

università degli studi FIRENZE

Emergent Scalar Field Dynamics on Curved Spacetime in Group Field Theory

Roukaya Dekhil In collaboration with Federico Greco, Stefano Liberati and Daniele Oriti

Bridging high and low energies in search of quantum gravity - 2025 Cost Action CA23130 First Annual Conference

10th of July 2025, Paris

Outline

1. The program of Quantum Gravity 2.Group field theory cosmology background contribution

perturbations

Outline

- 3.Emergent scalar field dynamics on curved spacetime from GFT:

4.Emergent field theory on curved spacetime from GFT: scalar

Causality Symmetries Relationalism Observables

Causality Symmetries Relationalism Observables

Pre-geometric entities

Atoms of spacetime

 g_v^3

 g_v^2

Dynamical evolution and action principle

Causality Symmetries Relationalism Observables

Quantum dynamics

Pre-geometric entities

Atoms of spacetime

 g_{ν}^{3}

 g_v^2

Emergence of continuum and classical spacetime

Appropriate definition of continuum limit and approximations to recover GR

Dynamical evolution and action principle

Quantum dynamics

Causality Symmetries Relationalism Observables

Pre-geometric entities

Atoms of spacetime

8v

 g_{v}^{2}

Contact with observations and providing answer to open questions

Generating a dictionary between the QG language and the observational one

Emergence of continuum and classical spacetime

Appropriate definition of continuum limit and approximations to recover GR

Dynamical evolution and action principle

Quantum dynamics

Causality Symmetries Relationalism Observables

Pre-geometric entities

Atoms of spacetime

Quantum field theory

Group field theories

Quantum field theory

Field theories on spacetime

Group field theories

Quantum field theory

Field theories on spacetime

Functions of the spacetime coordinates

Group field theories

Quantum field theory

Field theories on spacetime

Functions of the spacetime coordinates

Group field theories

Field theories *of* spacetime atoms

Quantum field theory

Field theories on spacetime

Functions of the spacetime coordinates

Group field theories

Field theories *of* spacetime atoms

Functions of group elements that give rise to spacetime $\varphi:G^4\to\mathbb{C}$ $(g_1, ..., g_4) \mapsto \varphi(g_1, ..., g_4) \equiv \varphi(g_I).$

Quantum field theory

Field theories *on* spacetime

Functions of the spacetime coordinates

Action: interactions between particles on spacetime

Group field theories

Field theories *of* spacetime atoms

Functions of group elements that give rise to spacetime

 $\varphi: G^4 \to \mathbb{C}$ $(g_1, \dots, g_4) \mapsto \varphi(g_1, \dots, g_4) \equiv \varphi(g_I).$

Action (non-local interactions): generates quantum geometries $S_{\text{GFT}}\left[\varphi^{*},\varphi\right] = \int \left[dg_{I}\right]^{2} \varphi^{*}\left(g_{I}\right) \mathscr{K}\left(g_{I},g_{I}'\right) \varphi\left(g_{I}'\right)$ $+\sum_{i}\frac{\lambda_{i}}{D_{i}}\int\left[\mathrm{d}g_{I}\right]^{D_{i}}\varphi^{*}\left(g_{I_{1}}\right)\ldots\mathscr{U}_{i}\left(g_{I_{1}},\ldots,g_{I_{D_{i}}}\right)\ldots\varphi\left(g_{I_{D_{i}}}\right)$ + C.C. ,

Pre-geometric entities

Causality: Group $SL(2,\mathbb{C}), SU(2), \ldots$

Atoms of spacetime

Emergence of continuum and classical spacetime

Appropriate definition of continuum limit and approximations to recover GR

6

Atoms of spacetime

Contact with observations and providing answers to open questions

Generating a dictionary between the QG language and the observational one in cosmology

Emergence of continuum and classical spacetime

Appropriate definition of continuum limit and approximations to recover GR

Dynamical evolution and action principle

Coupling to scalar field: matter content of the universe

Scalar perturbations

Effective: mean-field approach

GFT condensate

Relational evolution with respect to scalar matter fields (clock and rods)

