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Motivation

We are interested in possible residual effects of quantum gravity in the flat
spacetime limit

General Relativity −−−−−→
flat limit

Special Relativity

↓ κ?

Quantum Gravity?
?−−−−−→

flat limit
Deformed SR?

Certain models (e.g. topological QG in 2+1 dimensions, some spin foam
models) predict effective noncommutativity of spacetime:

[xµ, xν ] ̸= 0

There are many different models of noncommutative spacetime - e.g.
Snyder spacetime, Moyal-Weyl spacetime, κ-Minkowski, ρ-Minkowski...

The attractive feature of κ-Minkowski is that it admits a relativistically
invariant length/energy/mass scale (characterized by κ), which is a recurring
theme across many approaches to QG
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Motivation

Our aim is to look for phenomenological - perhaps testable -
implications

For this, we need to investigate how these deformed symmetries
would affect physical processes - hence, field theory

The focus will be on Noether analysis, CPT and their mutual
relationship (Jost-Whiteman-Greenberg theorem has been shown not
to hold in noncommutative spacetime1, so Lorentz invariance does
not necessarily imply CPT symmetry)

Before we delve into it, let’s go over some basic definitions and
properties of κ-Poincaré and κ-Minkowski

1
A. Bevilacqua, J. Kowalski-Glikman and W. Wislicki, “κ-deformed complex scalar field: Conserved charges, symmetries,

and their impact on physical observables,” Phys. Rev. D (2022) [arXiv:2201.10191 [hep-th]]



κ-Poincaré and κ-Minkowski

κ-Minkowski is characterized by the commutation relations2

[x0, x j ] =
i

κ
x j , [x i , x j ] = 0

As κ→ ∞, commutative spacetime is restored (this principle extends
to virtually all formulas presented here)

We will be focusing on the deformed symmetry group/algebra - the
κ-Poincaré quantum group/Hopf algebra3

Since this structure is at the core of most of the results, let us briefly
review the Hopf algebra structure (at least the relevant parts)

2
S. Majid and H. Ruegg, “Bicrossproduct structure of kappa Poincare group and noncommutative geometry,” Phys. Lett.

B (1994) [arXiv:hep-th/9405107 [hep-th]]
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Translations as a Hopf algebra
Let’s think of the translation sector P of “ordinary” Poincaré ,
generated by ∂µ

A Hopf algebra is an algebra + additional structure

The algebra sector is completely intuitive - the product µ allows us
to take ∂µ∂ν (commutative!)

The coalgebra sector is most easily understood through the action
on products:

∂µ(ϕψ) = (∂µϕ)ψ + ϕ(∂µψ)

in other words, the coproduct ∆ is

∆Pµ = Pµ ⊗ 1+ 1⊗ Pµ

(cocommutative)

Now instead of thinking of a multiplicative inverse, we consider the
antipode map S , which satisfies

µ ◦ (S ⊗ id) ◦∆ = µ ◦ (id⊗ S) ◦∆ = 0, S(1) = 1



Translations as a Hopf algebra

Schematically:

Pµ 1

Pµ ∆ + µ 0

1 Pµ

µ(Pµ ⊗ S(1) + 1⊗ S(Pµ)) = Pµ · 1 + 1 · S(Pµ) = 0



Translations as a Hopf algebra

Schematically:

Pµ 1

Pµ ∆ + µ 0

S(1) S(Pµ)

µ(Pµ ⊗ S(1) + 1⊗ S(Pµ)) = Pµ · 1 + 1 · S(Pµ) = 0



Translations as a Hopf algebra

Schematically:

S(Pµ) S(1)

Pµ ∆ + µ 0

1 Pµ

µ(S(Pµ)⊗ 1+ S(1)⊗ Pµ) = S(Pµ) · 1 + 1 · Pµ = 0



Translations as a Hopf algebra

This is of course trivially solved by S(Pµ) = −Pµ:

−Pµ 1

Pµ ∆ + µ 0

1 Pµ

µ(S(P)⊗ 1+ S(1)⊗ P) = −P · 1 + 1 · P = 0



Hopf algebras in a nutshell

The product can be noncommutative

The coproduct can be noncocommutative

By extension, the antipode can be funky

As long as some axioms are satisfied (eg. associativity, coassociativity,
unit/counit properties...), we can have all kinds of funky structures



κ-Poincaré in the classical basis
In the classical basis45, the κ-Poincaré algebra is just a central extension of
Poincaré with the central element P4.

The coalgebra, on the other hand, is noncocommutative, with the
translation coproducts:

∆P0 = P0 ⊗
P+

κ
+

P⃗

P+
⊗ P⃗ +

κ

P+
⊗ P0

∆Pj = Pj ⊗
P+

κ
+ 1⊗ Pj

∆P4 = P4 ⊗
P+

κ
− P⃗

P+
⊗ P⃗ − κ

P+
⊗ P0

where P+ = P0 + P4

Their antipodes are:

S(P0) = −P0 +
P⃗2

P+
S(Pj) = − κ

P+
Pj S(P4) = P4

4
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The Weyl map

We can take advantage of the fact that the Fourier transform is well
defined for functions of noncommutative coordinates (which we will
briefly denote by x̂) to construct the following map:

W : f̂ (x̂) −−−−−−−−−−−−→
nc. Fourier transform

f̃ (p) −−−−−−−−−−−−−−→
inverse Fourier transform

f (x)

W is not unique - it depends on the chosen kernel of the Fourier
transform - but the choice is inconsequential. We choose it to be
such that

W(exp(ipj x̂
j) exp(ip0x̂

0)) = exp(ipµx
µ)

