock particle: “Routhian”

• Internal DoF → Hamiltonian, External DoF → Lagrangian
• "𝑅 = %𝐻2345

67
65
= %𝐻2345 1 − 83

93
+ :
93
− :3

94
− ∑;

<56
9<55

6=6

65

• Test theory: "𝑅 = %𝐻> 1 − 83

93
+ :
93
− :3

94
− %𝐻? ∑;

<56
9<55

6=6

65

• QEP in nonstatic spacetime
• %𝐻> = %𝐻?, in particular %𝐻>, %𝐻? = 0

Frame
dragging

Gravitational
redshift

Time
dilation

(An extension of QEP in static spacetime by Zych et al. Nat. Phys. 14, 1027 (2018))

QEP holds in Newtonian limit

QEP ensures
geometric picture of

gravity



QEP violations in clock interferometry
• Evolution of Internal State

• Hamiltonians '𝐻@ = 𝐸) ⟩𝑔 ⟨𝑔 + 𝐸& ⟩𝑒 ⟨𝑒 , '𝐻A = 𝐸) ⟩𝑔′ ⟨𝑔′ + 𝐸& ⟩𝑒′ ⟨𝑒′
• Initial state ⟩𝑔 = cos𝜃 ⟩𝑔B + 𝑒"C sin𝜃 | ⟩𝑒′
• Relative evolution 𝑈#0𝑈$ ≈ exp .

"ℏ
'𝐻AΔ𝜏

• '𝐻@, '𝐻A ≠ 0 ⟺ 𝑔 𝑈#
0𝑈$ 𝑔 < 1

Interferometric visibility GME
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Gravity is
✓ quantum
✗ spacetime geometry



Feasibility?
• Back-of-the-envelope calculation

• Typical transition frequency of quantum clock: D8
ℏ
~10.E

• Typical rest-mass energy of quantum clock: 8
ℏ
~10-1

• The width of the interferometer 𝑤~1𝑚𝑚
• Angular momentum of the source 𝐽
• Amplitude modulation ∆8∆9

ℏ
~𝐽 L 10F-1, phase shift :8∆9

ℏ
~𝐽 L 10F.E

• Cf. Earthʼs angular momentum 𝐽 ∼ 10GG

The effect is too small in any realistic parameter regions.
No more than gedankenexperiment!



What does the unfeasibility possibly mean?
1. Our scheme is not good.

→ Alternative experimental scheme would be necessary.

2. Quantum nature of post-Newtonian gravity cannot be detected 
at low energy (even if Newtonian gravity can be).
→ High-energy experiment is necessary.

3. Post-Newtonian gravity is classical (even if Newtonian gravity is 
quantum).
→ Quantumness of gravity is regime-dependent.



Summary
What we have done:
• Proposed an experimental schemes to detect post-Newtonian gravitational 

effect in quantum clock interferometry
• Interferometric visibility / GME / quantum equivalence principle
• The effects are too small to be detected in realistic scenario
• Discussed possible interpretations of the unfeasibility

Related researches:
• Interferometric detection of QCE by spin ½ particle

(Basso&Maziero GRG 53, 70 (2021))
• Gravitational interaction between angular momenta to mediate entanglement

(Lantaño et al. arXiv:2409.01364)
• Post-Newtonian gravitational effects from delocalized quantum source 

(Chen&Giacomini arXiv:2402.10288)

arXiv:2506.15014



GME Experiment: Assumptions

• Distinguishable states of the gravitational field are 
assigned different quantum state vectors.

• Each well-defined gravitational field is described by 
general relativity. 

• The superposition principle holds for such 
gravitational fields. 

(Adaptation from Giacomini et al. arXiv:2012.13754 (2020))