Quantum dynamics

Pre-geometric entities

Causality: Group $SL(2,\mathbb{C}), SU(2), \ldots$

Atoms of spacetime

Classical set up

GFT condensate setting

7

Classical set up

Relational GR for homogeneous isotopic universe: FLRW line element

GFT condensate setting

7

Classical set up

Relational GR for homogeneous isotopic universe: FLRW line element

Five massless scalar fields minimally coupled to GR

> Classical action for five scalar fields

$$S = \frac{1}{2} \int d^4x \sqrt{-g} M^{(\lambda)}_{\mu\nu} g^{ab} \partial_a \chi^{\mu} \partial_b \chi^{\nu}$$
$$-\frac{\alpha_{\phi}}{2} \int d^4x \sqrt{-g} g^{ab} \partial_a \phi \partial_b \phi$$

<u>GFT condensate setting</u>

Classical set up

Relational GR for homogeneous isotopic universe: FLRW line element

Five massless scalar fields **minimally** coupled to GR

> Classical action for five scalar fields

$$S = \frac{1}{2} \int d^4x \sqrt{-g} M^{(\lambda)}_{\mu\nu} g^{ab} \partial_a \chi^{\mu} \partial_b \chi^{\nu}$$
$$-\frac{\alpha_{\phi}}{2} \int d^4x \sqrt{-g} g^{ab} \partial_a \phi \partial_b \phi$$

GFT condensate setting

Classical set up

Relational GR for homogeneous isotopic universe: FLRW line element

Five massless scalar fields **minimally** coupled to GR

> Classical action for five scalar fields

$$S = \frac{1}{2} \int d^4x \sqrt{-g} M^{(\lambda)}_{\mu\nu} g^{ab} \partial_a \chi^{\mu} \partial_b \chi^{\nu}$$
$$-\frac{\alpha_{\phi}}{2} \int d^4x \sqrt{-g} g^{ab} \partial_a \phi \partial_b \phi$$

<u>GFT condensate setting</u>

Classical set up

Relational GR for homogeneous isotopic universe: FLRW line element

Five massless scalar fields **minimally** coupled to GR

> Classical action for five scalar fields

$$S = \frac{1}{2} \int d^4x \sqrt{-g} M^{(\lambda)}_{\mu\nu} g^{ab} \partial_a \chi^{\mu} \partial_b \chi^{\nu}$$
$$-\frac{\alpha_{\phi}}{2} \int d^4x \sqrt{-g} g^{ab} \partial_a \phi \partial_b \phi$$

GFT condensate setting

4 scalar fields: clock and rods

1 scalar field: matter content of the universe ϕ

Isotropy Dependence on a single spin *j*

 $\sigma(g_I, \chi^{\mu}, \phi)$: Wavefunction on minisuperspace

The domain of the condensate wavefunction \simeq minisuperspace of homogeneous geometries

Classical set up

Relational GR for homogeneous isotopic universe: FLRW line element

Five massless scalar fields **minimally** coupled to GR

> Classical action for five scalar fields

$$S = \frac{1}{2} \int d^4x \sqrt{-g} M^{(\lambda)}_{\mu\nu} g^{ab} \partial_a \chi^{\mu} \partial_b \chi^{\nu}$$
$$-\frac{\alpha_{\phi}}{2} \int d^4x \sqrt{-g} g^{ab} \partial_a \phi \partial_b \phi$$

GFT condensate setting

4 scalar fields: clock and rods

1 scalar field: matter content of the universe ϕ

Isotropy Dependence on a single spin j

 $\sigma(g_I, \chi^{\mu}, \phi)$: Wavefunction on minisuperspace

The domain of the condensate wavefunction \simeq minisuperspace of homogeneous geometries

Factorisation

 $\sigma_{\epsilon,\delta,\pi_{0},\pi_{x};x^{\mu}}\left(g_{I},\chi^{\mu},\phi\right) = \eta_{\epsilon}\left(\chi^{0}-x^{0};\pi_{0}\right)\eta_{\delta}\left(\left|\chi-\mathbf{x}\right|;\pi_{x}\right)\tilde{\sigma}\left(g_{I},\chi^{\mu},\phi\right)$

$$\left\langle \sigma_{\epsilon^{\mu}}; x^{\mu}, \pi_{\mu} \left| \frac{\delta S_{\rm GFT} \left[\hat{\varphi}, \hat{\varphi}^{\dagger} \right]}{\delta \hat{\varphi}^{\dagger} \left(g_{I}, x^{\mu} \right)} \right| \sigma_{\epsilon^{\mu}}; x^{\mu}, \pi_{\mu} \right\rangle = 0.$$