The Weyl map gives rise to the ⋆-product, which allows us to
capture noncommutativity while still using commutative variables:

f ⋆ g = W(W−1(f )W−1(g))

The ⋆-product replaces all products of functions of x in the deformed
theory



Scalar field

In the classical basis, for any action we’ve come up with, the
mass-shell condition remains undeformed: p2 = m2

We can thus take a look at the mode expansion of a scalar field in
κ-Minkowski (ωp =

√
p2 +m2):

ϕ(x) =

∫
d3p

2ωpp4/κ

[
ape

−ipx + b†S(p)e
−iS(p)x

]
Compared to the undeformed case:

ϕ(x) =

∫
d3p

2ωp

[
ape

−ipx + b†pe
ipx

]
we see the basic features of κ-deformed theory: a change in the
integration measure which comes from a second “shell” condition:
p4 =

√
m2 + κ2 and the splitting of momentum space into two

distinguished sectors: p and S(p)



Scalar field

Given the nature of the ⋆-product, there are many possible choices for
the scalar field Lagrangian:

▶ S(∂µ)ϕ
† ⋆ ∂µϕ+m2ϕ† ⋆ ϕ

▶ ∂µϕ ⋆ S(∂µ)ϕ
† +m2ϕ ⋆ ϕ†

▶ ∂µϕ† ⋆ S(∂µ)ϕ+m2ϕ† ⋆ ϕ
▶ ϕ† ⋆ ∂µ∂

µϕ+m2ϕ† ⋆ ϕ
▶ ...

which are, in general, not equivalent

From the perspective of Poincaré symmetries, they display one
common property: in all the conserved charges, they assign
momentum p to one species of particle and −S(p) to the other,
e.g.

Pµ =

∫
d3p

2ωp

[
p3

+

κ3
a†pappµ − b†S(p)bS(p)S(pµ)

]
This assignment depends solely on the ordering in the Lagrangian.

TA, “Complex scalar field in κ-Minkowski noncommutative spacetime,” [arXiv:2505.12115 [hep-th]].



κ-momentum space

The two momentum spaces differ primarily in that S(p) is bounded
by κ, while p is unbounded6

This stems from the conditions p4 > 0 and p+ > 0 that have to be
imposed7

6
L. Freidel, J. Kowalski-Glikman and S. Nowak, “Field theory on kappa-Minkowski space revisited: Noether charges and

breaking of Lorentz symmetry,” Int. J. Mod. Phys. A (2008) [arXiv:0706.3658 [hep-th]]
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Dirac field

The same formalism can be applied to Dirac fields:

ψ(x) =

∫
d3p

2ωpp4/κ

[
us(p)a

s
pe

−ipx + vs(−S(p))b†sS(p)e
−iS(p)x

]
The range of Lagrangians to choose from is even bigger, but their
momentum properties are completely analogous to the scalar field - we
again have the same two momentum spaces determined by ordering

At face value, C -symmetry appears to be fundamentally violated in
κ-field theory

TA, A. Bevilacqua, J. Kowalski-Glikman, G. Rosati and W. Wíslicki , “κ-deformed spin-1/2 field” (in preparation)



Charge conjugation

It’s tempting to just sum two C -related Lagrangians to recover the
symmetry

This, somewhat surprisingly, breaks Poincaré invariance of the theory

The reason for this is related to how p and S(p) transform under
Lorentz. In κ-Poincaré , S(p) is not a Lorentz vector, but it is an
S(Lorentz) vector8 - remember we’re in a Hopf algebra!

In effect, summing the Lagrangians gives us p + S(p) momenta, but
these don’t transform as vectors under L,S(L) or L+ S(L)

C is actually incompatible with κ-Poincaré

Are we violating CPT? (if P and T are defined naively, yes)

8
M. Arzano and J. Kowalski-Glikman, “Deformed discrete symmetries,” Phys. Lett. B (2016) [arXiv:1605.01181 [hep-th]]
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Discrete symmetries

While the definition of C is quite natural (assuming CϕC−1 = ϕ†

automatically fixes CapC
−1 = bS(p)), the action of PT leaves some

room for artistic creativity

For instance, for time reversal we can start from several different
perspectives:

▶ it reverses time: (t, x) → (−t, x)
▶ it reverses momentum: p → −p
▶ a particle and its time reversed version should have zero total

momentum
▶ it conjugates plane waves: Te ipxT−1 = e−ipx =

(
e ipx

)†
▶ it’s antiunitary
▶ ...

In the deformed theory, these may lead to completely different
operations

C is already deformed - why not P and T too?



Recovering CPT

If we focus on the wave conjugation property, we can actually
obtain an operation that’s compatible with C .

Since in the deformed theory (e ipx)† = e iS(p)x , if T conjugates plane
waves, it replaces momenta with antipodes

Moreover, since S is an algebra antihomomorphism, i.e.
S(f ⋆ g) = S(g) ⋆ S(f ), this also effectively switches the order in the
Lagrangian

If P is undeformed, CPT becomes a symmetry of the theory
again!

S(∂µ)ϕ
† ⋆ ∂µϕ

C−→ S(∂µ)ϕ ⋆ ∂
µϕ†

PT−−→ S(∂µ)ϕ† ⋆ ∂µϕ

TA, A. Bevilacqua and G. Rosati, “Asymmetry in momentum space: restoring CPT invariance in κ-field theory” (in
preparation)



Conclusions

κ-field theory is, so far, self-consistent and Poincaré -invariant (unless
it isn’t)

Charge conjugation symmetry is broken - great playground for
phenomenology!

CPT violation depends on exact definition - but CPT symmetry is
possible



Thank you


