Free fields and discrete symmetries in k-Minkowski

Tadeusz Adach

Uniwersytet Wroctawski

in collaboration with Giacomo Rosati

July 10, 2025

ocoskE

EUROPEAN COOPERATION
IN SCIENCE & TECHNOLOGY




Motivation

@ We are interested in possible residual effects of quantum gravity in the flat
spacetime limit

General Relativity —— Special Relativity

flat limit
1 K?
. ?
Quantum Gravity? — Deformed SR?
at limit

@ Certain models (e.g. topological QG in 2+1 dimensions, some spin foam
models) predict effective noncommutativity of spacetime:

[, x] # 0
@ There are many different models of noncommutative spacetime - e.g.
Snyder spacetime, Moyal-Weyl spacetime, x-Minkowski, p-Minkowski...

@ The attractive feature of k-Minkowski is that it admits a relativistically
invariant length/energy/mass scale (characterized by &), which is a recurring
theme across many approaches to QG
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Motivation

@ Our aim is to look for phenomenological - perhaps testable -
implications

@ For this, we need to investigate how these deformed symmetries
would affect physical processes - hence, field theory

@ The focus will be on Noether analysis, CPT and their mutual
relationship (Jost-Whiteman-Greenberg theorem has been shown not
to hold in noncommutative spacetimel, so Lorentz invariance does
not necessarily imply CPT symmetry)

@ Before we delve into it, let's go over some basic definitions and
properties of k-Poincaré and x-Minkowski
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k-Poincaré and x-Minkowski

@ k-Minkowski is characterized by the commutation relations?

[Xovxj] = éxj7 [Xi,Xj] =0

e As k — 0o, commutative spacetime is restored (this principle extends
to virtually all formulas presented here)

e We will be focusing on the deformed symmetry group/algebra - the
k-Poincaré quantum group/Hopf algebra®

@ Since this structure is at the core of most of the results, let us briefly
review the Hopf algebra structure (at least the relevant parts)

2
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Translations as a Hopf algebra

@ Let’s think of the translation sector P of “ordinary” Poincaré ,
generated by 0,

@ A Hopf algebra is an algebra + additional structure

@ The algebra sector is completely intuitive - the product u allows us
to take 0,0, (commutative!)

@ The coalgebra sector is most easily understood through the action
on products:

6#(@#) = (0“¢)¢ + ¢(8u¢)
in other words, the coproduct A is

AP, =P, @1+1®P,

(cocommutative)
@ Now instead of thinking of a multiplicative inverse, we consider the
antipode map S, which satisfies

po(S®id)oA=po(id®S)oA =0, S(1)=1



Translations as a Hopf algebra

Schematically:



Translations as a Hopf algebra

Schematically:

W(Pa® S(1)+1®S(P,)) =P, -1+1-S(P,) =0



Translations as a Hopf algebra

Schematically:

S(Pu) 5(1)

w(S(P)@1+S1)®P,)=5P,)-1+1-P,=0



Translations as a Hopf algebra

This is of course trivially solved by S(P,)
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Hopf algebras in a nutshell

@ The product can be noncommutative
@ The coproduct can be noncocommutative
@ By extension, the antipode can be funky

@ As long as some axioms are satisfied (eg. associativity, coassociativity,
unit/counit properties...), we can have all kinds of funky structures



k-Poincaré in the classical basis
@ In the classical basis*®, the s-Poincaré algebra is just a central extension of
Poincaré with the central element P;,.
@ The coalgebra, on the other hand, is noncocommutative, with the
translation coproducts:

P, P =
APy =Py® =+ @ P+ P
K P+ P+

P
AP =Pj®—=+10 P

P+ ﬁ =g K
AP, =P, —— —QP—— QP
4 4D - P, ® P, ® Fo
where P, = Py + Py
@ Their antipodes are:
pe :
S(P)=—Pot 5 S(R)=-5-F  S(P)=PFs
+ +
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The Weyl map

@ We can take advantage of the fact that the Fourier transform is well
defined for functions of noncommutative coordinates (which we will
briefly denote by X) to construct the following map:

W (%) » f( f(x)

nc. Fourier transform inverse Fourier transform

@ W is not unique - it depends on the chosen kernel of the Fourier
transform - but the choice is inconsequential. We choose it to be
such that ‘

W (exp(ipi&’) exp(ipoX°)) = exp(ipux*)

@ The Weyl map gives rise to the x-product, which allows us to

capture noncommutativity while still using commutative variables:

frg =WW W ()

@ The x-product replaces all products of functions of x in the deformed
theory



Scalar field

@ In the classical basis, for any action we've come up with, the
mass-shell condition remains undeformed: p? = m?

