

Universidad de Burgos Mathematical Physics Group

Revisiting noncommutative spacetimes from the relative locality principle

Javier Relancio

Departamento de Matemática Aplicada y Computación, Universidad de Burgos; CAPA, Universidad de Zaragoza

BridgeQG25

09/07/2025

Oncommutativity for two particles

2 DSR and relative locality

3 Noncommutativity for two particles

- Attempts of unification: string theory, loop quantum gravity, supergravity, causal set theory...
- In most of them a minimal length appears \implies Planck length (I_P) ?
- This is closely related to an energy scale \implies Planck energy (Λ)??
- Problem: there are no experimental evidences of a fundamental QGT

- $\bullet~\mbox{Classical spacetime} \rightarrow ``quantum'' spacetime$
- \bullet Symmetries? \to LI should be broken/deformed at Planckian scales
- New effects \rightarrow Micro black holes creation?
- Spacetime can be regarded as a "foam"

3 Noncommutativity for two particles

Simple κ -Poincaré kinematics [Carmona et al., 2019]

• Simple composition law of momenta

$$\left(
ho \oplus q
ight)_{\mu} =
ho_{\mu} + \left(1 +
ho_0 / \Lambda
ight) \, q_{\mu}$$

• Lorentz transformations for left momentum

$$egin{split} \mathcal{J}_{L\,0}^{0j}(p) &= -p_j(1+p_0/\Lambda)\,, & \mathcal{J}_{L\,k}^{ij}(p) &= \delta_k^j\,p_i - \delta_k^i\,p_j\,, \ \mathcal{J}_{L\,0}^{ij}(p) &= 0\,, & \mathcal{J}_{L\,k}^{0j} &= -\delta_k^j\left(p_0 + \left(p_0^2 - ar{p}^2
ight)/2\Lambda
ight) - p_jp_k/\Lambda \end{split}$$

• Lorentz transformations for right momentum

$$egin{aligned} \mathcal{J}_{R\,0i}^{0\,i}(p,q) &= (1+p_0/\Lambda)\,\mathcal{J}_{L\,0}^{0\,i}(q)\,, \ \mathcal{J}_{j}^{0\,i}(p,q) &= -\,(1+p_0/\Lambda)\,\mathcal{J}_{Lj}^{0\,i}(q) +\,\left(\delta_{j}^{i}ec{p}\cdotec{q}-p_{j}q_{i}
ight)/\Lambda\,, \ \mathcal{J}_{R\,0}^{ij}(p,q) &= 0\,, \qquad \mathcal{J}_{R\,k}^{ij}(p,q) = \mathcal{J}_{L\,k}^{ij}(q) \end{aligned}$$

• The relativity principle is satisfied since

$$(p\oplus q)'_{\mu}=ig(p'\oplus ilde qig)_{\mu}$$

where

$$p'_{\mu}=p_{\mu}+\epsilon_{lphaeta}\mathcal{J}_{L\,\mu}^{lphaeta}(p)\,,\qquad \widetilde{q}_{\mu}=q_{\mu}+\epsilon_{lphaeta}\mathcal{J}_{R\,\mu}^{lphaeta}(p,q)$$

This is equivalent to

$$\mathcal{J}^{lphaeta}_{\mu}(\pmb{p}\oplus \pmb{q}) = rac{\partial(\pmb{p}\oplus \pmb{q})_{\mu}}{\partial\pmb{p}_{
u}}\mathcal{J}^{lphaeta}_{L\,
u} + rac{\partial(\pmb{p}\oplus \pmb{q})_{\mu}}{\partial \pmb{q}_{
u}}\mathcal{J}^{lphaeta}_{R\,
u}$$

• Definition of total Lorentz generator $J^{\mu
u}$

$$J^{\mu
u}\coloneqq y^\lambda\mathcal{J}^{lphaeta}_{L\lambda}(p)+z^\lambda\mathcal{J}^{lphaeta}_{R\lambda}(p,q)$$

Simple κ -Poincaré kinematics

• In terms of Poisson brackets

$$egin{aligned} p'_{\mu} =& p_{\mu} + \epsilon_{lphaeta}\{p_{\mu}, J^{lphaeta}\} = p_{\mu} + \epsilon_{lphaeta}\mathcal{J}^{lphaeta}_{L\,\mu}(p)\,, \ & ilde{q}_{\mu} =& q_{\mu} + \epsilon_{lphaeta}\{q_{\mu}, J^{lphaeta}\} = q_{\mu} + \epsilon_{lphaeta}\mathcal{J}^{lphaeta}_{R\,\mu}(p,q) \end{aligned}$$

with

$$\{a,b\} = \frac{\partial a}{\partial p_{\mu}} \frac{\partial b}{\partial y^{\mu}} - \frac{\partial b}{\partial p_{\mu}} \frac{\partial a}{\partial y^{\mu}} + \frac{\partial a}{\partial q_{\mu}} \frac{\partial b}{\partial z^{\mu}} - \frac{\partial b}{\partial q_{\mu}} \frac{\partial a}{\partial z^{\mu}}$$

