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Quantum Gravity Theories

Attempts of unification: string theory, loop quantum gravity,
supergravity, causal set theory...
In most of them a minimal length appears =⇒ Planck length
(lP)??
This is closely related to an energy scale =⇒ Planck energy
(Λ)??
Problem: there are no experimental evidences of a fundamental
QGT



Spacetime: the last frontier

Classical spacetime → “quantum” spacetime
Symmetries? → LI should be broken/deformed at Planckian
scales
New effects → Micro black holes creation?
Spacetime can be regarded as a “foam”
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Simple κ-Poincaré kinematics [Carmona et al., 2019]

Simple composition law of momenta

(p ⊕ q)µ = pµ + (1 + p0/Λ) qµ

Lorentz transformations for left momentum

J 0j
L 0(p) = −pj(1 + p0/Λ) , J ij

L k(p) = δjk pi − δik pj ,

J ij
L 0(p) = 0 , J 0j

L k = −δjk
(
p0 +

(
p2
0 − p⃗2) /2Λ)− pjpk/Λ

Lorentz transformations for right momentum

J 0i
R 0(p, q) = (1 + p0/Λ)J 0i

L 0(q) ,

J 0i
j (p, q) =− (1 + p0/Λ)J 0i

L j (q) +
(
δij p⃗ · q⃗ − pjqi

)
/Λ ,

J ij
R 0(p, q) = 0 , J ij

R k(p, q) = J ij
L k(q)



Simple κ-Poincaré kinematics

The relativity principle is satisfied since

(p ⊕ q)′µ =
(
p′ ⊕ q̃

)
µ

where

p′µ = pµ + ϵαβJ αβ
Lµ (p) , q̃µ = qµ + ϵαβJ αβ

R µ(p, q)

This is equivalent to

J αβ
µ (p ⊕ q) =

∂(p ⊕ q)µ
∂pν

J αβ
L ν +

∂(p ⊕ q)µ
∂qν

J αβ
R ν

Definition of total Lorentz generator Jµν

Jµν := yλJ αβ
Lλ (p) + zλJ αβ

R λ(p, q)



Simple κ-Poincaré kinematics

In terms of Poisson brackets

p′µ =pµ + ϵαβ{pµ, Jαβ} = pµ + ϵαβJ αβ
Lµ (p) ,

q̃µ =qµ + ϵαβ{qµ, Jαβ} = qµ + ϵαβJ αβ
R µ(p, q)

with

{a, b} =
∂a

∂pµ

∂b

∂yµ
− ∂b

∂pµ

∂a

∂yµ
+

∂a

∂qµ

∂b

∂zµ
− ∂b

∂qµ

∂a

∂zµ

The dispersion relation can be obtained from the Casimir
(invariant under Lorentz transformations)

{C (p), Jµν} =
∂C (p)

∂pρ
J µν
L ρ = 0 , {C (q), Jµν} =

∂C (q)

∂qρ
J µν
R ρ = 0

which is

C (k) =
k2
0 − k⃗2

1 + k0/Λ



Relative locality



Relative locality



Relative locality



Implementation of locality

From an action

S =

∫ 0

−∞
dτ

∑
i=1,2

[
xµ−(i)(τ)ṗ

−(i)
µ (τ) + N−(i)(τ)

[
C (p−(i)(τ))−m2

−(i)

]]
+

∫ ∞

0
dτ

∑
j=1,2

[
xµ+(j)(τ)ṗ

+(j)
µ (τ) + N+(j)(τ)

[
C (p+(j)(τ))−m2

+(j)

]]
+ ξµ

[
(p−(1) ⊕ p−(2))µ(0)− (p+(1) ⊕ p+(2))µ(0)

]
one finds

xµ±(i)(0) = ξν
∂(p±(1) ⊕ p±(2))ν

∂p
±(i)
µ

(0)

When ξµ = 0 the interaction is local xµ−(i)(0) = xµ+(j)(0) = 0



Recovering locality [Carmona et al., 2018,
Carmona et al., 2020, Relancio, 2021]

Locality of interactions can be recovered by introducing
noncommutative space–time coordinates

ỹαL =yµ φ
(L)α
(L)µ(p, q) + zµ φ

(L)α
(R)µ(p, q)

z̃αR =yµ φ
(R)α
(L)µ (p, q) + zµ φ

(R)α
(R)µ(p, q)

When there is only one momentum, one recovers the
noncommutativity of one particle

x̃µ = xλφµ
λ (k)

The condition to have an event defined by the interaction is

φµ
ν (p ⊕ q) =

∂ (p ⊕ q)µ
∂pν

φ
(L)α
(L)ν (p, q) +

∂ (p ⊕ q)µ
∂qν

φ
(L)α
(R)ν(p, q)