• Extract effective hydrodynamic equations: averaged form of the equations of motion

$$\left\langle \sigma_{\epsilon^{\mu}}; x^{\mu}, \pi_{\mu} \left| \frac{\delta S_{\rm GFT} \left[\hat{\varphi}, \hat{\varphi}^{\dagger} \right]}{\delta \hat{\varphi}^{\dagger} \left(g_{I}, x^{\mu} \right)} \right| \sigma_{\epsilon^{\mu}}; x^{\mu}, \pi_{\mu} \right\rangle = 0.$$

• Extract effective hydrodynamic equations: averaged form of the equations of motion

$$\partial_0^2 \tilde{\sigma}_j \left(x, \pi_\phi \right) - i \gamma \partial_0 \tilde{\sigma}_j \left(x, \pi_\phi \right) - E_j \left(\pi_\phi \right) \tilde{\sigma}_j \left(x, \pi_\phi \right) + \alpha^2 \nabla^2 \tilde{\sigma}_j \left(x, \pi_\phi \right)$$

$$\tilde{\sigma}_j\left(x,\pi_{\phi}\right) = \rho\left(x,\pi_{\phi}\right) e^{i\theta_j\left(x,\pi_{\phi}\right)}$$

$$\left\langle \sigma_{\epsilon^{\mu}}; x^{\mu}, \pi_{\mu} \left| \frac{\delta S_{\rm GFT} \left[\hat{\varphi}, \hat{\varphi}^{\dagger} \right]}{\delta \hat{\varphi}^{\dagger} \left(g_{I}, x^{\mu} \right)} \right| \sigma_{\epsilon^{\mu}}; x^{\mu}, \pi_{\mu} \right\rangle = 0.$$

basic operators

$$\left\langle \hat{\Phi} \right\rangle = \phi_0 = N_0 \partial_{\pi_\phi} \theta_0$$

• Extract effective hydrodynamic equations: averaged form of the equations of motion

$$\partial_0^2 \tilde{\sigma}_j \left(x, \pi_\phi \right) - i \gamma \partial_0 \tilde{\sigma}_j \left(x, \pi_\phi \right) - E_j \left(\pi_\phi \right) \tilde{\sigma}_j \left(x, \pi_\phi \right) + \alpha^2 \nabla^2 \tilde{\sigma}_j \left(x, \pi_\phi \right)$$
$$\tilde{\sigma}_j \left(x, \pi_\phi \right) = \rho \left(x, \pi_\phi \right) e^{i \theta_j \left(x, \pi_\phi \right)}$$

• Physical entities of interest correspond to hydrodynamic averages: expectation values of

$$\left\langle \hat{V} \right\rangle = V_j \rho_0^2 = a^3$$

$$\left\langle \sigma_{\epsilon^{\mu}}; x^{\mu}, \pi_{\mu} \left| \frac{\delta S_{\rm GFT} \left[\hat{\varphi}, \hat{\varphi}^{\dagger} \right]}{\delta \hat{\varphi}^{\dagger} \left(g_{I}, x^{\mu} \right)} \right| \sigma_{\epsilon^{\mu}}; x^{\mu}, \pi_{\mu} \right\rangle = 0.$$

basic operators

$$\left\langle \hat{\Phi} \right\rangle = \phi_0 = N_0 \partial_{\pi_\phi} \theta_0$$

• Extract effective hydrodynamic equations: averaged form of the equations of motion

$$\partial_0^2 \tilde{\sigma}_j \left(x, \pi_\phi \right) - i \gamma \partial_0 \tilde{\sigma}_j \left(x, \pi_\phi \right) - E_j \left(\pi_\phi \right) \tilde{\sigma}_j \left(x, \pi_\phi \right) + \alpha^2 \nabla^2 \tilde{\sigma}_j \left(x, \pi_\phi \right)$$
$$\tilde{\sigma}_j \left(x, \pi_\phi \right) = \rho \left(x, \pi_\phi \right) e^{i \theta_j \left(x, \pi_\phi \right)}$$

• Physical entities of interest correspond to hydrodynamic averages: expectation values of

$$\left\langle \hat{V} \right\rangle = V_j \rho_0^2 = a^3$$

Perturbative framework with respect to the spatial gradient (slightly inhomogeneous relational quantities) $\rho_i = \rho_0 + \delta \rho$, $\theta_i = \theta_0 + \delta \theta$.