• The dispersion relation can be obtained from the Casimir (invariant under Lorentz transformations)

$$\{C(p), J^{\mu\nu}\} = \frac{\partial C(p)}{\partial p_{\rho}} \mathcal{J}_{L\rho}^{\mu\nu} = 0, \quad \{C(q), J^{\mu\nu}\} = \frac{\partial C(q)}{\partial q_{\rho}} \mathcal{J}_{R\rho}^{\mu\nu} = 0$$

which is

$$C(k) = rac{k_0^2 - ec{k}^2}{1 + k_0/\Lambda}$$

Relative locality

Relative locality

Relative locality

Implementation of locality

• From an action

$$\begin{split} S &= \int_{-\infty}^{0} d\tau \sum_{i=1,2} \left[x_{-(i)}^{\mu}(\tau) \dot{p}_{\mu}^{-(i)}(\tau) + N_{-(i)}(\tau) \left[C(p^{-(i)}(\tau)) - m_{-(i)}^{2} \right] \right] \\ &+ \int_{0}^{\infty} d\tau \sum_{j=1,2} \left[x_{+(j)}^{\mu}(\tau) \dot{p}_{\mu}^{+(j)}(\tau) + N_{+(j)}(\tau) \left[C(p^{+(j)}(\tau)) - m_{+(j)}^{2} \right] \right] \\ &+ \xi^{\mu} \left[(p^{-(1)} \oplus p^{-(2)})_{\mu}(0) - (p^{+(1)} \oplus p^{+(2)})_{\mu}(0) \right] \end{split}$$

one finds

$$x^{\mu}_{\pm(i)}(0) = \xi^{
u} rac{\partial (p^{\pm(1)} \oplus p^{\pm(2)})_{
u}}{\partial p^{\pm(i)}_{\mu}}(0)$$

• When $\xi^{\mu} = 0$ the interaction is local $x^{\mu}_{-(i)}(0) = x^{\mu}_{+(j)}(0) = 0$

Recovering locality [Carmona et al., 2018, Carmona et al., 2020, Relancio, 2021]

 Locality of interactions can be recovered by introducing noncommutative space-time coordinates

$$\begin{split} \tilde{y}_{L}^{\alpha} = & y^{\mu} \, \varphi_{(L)\mu}^{(L)\alpha}(p,q) + z^{\mu} \, \varphi_{(R)\mu}^{(L)\alpha}(p,q) \\ \tilde{z}_{R}^{\alpha} = & y^{\mu} \, \varphi_{(L)\mu}^{(R)\alpha}(p,q) + z^{\mu} \, \varphi_{(R)\mu}^{(R)\alpha}(p,q) \end{split}$$

• When there is only one momentum, one recovers the noncommutativity of one particle

$$ilde{x}^{\mu}=x^{\lambda}arphi_{\lambda}^{\mu}\left(k
ight)$$

• The condition to have an event defined by the interaction is

$$egin{aligned} arphi^{\mu}_{
u}(p\oplus q) &= rac{\partial \left(p\oplus q
ight)_{\mu}}{\partial p_{
u}}arphi^{(L)lpha}_{(L)
u}(p,q) + rac{\partial \left(p\oplus q
ight)_{\mu}}{\partial q_{
u}}arphi^{(L)lpha}_{(R)
u}(p,q) \ &= rac{\partial \left(p\oplus q
ight)_{\mu}}{\partial p_{
u}}arphi^{(R)lpha}_{(L)
u}(p,q) + rac{\partial \left(p\oplus q
ight)_{\mu}}{\partial q_{
u}}arphi^{(R)lpha}_{(R)
u}(p,q) \end{aligned}$$

