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We will focus here on deformations of the energy composition law
(p ⊕ q)0 = p0 + q0 +

1
κ

⃗p ⋅ ⃗q

(p ⊕ q)i = pi + qi + 𝒪(κ−1)
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When particles interact gravitationally, the uncertainty in the 
position reflects in entanglement generation due to gravity.
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Does uncertainty in the direction of momenta reflect 
in entanglement due to a deformed composition law?

Entangled

κ−1 ⃗p ⋅ ⃗q
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Two-Particle Toy Model (1 Dimension)

Let us call . The Hamiltonian of 2 particles readκ−1 = ℓ

 is the Hamiltonian of a single particle and  is the momentum components operator that we should defineH0 Pi

Suppose that each particle is a two-level system, for example 
defined by a non-minimal coupling with an electromagnetic field

The undeformed two-particle state is described by two indices , that can assume values | ij⟩ {0,1}

For the deformed case we have also two directions in momenta. 
Our system needs four indices for the energies and directions , where | i, j, α, β⟩ {α, β} = { + − }





The momentum of each particle is defined by the dispersion relation 
p = 2mE



The momentum of each particle is defined by the dispersion relation 
p = 2mE

Usually, the ground state is an even function of the momentum and the first excited one is an odd function



The momentum of each particle is defined by the dispersion relation 
p = 2mE

Usually, the ground state is an even function of the momentum and the first excited one is an odd function

This means that the state  is well localized in the  brach, while 
 is well localized in the  branch

|0⟩ + |1⟩ p > 0
|0⟩ − |1⟩ p < 0



The momentum of each particle is defined by the dispersion relation 
p = 2mE

Usually, the ground state is an even function of the momentum and the first excited one is an odd function

This means that the state  is well localized in the  brach, while 
 is well localized in the  branch

|0⟩ + |1⟩ p > 0
|0⟩ − |1⟩ p < 0

The eigenstates of the “momentum direction” can be approximated by | ± ⟩ ≈
|0⟩ ± |1⟩

2



The momentum of each particle is defined by the dispersion relation 
p = 2mE

Usually, the ground state is an even function of the momentum and the first excited one is an odd function

This means that the state  is well localized in the  brach, while 
 is well localized in the  branch

|0⟩ + |1⟩ p > 0
|0⟩ − |1⟩ p < 0

The eigenstates of the “momentum direction” can be approximated by | ± ⟩ ≈
|0⟩ ± |1⟩

2

The operator that has  as eigenstates is the -Pauli matrix | ± ⟩ x σx
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Hamiltonian of our model

Reference energy Momenta directionsModuli of momentaEnergy shift of the two-level system

This is a  matrix, which can be cast in block-X shape16 × 16

Each block  is a  matrix of the kindHab 4 × 4

Similar to the Ising model from condensed matter
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Lindblad Evolution

Due to the quantum algebra, this system behaves as an 
open quantum system 
[Arzano, PDR (2014)]  
[Arzano, D’Esposito, Gubitosi, Comm. Phys. (2023)]

The momentum operator of this two-particle system

+

The Lindblad equation can be written as 4 blocks of X-shaped matrices
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There is  chance for each value of  with elements25 % {a, b}

We considered the initial state

which when  is unentangled, and when  is maximally entangled (Bell state).θ = 0 θ =
π
4

Lindblad equation for each of the 4 
subsystems
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Entanglement generation

Entanglement from concurrence 

For , we observe entanglement generation due to the 
quantum algebra effect encoded in the deformed 
composition law

θ = 0

The modified composition law creates entanglement 
while the Lindblad evolution destroys it.
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Coherence

Discord

Entanglement

We have a competition between the 

action of the deformed Hamiltonian, and 

due to the Lindblad-like contact of the 

quantum system with the “quantum 

spacetime environment”

Other quantum correlations (coherence and quantum discord)
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A pair of ions with mass of the order  eV [Krutyanskiy et al., PRL (2022)], and energy scale of the order  
eV,  eV, the entanglement time scale is  min (grows to a few hours if )

m ∼ 1010 E ∼ 1
EQG = EP ∼ 1028 Tent ≈ 3 EQG ∼ NEP

Long lived qubits may be an interesting opportunity to test modified composition laws.

This needs to be further analyzed… we should further explore this scenario in the future

Modified composition laws can leave apparently non-local imprints in quantum systems.

Are these smoking guns of Deformed Relativity?

Take home message



Thank you!