$$\left\langle \sigma_{\epsilon^{\mu}}; x^{\mu}, \pi_{\mu} \left| \frac{\delta S_{\rm GFT} \left[\hat{\varphi}, \hat{\varphi}^{\dagger} \right]}{\delta \hat{\varphi}^{\dagger} \left(g_{I}, x^{\mu} \right)} \right| \sigma_{\epsilon^{\mu}}; x^{\mu}, \pi_{\mu} \right\rangle = 0.$$

basic operators

$$\left\langle \hat{\Phi} \right\rangle = \phi_0 = N_0 \partial_{\pi_\phi} \theta_0$$

Dynamics of the background quantities

• Extract effective hydrodynamic equations: averaged form of the equations of motion

$$\partial_0^2 \tilde{\sigma}_j \left(x, \pi_\phi \right) - i \gamma \partial_0 \tilde{\sigma}_j \left(x, \pi_\phi \right) - E_j \left(\pi_\phi \right) \tilde{\sigma}_j \left(x, \pi_\phi \right) + \alpha^2 \nabla^2 \tilde{\sigma}_j \left(x, \pi_\phi \right)$$
$$\tilde{\sigma}_j \left(x, \pi_\phi \right) = \rho \left(x, \pi_\phi \right) e^{i \theta_j \left(x, \pi_\phi \right)}$$

• Physical entities of interest correspond to **hydrodynamic averages**: expectation values of

$$\left\langle \hat{V} \right\rangle = V_j \rho_0^2 = a^3$$

Perturbative framework with respect to the spatial gradient (slightly inhomogeneous relational quantities) $\rho_i = \rho_0 + \delta \rho$, $\theta_i = \theta_0 + \delta \theta$.

> Dynamics of the perturbed quantities

3. Emergent scalar field theory on curved spacetime from GFT Background level

Evolution equation for the background GFT phase

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

• Function of the clock and the scalar field momentum

Minisuperspace

Evolution equation for the background GFT phase

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

• Function of the clock and the scalar field momentum

Minisuperspace

Expectation value of the scalar field operator

$$\left\langle \hat{\Phi} \right\rangle = \phi_0 = N_0 \partial_{\pi_\phi} \theta_0$$

Evolution equation for the background GFT phase

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

• Function of the clock and the scalar field momentum

Minisuperspace

Expectation value of the scalar field operator

$$\left\langle \hat{\Phi} \right\rangle = \phi_0 = N_0 \partial_{\pi_\phi} \theta_0$$

• Study the dynamics of the background homogeneous scalar field (necessary for the scalar perturbation treatment)

Evolution equation for the background GFT phase

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

• Function of the clock and the scalar field momentum

Minisuperspace

Expectation value of the scalar field operator

$$\left\langle \hat{\Phi} \right\rangle = \phi_0 = N_0 \partial_{\pi_\phi} \theta_0$$

- Study the dynamics of the background homogeneous scalar field (necessary for the scalar perturbation treatment)
- Large volume regime (large GFT densities): this can be matched to GR results

Evolution equation for the background GFT phase

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

• Function of the clock and the scalar field momentum

Minisuperspace

Expectation value of the scalar field operator

$$\left\langle \hat{\Phi} \right\rangle = \phi_0 = N_0 \partial_{\pi_\phi} \theta_0$$

- Study the dynamics of the background homogeneous scalar field (necessary for the scalar perturbation treatment)
- Large volume regime (large GFT densities): this can be matched to GR results

For the small volume regime: we have a quantum bounce replacing the classical singularity

3. Emergent scalar field theory on curved spacetime from GFT

Background level

Evolution equation for the background GFT phase

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

• Function of the clock and the scalar field momentum

Not observable: adequate mathematical formulation!

Near the bounce

Expectation value of the scalar field operator

$$\left\langle \hat{\Phi} \right\rangle = \phi_0 = N_0 \partial_{\pi_\phi} \theta_0$$

• The scalar field is homogeneous

3. Emergent scalar field theory on curved spacetime from GFT

Background level

Evolution equation for the background GFT phase

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

• Function of the clock and the scalar field momentum

Not observable: adequate mathematical formulation!

Near the bounce

Expectation value of the scalar field operator

$$\left\langle \hat{\Phi} \right\rangle = \phi_0 = N_0 \partial_{\pi_\phi} \theta_0$$

• The scalar field is homogeneous

How do we access the dynamics of the scalar field near the bounce ?

Effective metric?

3. Emergent scalar field theory on curved spacetime from GFT

Background level

Evolution equation for the background GFT phase

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

• Function of the clock and the scalar field momentum

Not observable: adequate mathematical formulation!