=
∂ (p ⊕ q)µ

∂pν
φ
(R)α
(L)ν (p, q) +

∂ (p ⊕ q)µ
∂qν

φ
(R)α
(R)ν (p, q)
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General Poisson brackets

We start by considering the most general Poisson-Lie algebra in the
two-particle system

{ỹµL , ỹ
ν
L } =

cLL
Λ

(
ỹµL nν − ỹνL nµ

)
+

cLR
Λ

(
z̃µR nν − z̃νR nµ

)
+

1
Λ2D

µν
LλσJ

λσ

{ỹµL , z̃
ν
R} = Cµν

L ξ ỹ
ξ
L − Cµν

R ξ z̃
ξ
R +

1
Λ2D

µν
λσJ

λσ

{z̃µR , z̃
ν
R} =

cRL
Λ

(
ỹµL nν − ỹνL nµ

)
+

cRR
Λ

(
z̃µR nν − z̃νR nµ

)
+

1
Λ2D

µν
R λσJ

λσ

{Jµν , ỹνL } = ηνρỹµL − ηµρỹνL +
1
Λ
Eµνρ
LλσJ

λσ

{Jµν , z̃νR} = ηνρz̃µR − ηµρz̃νR +
1
Λ
Eµνρ
R λσJ

λσ

{Jµν , Jρσ} = ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ

with C ’s, D’s and E ’s are constructed with ηµν , δ
µ
ν , and a fixed

vector nµ (time-, light- or space-like)



General Poisson brackets

Imposing Jacobi identities, we find different solutions

{ỹµL , ỹ
ν
L } =

λ1

Λ

(
ỹµL nν − ỹνL nµ

)
− αλ2

1
Λ2 Jµν ,

{ỹµL , z̃
ν
R} =

λ1

Λ
z̃µR nν−λ2

Λ
ỹνL n

µ+ηµν
(
λ2

Λ
ỹαL nα−

λ1

Λ
z̃αRnα

)
−αλ1λ2

Λ2 Jµν ,

{z̃µR , z̃
ν
R} =

λ2

Λ

(
z̃µR nν − z̃νR nµ

)
− αλ2

2
Λ2 Jµν ,

{Jµν , ỹρL} = ηνρỹµL − ηµρỹνL +
λ1

Λ
(nµJνρ − nνJµρ) ,

{Jµν , z̃ρR} = ηνρz̃µR − ηµρz̃νR +
λ2

Λ
(nµJνρ − nνJµρ)

where α = nµnµ (α = 1, 0,−1 for time-, light- and space-like cases,
respectively)



General Poisson brackets

We obtained a bi-parametric algebra, corresponding to the
R6,2 ⋊ o(3, 1) algebra, as can be seen from the following
change of basis of the generators

ỹµL = yµL +
λ1

Λ
nλJ

µλ , z̃µR = zµR +
λ2

Λ
nλJ

µλ

For λ1 = λ2 = 1 we find a symmetric case (natural for
recovering the one-particle noncommutativity)
It can be easily generalized for any number of particles
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First attempt [Carmona et al., 2018]

The noncommutativity is given by

ỹαL =yµ φ
(L)α
(L)µ(p, q)

z̃αR =zµ φ
(R)α
(R)µ(p, q)

Lorentz generators cannot appear in the space-time Poisson
brackets → light-like case → κ-Minkowski
The obtained composition law is symmetric and associative
The (left and right) Lorentz transformations mix both
momenta
The kinematics cannot be reduced to that of SR



Second attempt [Carmona et al., 2020]

The noncommutativity is given by

ỹαL =yµ φ
(L)α
(L)µ(p) + zµ φ

(L)α
(R)µ(q)

z̃αR =yµ φ
(R)α
(L)µ (p) + zµ φ

(R)α
(R)µ(q)

The obtained composition law is symmetric and associative
The (left and right) Lorentz transformations do not mix both
momenta
The kinematics can be reduced to that of SR



Third attempt [Relancio, 2021]

The noncommutativity is given by

ỹαL =yµ φ
(L)α
(L)µ(p, q) + zµ φ

(L)α
(R)µ(p, q)

z̃αR =yµ φ
(R)α
(L)µ (p, q) + zµ φ

(R)α
(R)µ(p, q)

There is an arbitrariness in both the composition law and
Lorentz transformations
Too difficult to work with this attempt → geometrical
interpretation?
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Conclusions

Relative locality in DSR theories can be avoided by a
noncommutative spacetime
Noncommutativity of spacetime in a multiparticle system can
be obtained from Poisson-Lie algebra involving space-time
coordinates and Lorentz generators
This algebra depends on the deformation
It can be generalized for any number of particles
The obtained kinematics are more restricted
Future work: impose new physical or mathematical conditions
to restrict the general implementation of locality



Thanks for your attention!
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