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Set up: study neutrinos with a gravitational wave background
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Motivation

▶ Neutrino oscillations: topic of current research in astroparticle
physics

▶ Interaction with environment may alter the oscillation
behaviour

▶ Neutrinos have energy → interact with gravity → investigate
gravity as environment

▶ Understanding these effect may help to:
▶ Enhance understanding of neutrino oscillations
▶ Gain insight into gravitational wave environments
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Setting the Stage

▶ Previous studies primarily use phenomenological models 2

→ less trackable connection to underlying microscopic model

▶ Our approach: derive decoherence parameters from
microscopic model

▶ Road Map:
▶ Interpretation of the system within an open quantum system

framework
▶ Construct microscopic model
▶ Derive master equation within this framework
▶ Identify decoherence parameters
▶ Analyse the neutrino oscillation probabilities

2[Ellis, Lopez, Mavromatos, Nanopoulos 1996], [Benatti, Floreanini 1999], [Lisi, Marrone, Montanino
2000],[Guzzo, de Holanda, Oliveira 2016], [Gomes, Forero, Guzzo, de Holanda, Oliveira 2019]
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Open quantum systems approach

▶ We are mainly interested in the neutrino oscillation system ρ̂S
→ use open quantum system approach

Neutrinos + Gravitational waves

Closed system

Neutrinos

Gravitational waves

Open system

▶ Hamiltonian

Ĥ = ĤS + ĤE + Ĥint, Ĥint = ηÂS ⊗ B̂E (1)

▶ Tracing out environmental degrees of freedom → master
equation
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▶ Tracing out environmental degrees of freedom → master
equation

5 / 21



Open quantum systems approach

▶ Master equation: evolution of the neutrino oscillation system
under the effective influence of the environment

∂

∂t
ρ̂S(t) = − i

ℏ

[
ĤS + Ĥadd, ρ̂S(t)

]
+D[ρ̂S(t)] (2)

▶ Dissipator D[ρ̂S] encodes decoherence and dissipation effects
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Microscopic model for gravitationally induced decoherence

Field theory perspective:

▶ Assume system forces to be way stronger than gravity →
weak coupling → linearised gravity

▶ Use inspiration from field-theoretic models (scalar3- or
vectorfield4)

Quantum mechanical microscopic model:

▶ ĤE: Mimic the gravitational wave background by N uncoupled
harmonic oscillators5

▶ Ĥint: Linearised Einstein equation: Ĥint=̂δĥµν ⊗ T̂µν

▶ mimic perturbed metric by position operator q̂
▶ ĤS as substitute for T̂µν

3
[Oniga, Wang 16], [Anastopoulos, Hu 13], [Fahn, Giesel, Kobler 22], [Fahn, Giesel, 24]

4
[Lagouvardos, Anastopoulos 21],[Fahn, Giesel, Kemper 25]

5
[Blencowe, Xu ’22]
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▶ ĤS as substitute for T̂µν

3
[Oniga, Wang 16], [Anastopoulos, Hu 13], [Fahn, Giesel, Kobler 22], [Fahn, Giesel, 24]

4
[Lagouvardos, Anastopoulos 21],[Fahn, Giesel, Kemper 25]

5
[Blencowe, Xu ’22]

7 / 21



Microscopic model for gravitationally induced decoherence

Field theory perspective:

▶ Assume system forces to be way stronger than gravity →
weak coupling → linearised gravity

▶ Use inspiration from field-theoretic models (scalar3- or
vectorfield4)

Quantum mechanical microscopic model:
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Microscopic model for gravitationally induced decoherence
▶ ĤE: Mimic the thermal gravitational wave background by N

uncoupled harmonic oscillators6

▶ Ĥint: Linearised Einstein equation: Ĥint=̂δĥµν ⊗ T̂µν

▶ mimic perturbed metric by position operator q̂
▶ ĤS as substitute for T̂µν

Ĥtot =ĤS + ĤE + Ĥint

= ĤS︸︷︷︸
neutrinos

+
1

2

N∑
i=1

[
p̂2i + ω2

i q̂
2
i

]
︸ ︷︷ ︸
gravitational waves

− ηĤS ⊗
N∑
i=1

q̂i︸ ︷︷ ︸
interaction

(3)