Oncommutativity for two particles

General Poisson brackets

We start by considering the most general Poisson-Lie algebra in the two-particle system

$$\begin{split} \{\tilde{y}_{L}^{\mu}, \tilde{y}_{L}^{\nu}\} &= \frac{c_{L}^{L}}{\Lambda} \left(\tilde{y}_{L}^{\mu} \, n^{\nu} - \tilde{y}_{L}^{\nu} \, n^{\mu} \right) + \frac{c_{R}^{L}}{\Lambda} \left(\tilde{z}_{R}^{\mu} \, n^{\nu} - \tilde{z}_{R}^{\nu} \, n^{\mu} \right) + \frac{1}{\Lambda^{2}} D_{L\lambda\sigma}^{\mu\nu} J^{\lambda\sigma} \\ \{\tilde{y}_{L}^{\mu}, \tilde{z}_{R}^{\nu}\} &= C_{L\xi}^{\mu\nu} \, \tilde{y}_{L}^{\xi} - C_{R\xi}^{\mu\nu} \, \tilde{z}_{R}^{\xi} + \frac{1}{\Lambda^{2}} D_{\lambda\sigma}^{\mu\nu} J^{\lambda\sigma} \\ \{\tilde{z}_{R}^{\mu}, \tilde{z}_{R}^{\nu}\} &= \frac{c_{L}^{R}}{\Lambda} \left(\tilde{y}_{L}^{\mu} \, n^{\nu} - \tilde{y}_{L}^{\nu} \, n^{\mu} \right) + \frac{c_{R}^{R}}{\Lambda} \left(\tilde{z}_{R}^{\mu} \, n^{\nu} - \tilde{z}_{R}^{\nu} \, n^{\mu} \right) + \frac{1}{\Lambda^{2}} D_{R\lambda\sigma}^{\mu\nu} J^{\lambda\sigma} \\ \{J^{\mu\nu}, \tilde{y}_{L}^{\nu}\} &= \eta^{\nu\rho} \tilde{y}_{L}^{\mu} - \eta^{\mu\rho} \tilde{y}_{L}^{\nu} + \frac{1}{\Lambda} E_{L\lambda\sigma}^{\mu\nu\rho} J^{\lambda\sigma} \\ \{J^{\mu\nu}, \tilde{z}_{R}^{\nu}\} &= \eta^{\nu\rho} \tilde{z}_{R}^{\mu} - \eta^{\mu\rho} \tilde{z}_{R}^{\nu} + \frac{1}{\Lambda} E_{R\lambda\sigma}^{\mu\nu\rho} J^{\lambda\sigma} \end{split}$$

with C's, D's and E's are constructed with $\eta_{\mu\nu}$, δ^{μ}_{ν} , and a fixed vector n^{μ} (time-, light- or space-like)

General Poisson brackets

Imposing Jacobi identities, we find different solutions

$$\begin{split} \{\tilde{y}_{L}^{\mu}, \tilde{y}_{L}^{\nu}\} &= \frac{\lambda_{1}}{\Lambda} \left(\tilde{y}_{L}^{\mu} n^{\nu} - \tilde{y}_{L}^{\nu} n^{\mu} \right) - \frac{\alpha \lambda_{1}^{2}}{\Lambda^{2}} J^{\mu\nu} ,\\ \{\tilde{y}_{L}^{\mu}, \tilde{z}_{R}^{\nu}\} &= \frac{\lambda_{1}}{\Lambda} \tilde{z}_{R}^{\mu} n^{\nu} - \frac{\lambda_{2}}{\Lambda} \tilde{y}_{L}^{\nu} n^{\mu} + \eta^{\mu\nu} \left(\frac{\lambda_{2}}{\Lambda} \tilde{y}_{L}^{\alpha} n_{\alpha} - \frac{\lambda_{1}}{\Lambda} \tilde{z}_{R}^{\alpha} n_{\alpha} \right) - \frac{\alpha \lambda_{1} \lambda_{2}}{\Lambda^{2}} J^{\mu\nu} ,\\ \{\tilde{z}_{R}^{\mu}, \tilde{z}_{R}^{\nu}\} &= \frac{\lambda_{2}}{\Lambda} \left(\tilde{z}_{R}^{\mu} n^{\nu} - \tilde{z}_{R}^{\nu} n^{\mu} \right) - \frac{\alpha \lambda_{2}^{2}}{\Lambda^{2}} J^{\mu\nu} ,\\ \{J^{\mu\nu}, \tilde{y}_{L}^{\rho}\} &= \eta^{\nu\rho} \tilde{y}_{L}^{\mu} - \eta^{\mu\rho} \tilde{y}_{L}^{\nu} + \frac{\lambda_{1}}{\Lambda} \left(n^{\mu} J^{\nu\rho} - n^{\nu} J^{\mu\rho} \right) ,\\ \{J^{\mu\nu}, \tilde{z}_{R}^{\rho}\} &= \eta^{\nu\rho} \tilde{z}_{R}^{\mu} - \eta^{\mu\rho} \tilde{z}_{R}^{\nu} + \frac{\lambda_{2}}{\Lambda} \left(n^{\mu} J^{\nu\rho} - n^{\nu} J^{\mu\rho} \right) \end{split}$$

where $\alpha=\textit{n}^{\mu}\textit{n}_{\mu}$ ($\alpha=1,0,-1$ for time-, light- and space-like cases, respectively)

