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1. The program of (background independent) Quantum Gravity

Pre-geometric entities

Atoms of spacetime

Quantum dynamics

Dynamical evolution and action 
principle

Emergence of continuum 
and classical  spacetime 

Appropriate definition of continuum limit 
and approximations to recover GR

Contact with observations 
and providing answer to 

open questions

Generating a dictionary between the 
QG language 

and the observational one
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Group field theories

Functions of the spacetime 
coordinates

Functions of group elements that 
give rise to spacetime

Action: interactions between 
particles on spacetime

φ : G4 → ℂ

(g1, …, g4) ↦ φ (g1, …, g4) ≡ φ (gI) .

Field theories on spacetime Field theories of spacetime 
atoms

Action (non-local interactions): 
generates quantum geometries

SGFT [φ*, φ] = ∫ [dgI]2 φ* (gI) 𝒦 (gI, g′ I) φ (g′ I)

+∑
i

λi

Di ∫ [dgI]Di φ* (gI1)…𝒰i (gI1
, …, gIDi)…φ (gIDi)

+ c.c. ,
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2. Group field theory cosmology: do they have all the ingredients?

Contact with observations 
and providing answers to 

open questions

Generating a dictionary between the 
QG language 

and the observational one in 
cosmology

Coupling to scalar field: 
matter content of the 
universe 

Scalar perturbations

Causality: Group 
 SL(2,ℂ), SU(2), . .Pre-geometric entities

Atoms of spacetime

Relational evolution with respect to scalar 
matter fields (clock and rods)

Quantum dynamics

Dynamical evolution and action 
principle

Effective: mean-field 
approach GFT condensate

Emergence of continuum 
and classical  spacetime 

Appropriate definition of continuum limit 
and approximations to recover GR
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Classical set up
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GFT condensate setting

Factorisation

σϵ,δ,π0,πx;xμ (gI, χμ, ϕ) = ηϵ (χ0 − x0; π0) ηδ ( | χ − x | ; πx) σ̃ (gI, χμ, ϕ)

S =
1
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−
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4 scalar fields: clock and rods 
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of the universe ϕ
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a3 = ⟨ ̂V⟩ = Vjρ2

0

•Study the dynamics of the background 
homogeneous scalar field (necessary for 
the scalar perturbation treatment ) 

··θ0 +
3 ·a
a ( ·θ0 −

γ
2 ) = 0

Evolution equation for the background 
GFT phase  

• Function of the clock and 
the scalar field momentum

• Minisuperspace 
•Large volume regime (large GFT densities): this 
can be matched to GR results

For the small volume regime: we have a 
quantum bounce replacing the classical 

singularity
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How do we access the dynamics of the 
scalar field near the bounce ?

Effective metric?

Near the 
bounce 

•The scalar field is homogeneous

Evolution equation for the background 
GFT phase  

Not observable: adequate 
mathematical formulation! Closed equation of motion of the scalar 

field with no condensate parametrisation

3. Emergent scalar field theory on curved spacetime from GFT 

• Function of the clock and 
the scalar field momentum
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Matter field dynamics near the bounce Background level
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Non-minimal coupling: standard field theory on curved spacetime tells us that such coupling to 
gravity occurs due to the natural presence of strong gravitational interaction between the 
geometrical degrees of freedom and those of matter.

Near the 
bounce 

Modification with respect to classical 
system (massless minimally coupled 

scalar field )

•Chameleon mechanism: in the presence of other matter fields 
these scalars can acquire an effective mass parameter that is 
environmentally dependent. 

•…….

•Our model naturally incorporates inflation driving 
the expansion of the universe.Emergent mass or an effective potential:
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The ingredients at hand:

Dynamics of the homogenous 
scalar field  

Background effective metric 

No condensate parametrisation 
entering the formulation 

Background level 

Expression for the perturbed 
scalar field  

Dynamics of the perturbed GFT 
density and phase 

Perturbed level: 
ρj = ρ0 + δρ , θj = θ0 + δθ .

Goal: Express the effective evolution equation of the perturbed scalar field as 
a field theory on curved spacetime

We need to get 
rid of the 

condensate 
parametrisation

!

Near the 
bounce 
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δρ = ( □̃ − ηj)
−1

𝒟[δθ] . □̃ δθ + 2 ·δθ
·ρ0

ρ0
+ ℒ[( □̃ − η)−1 𝒟[δθ]] = αr ∇2δθ .

Express the coupled dynamics of the perturbed GFT phase and density in terms of only one of 
them 

Find the solution to the above differential equation + derive an inversion relation 

δϕ = δ⟨Φ̂⟩σ = [ δN
N0

ϕ0 + N0∂πϕ
δθ]

πϕ=π̃ϕ

δθ ≡ (Ψ(x0, πϕ) + Φ(x, πϕ))
−1

δϕ

Indications of possible 
phenomenology

Modified dispersion 
relation 

Extract the Bardeen Potentials from 
the effective dynamics
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What did we achieve? 

Starting from a full quantum gravity setting: we extracted  an effective scalar field 
theory on a curved spacetime. 

At early times, this resulted in the emergence of possibly:  

Non-minimal coupling to gravity at early times —> Modified theory of gravity 

Mass/matter or potential term that can be studied in the inflationary scenario or 
Chameleon mechanism  

The ground now is set for phenomenology and contact with observations! 
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Open questions and outlook 

Identify modified gravity theories that are produced from the effective dynamics outlined 
above . 

Classify such theories according to the QG parameters. 

Phenomenological investigations: Study the Inflationary potential, Mass term 
(chameleon mech.), the modified dispersion relation (dissipation effects) ..  

Canonical quantization of the scalar field : study all phenomena that a standard QFT 
theory produces:  Correlation functions, CMB spectrum —> observational cosmology. 
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Thank you for your attention!