6
[Blencowe, Xu ’22]
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Derivation of the master equation

▶ Assumptions
▶ Weak coupling
▶ Gravitational waves follow a Bose-Einstein distribution with

temperature parameter T
▶ Environmental correlation functions satisfy second Markov

approximation

▶ Master equation (Lindblad form)

d

dt
ρ̂S(t) =− i

ℏ

[
ĤS , ρ̂S(t)

]
+
8η2

ℏ2
kBT

ℏ

(
ĤS ρ̂S(t)ĤS − 1

2

{
Ĥ2
S , ρ̂S(t)

}) (4)

▶ Free parameters: T, η=̂coupling parameter

9 / 21



Derivation of the master equation

▶ Assumptions
▶ Weak coupling
▶ Gravitational waves follow a Bose-Einstein distribution with

temperature parameter T
▶ Environmental correlation functions satisfy second Markov

approximation

▶ Master equation (Lindblad form)

d

dt
ρ̂S(t) =− i

ℏ

[
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2

{
Ĥ2
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Neutrino oscillations

▶ Neutrinos are created and interact as distinct flavour states
|να⟩

▶ Propagate in the mass basis |νi ⟩, connected to the flavour
basis by a unitary transformation |να⟩ = Uαi |νi ⟩
(PMNS-matrix)

▶ Oscillation formula (relativistic neutrinos)

P(να → νβ) =
∑
ij

UαiU
∗
αjU

∗
βiUβje

−i
∆m2

ij L

2E
−ΓijL (5)

▶ Observed oscillations depend on mass differences
∆m2

ij = m2
i −m2

j
▶ Environmental coupling can lead to a damping
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Neutrino setup

▶ Relativistic neutrinos that travel through earth with three
flavours

▶ Hamiltonian

ĤS = Ĥvac + Û†ĤmatÛ (6)

Ĥvac =

E1 0 0
0 E2 0
0 0 E3

 = E13 +
c4

6E

−∆m2
21 −∆m2

31 0 0
0 ∆m2

21 −∆m2
32 0

0 0 ∆m2
31 +∆m2

32


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31 0 0
0 ∆m2

21 −∆m2
32 0

0 0 ∆m2
31 +∆m2

32


▶ Matter part: PREM Model7 takes varying electron density Ne

of the different layers of the Earth into account

Ĥmat =±
√
2GfNe

1 0 0
0 0 0
0 0 0

 (8)

7
[Dziewonski, Anderson 1981]
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Results

▶ Solution of the master equation

ρij(t) =ρij(0) · e−
i
ℏ(Hi−Hj)t−

4η2kBT

ℏ3 (Hi−Hj)
2
t microscopic model

Hi ≈Emean +
m2

i c
4

2Emean
ultra relativistic neutrinos

▶ Damping dependents on energy squared differences (Hi −Hj)
2

scaled by 4η2kBT
ℏ3

▶ Free parameters
▶ T: ”temperature” parameter characterising the gravitational

waves environment
▶ η: coupling strength
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Phenomenological models

▶ Often: starting point Lindblad equation8

d

dt
ρ̂S(t) = − i

ℏ

[
ĤS , ρ̂S(t)

]
+
∑
i ,j

aij

(
L̂iS ρ̂S(t)L̂

j
S − 1

2

{
L̂iS L̂

j
S , ρ̂S(t)

})

▶ Equation is solved by

ρij(t) =ρij(0) · e−
i
ℏ(H

i
S−H j

S)t−γijE
n
vact (9)

▶ Energy dependence: vacuum energy
Evac, n ∈ {−2, 1, 0, 1, 2, 3}

▶ decoherence parameters γij : 3 independent parameters if

energy conservation holds ([ĤS , L̂
i
S ] = 0)

▶ n, γij are postulated

8[Ellis, Lopez, Mavromatos, Nanopoulos 1996], [Benatti, Floreanini 1999], [Lisi, Marrone, Montanino
2000],[Guzzo, de Holanda, Oliveira 2016], [Gomes, Forero, Guzzo, de Holanda, Oliveira 2019]
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Results: Comparison to phenomenological models

▶ Solution of the master equation (Hi ≈ Emean +
m2

i c
4

2Emean
)