• We obtained a bi-parametric algebra, corresponding to the $R^{6,2} \rtimes o(3,1)$ algebra, as can be seen from the following change of basis of the generators

$$ilde{y}^{\mu}_{L} = y^{\mu}_{L} + rac{\lambda_{1}}{\Lambda} n_{\lambda} J^{\mu\lambda} , \qquad ilde{z}^{\mu}_{R} = z^{\mu}_{R} + rac{\lambda_{2}}{\Lambda} n_{\lambda} J^{\mu\lambda}$$

- For $\lambda_1 = \lambda_2 = 1$ we find a symmetric case (natural for recovering the one-particle noncommutativity)
- It can be easily generalized for any number of particles

2 DSR and relative locality

3 Noncommutativity for two particles

First attempt [Carmona et al., 2018]

• The noncommutativity is given by

$$\begin{split} \tilde{y}^{\alpha}_{L} = & y^{\mu} \, \varphi^{(L)\alpha}_{(L)\mu}(p,q) \\ \tilde{z}^{\alpha}_{R} = & z^{\mu} \, \varphi^{(R)\alpha}_{(R)\mu}(p,q) \end{split}$$

- Lorentz generators cannot appear in the space-time Poisson brackets \rightarrow light-like case $\rightarrow \kappa$ -Minkowski
- The obtained composition law is symmetric and associative
- The (left and right) Lorentz transformations mix both momenta
- The kinematics cannot be reduced to that of SR

• The noncommutativity is given by

$$\begin{split} \tilde{y}_{L}^{\alpha} = & y^{\mu} \, \varphi_{(L)\mu}^{(L)\alpha}(p) + z^{\mu} \, \varphi_{(R)\mu}^{(L)\alpha}(q) \\ \tilde{z}_{R}^{\alpha} = & y^{\mu} \, \varphi_{(L)\mu}^{(R)\alpha}(p) + z^{\mu} \, \varphi_{(R)\mu}^{(R)\alpha}(q) \end{split}$$

- The obtained composition law is symmetric and associative
- The (left and right) Lorentz transformations do not mix both momenta
- The kinematics can be reduced to that of SR

• The noncommutativity is given by

$$\begin{split} \tilde{y}_{L}^{\alpha} = & y^{\mu} \, \varphi_{(L)\mu}^{(L)\alpha}(p,q) + z^{\mu} \, \varphi_{(R)\mu}^{(L)\alpha}(p,q) \\ \tilde{z}_{R}^{\alpha} = & y^{\mu} \, \varphi_{(L)\mu}^{(R)\alpha}(p,q) + z^{\mu} \, \varphi_{(R)\mu}^{(R)\alpha}(p,q) \end{split}$$

- There is an arbitrariness in both the composition law and Lorentz transformations
- \bullet Too difficult to work with this attempt \rightarrow geometrical interpretation?

2 DSR and relative locality

3 Noncommutativity for two particles

- Relative locality in DSR theories can be avoided by a noncommutative spacetime
- Noncommutativity of spacetime in a multiparticle system can be obtained from Poisson-Lie algebra involving space-time coordinates and Lorentz generators
- This algebra depends on the deformation
- It can be generalized for any number of particles
- The obtained kinematics are more restricted
- Future work: impose new physical or mathematical conditions to restrict the general implementation of locality

Thanks for your attention!

Carmona, J. M., Cortes, J. L., and Relancio, J. J. (2018). Spacetime from locality of interactions in deformations of special relativity: The example of κ -Poincaré Hopf algebra. *Phys. Rev.*, D97(6):064025.

 Carmona, J. M., Cortés, J. L., and Relancio, J. J. (2019). Relativistic deformed kinematics from momentum space geometry.

Phys. Rev., D100(10):104031.

 Carmona, J. M., Cortés, J. L., and Relancio, J. J. (2020). Relativistic deformed kinematics from locality conditions in a generalized spacetime. *Phys. Rev.*, D101(4):044057.

🔋 Relancio, J. J. (2021).

Geometry of multiparticle systems with a relativistic deformed kinematics and the relative locality principle. *Phys. Rev. D*, 104(2):024017.