@ We can thus take a look at the mode expansion of a scalar field in

k-Minkowski (wp = v/p? + m?):

d*p . .
_ —ipx T —iS(p)x
() / 2wppa)t [a"e +bsp)e }

o Compared to the undeformed case:

d3p . .
— P g eipx bT lpx:|
o) = [ 5.2 [sve "+ the
we see the basic features of x-deformed theory: a change in the
integration measure which comes from a second “shell” condition:
ps = Vm? + k2 and the splitting of momentum space into two
distinguished sectors: p and S(p)



Scalar field

@ Given the nature of the x-product, there are many possible choices for
the scalar field Lagrangian:

S(9,)0" x ")+ m*¢T x ¢

O x S(0,)p" + m*p* ¢t

Ot x S(0,)p + m*pT x ¢

Bt % 0,0 ¢ + m2pT x ¢

v

v vy VvYy

which are, in general, not equivalent

@ From the perspective of Poincaré symmetries, they display one
common property: in all the conserved charges, they assign
momentum p to one species of particle and —S(p) to the other,

e.g.
&p [pL i
P, _/2wp |:’£33;f)app“ — bs(p)bS(p)S(pu)

This assignment depends solely on the ordering in the Lagrangian.

TA, “Complex scalar field in x-Minkowski noncommutative spacetime,” [arXiv:2505.12115 [hep-th]].



Kk-momentum space

@ The two momentum spaces differ primarily in that S(p) is bounded
by , while p is unbounded®

@ This stems from the conditions ps > 0 and p, > 0 that have to be
imposed”’
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Dirac field

@ The same formalism can be applied to Dirac fields:

d’p - fs o~iS(p)

000 = [ gt [ -SG50

@ The range of Lagrangians to choose from is even bigger, but their
momentum properties are completely analogous to the scalar field - we
again have the same two momentum spaces determined by ordering

@ At face value, C-symmetry appears to be fundamentally violated in
k-field theory

TA, A. Bevilacqua, J. Kowalski-Glikman, G. Rosati and W. Wislicki , “x-deformed spin-1/2 field” (in preparation)



Charge conjugation

@ It's tempting to just sum two C-related Lagrangians to recover the
symmetry

@ This, somewhat surprisingly, breaks Poincaré invariance of the theory

@ The reason for this is related to how p and S(p) transform under
Lorentz. In k-Poincaré , S(p) is not a Lorentz vector, but it is an
S(Lorentz) vector® - remember we're in a Hopf algebra!

@ In effect, summing the Lagrangians gives us p + S(p) momenta, but
these don't transform as vectors under L, S(L) or L+ S(L)

8M. Arzano and J. Kowalski-Glikman, “Deformed discrete symmetries,” Phys. Lett. B (2016) [arXiv:1605.01181 [hep-th]]



Charge conjugation

@ It's tempting to just sum two C-related Lagrangians to recover the
symmetry

@ This, somewhat surprisingly, breaks Poincaré invariance of the theory

@ The reason for this is related to how p and S(p) transform under
Lorentz. In k-Poincaré , S(p) is not a Lorentz vector, but it is an
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C is actually incompatible with k-Poincaré
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Charge conjugation

@ It's tempting to just sum two C-related Lagrangians to recover the
symmetry

@ This, somewhat surprisingly, breaks Poincaré invariance of the theory

@ The reason for this is related to how p and S(p) transform under
Lorentz. In k-Poincaré , S(p) is not a Lorentz vector, but it is an
S(Lorentz) vector!? - remember we're in a Hopf algebra!

@ In effect, summing the Lagrangians gives us p + S(p) momenta, but
these don't transform as vectors under L, S(L) or L+ S(L)

@ C is actually incompatible with k-Poincaré
e Are we violating CPT? (if P and T are defined naively, yes)

1
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Discrete symmetries

e While the definition of C is quite natural (assuming CoC~1 = ot
automatically fixes Cap c1= bs(p)), the action of PT leaves some
room for artistic creativity

@ For instance, for time reversal we can start from several different
perspectives:

> it reverses time: (t,x) — (—t,x)

> it reverses momentum: p — —p

» a particle and its time reversed version should have zero total
momentum

> it conjugates plane waves: TeP*T~1 = g~ iPx = (e"pX)T

> it's antiunitary

@ In the deformed theory, these may lead to completely different
operations

o C is already deformed - why not P and T too?



Recovering CPT

@ If we focus on the wave conjugation property, we can actually
obtain an operation that's compatible with C.

@ Since in the deformed theory (/) = e*(P)* if T conjugates plane
waves, it replaces momenta with antipodes

@ Moreover, since S is an algebra antihomomorphism, i.e.
S(f xg) = S(g) = S(f), this also effectively switches the order in the
Lagrangian

o If P is undeformed, CPT becomes a symmetry of the theory
again!

S(0)0" * 06 > S(9,)0 06T =1 S(0")6T + Ot

TA, A. Bevilacqua and G. Rosati, “Asymmetry in momentum space: restoring CPT invariance in x-field theory” (in
preparation)



Conclusions

e r-field theory is, so far, self-consistent and Poincaré -invariant (unless
it isn't)

@ Charge conjugation symmetry is broken - great playground for
phenomenology!

@ CPT violation depends on exact definition - but CPT symmetry is
possible
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