ρij(t) =ρij(0) · e−
i
ℏ(Hi−Hj)t−

4η2kBT

ℏ3 (Hi−Hj)
2
t microscopic model

ρij(t) =ρij(0) · e−
i
ℏ(Hi−Hj)t−γijE

n
vact phenomenological models

▶ In vaccum: match for γij =
η2c8kBT

ℏ3 (∆m2
ij)

2 and n = −2

▶ In matter: damping depends on the electron density of the
different earth layers

▶ Oscillation probabilities (L = ct)

P(να → νβ) =
∑
ij

UαiU
∗
αjU

∗
βiUβje

−i
∆m2

ij L

2E
− η2c8kBT

ℏ3E2 (∆m2
ij )

2L
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Results: Oscillation probabilities

▶ Oscillation probabilities (for T = 0.9K , η = 10−8s, n = 2 and
fitting values for γij using PREM9 and OscProb10)

4000 6000 8000 10000 12000

Baseline (km)

0.0

0.2

0.4

0.6

0.8

1.0

) µν
→ µν

P
(

E
ar

th
 c

or
e

E = 4 GeV

Std.

PQD

GQD

▶ In vacuum: match with certain phenomenological models

▶ In matter: no match possible with phenomenological models
with constant decoherence parameters

9
[Dziewonski, Anderson 1981]

10
[Coelho et al. 24]
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Conclusion

▶ Investigated gravitationally induced decoherence in neutrino
oscillations based on a specific microscopic toy model
▶ Microscopic model inspired by linearised gravity and QFT
▶ Derived a master equation of Lindblad form
▶ Only two free parameters

▶ Comparison with phenomenological models
▶ In vacuum: decoherence parameters match phenomenological

models, with certain energy dependence
▶ Non-vacuum: decoherence parameters depend on matter

effects in contrast to many phenomenological models
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Outlook

More experimental perspective:

▶ Establish experimental bounds on the decoherence parameters
using experimental data

▶ First bounds set using the KamLAND experiment and the
corresponding phenomenological models11

More theoretical perspective:

▶ Full field theoretic model

▶ Study different quantisation techniques, like polymere QM
(LQG inspired quantisation)

11
[Romeri, Giunti, Stuttard, Ternes 2023]
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Results: upper bounds for free parameter?

▶ Similar set up in the KamLAND experiment
→ bounds reported in [Romeri, Giunti, Stuttard, Ternes 2023]
can be translated into constraints onto T , η

10 9 10 8 10 7

 (s)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T 
(K

)

Upper limits from KamLAND (90% C.L.)
21 = 7.9 10 27GeV, n = 2

▶ grey area excluded

19 / 21



Lamb shift renormalisation

▶ Master equation includes Lamb shift contribution

d

dt
ρ̂S(t) =− i

ℏ

[
ĤS , ρ̂S(t)

]
+
iΩη2

ℏ2
[
ĤS, ρ̂S

]
+ D[ρ̂S] (10)

▶ Depends on the cut off frequency Ω, where Ω → ∞
▶ Field theorie12: Correspond to a vacuum effect which needs to

be renormalised

▶ Introduce counter term in Ĥtot to deal with this divergence

ĤC =
1

ℏ

∞∫
0

dω
J(ω)

ω
H2
S =

Ωη2

ℏ
ĤS (11)

with the spectral density J(ω)

12
[Fahn, Giesel, 24]
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First approximation and interpretation of the free parmeters

▶ η (comparison with field theoretical models13)
▶ Around 10−42s, which is near Planck scale.

▶ T (cosmological motivated 14)
▶ Radiation-dominated era before inflation → thermal

gravitational wave background
▶ Thermal gravitational wave background from graviton

decoupling at T ∼ TPlanck

▶ Black-body spectrum preserved; temperature redshifts with
expansion

▶ Present-day estimate: Tgw ≃ 0.9K < Tγ ≃ 2.72K

13[Oniga, Wang 16], [Anastopoulos, Hu 13], [Fahn, Giesel, Kobler 22], [Fahn, Giesel, 24], [Lagouvardos,
Anastopoulos 21],[Fahn, Giesel, Kemper 25]

14
[Kolb, Turner 90], [Gasperini, Giovannini, Veneziano 93], [Giovannini 19]
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