Near the bounce

Expectation value of the scalar field operator

$$\left\langle \hat{\Phi} \right\rangle = \phi_0 = N_0 \partial_{\pi_\phi} \theta_0$$

• The scalar field is homogeneous

How do we access the dynamics of the scalar field near the bounce ?

Effective metric?

Closed equation of motion of the scalar field with no condensate parametrisation

Matter field dynamics near the bounce

Background level

Matter field dynamics near the bounce Background level

/ Inversion relation: $\theta_0 = \left(a^3 f(\pi_\phi, x^0)\right)^{-1} q$

2 Fundamental dynamics of the GFT phase:

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

$$\phi_0 + \frac{\gamma x^0}{2}$$

Background level Matter field dynamics near the bounce

A Inversion relation: $\theta_0 = \left(a^3 f(\pi_\phi, x^0)\right)^{-1} \phi_0 + \frac{\gamma x^0}{2}$

2 Fundamental dynamics of the GFT phase:

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

3 Clock is perfect

Assume an effective d'Alembert operator:

 $\Box = \frac{1}{\sqrt{g}} \partial_{\mu} \left(\sqrt{g} g^{\mu\nu} \partial_{\nu} \phi_0 \right)$

Matter field dynamics near the bounce **Background** level

A Inversion relation: $\theta_0 = \left(a^3 f(\pi_\phi, x^0)\right)^{-1} \phi_0 + \frac{\gamma x^0}{2}$ 3 Clock is perfect

2 Fundamental dynamics of the GFT phase:

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

$$\ddot{\phi} - \left(3H + 2\frac{\dot{f}}{f}\right)\dot{\phi} + \left(3H\frac{\dot{f}}{f} - 3\dot{H} + 2\frac{\dot{f}^2}{f^2} - \frac{\ddot{f}}{f}\right)\phi = 0.$$

Assume an effective d'Alembert operator:

 $\Box = \frac{1}{\sqrt{g}} \partial_{\mu} \left(\sqrt{g} g^{\mu\nu} \partial_{\nu} \phi_0 \right)$

Closed evolution equation for the homogeneous scalar field

Background level Matter field dynamics near the bounce

A Inversion relation: $\theta_0 = \left(a^3 f(\pi_\phi, x^0)\right)^{-1} \phi_0 + \frac{\gamma x^0}{\gamma}$ 3 Clock is perfect

2 Fundamental dynamics of the GFT phase:

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

$$\ddot{\phi} - \left(3H + 2\frac{\dot{f}}{f}\right)\dot{\phi} + \left(3H\frac{\dot{f}}{f} - 3\dot{H} + 2\frac{\dot{f}^2}{f^2} - \frac{\ddot{f}}{f}\right)\phi = 0.$$

Read off the metric $g_{00} = Ca^{12}f^4$, $g_{ij} = a^2\delta_{ij}$

Assume an effective d'Alembert operator:

 $\Box = \frac{1}{\sqrt{g}} \partial_{\mu} \left(\sqrt{g} g^{\mu\nu} \partial_{\nu} \phi_0 \right)$

Closed evolution equation for the homogeneous scalar field

Matter field dynamics near the bounce **Background** level

A Inversion relation: $\theta_0 = \left(a^3 f(\pi_\phi, x^0)\right)^{-1} \phi_0 + \frac{\gamma x^0}{2}$ 3 Clock is perfect

2 Fundamental dynamics of the GFT phase:

$$\ddot{\theta}_0 + \frac{3\dot{a}}{a} \left(\dot{\theta}_0 - \frac{\gamma}{2} \right) = 0$$

$$\ddot{\phi} - \left(3H + 2\frac{\dot{f}}{f}\right)\dot{\phi} + \left(3H\frac{\dot{f}}{f} - 3\dot{H} + 2\frac{\dot{f}^2}{f^2} - \frac{\ddot{f}}{f}\right)\phi = 0.$$

Read off the metric $g_{00} = Ca^{12}f^4$, $g_{ij} = a^2\delta_{ij}$

Assume an effective d'Alembert operator:

 $\Box = \frac{1}{\sqrt{g}} \partial_{\mu} \left(\sqrt{g} g^{\mu\nu} \partial_{\nu} \phi_0 \right)$

Closed evolution equation for the homogeneous scalar field

And additional terms ...

Modification with respect to the initial assumptions/classical system

What do we make of this?

 $\ddot{\phi}_0 - \left(3H + 2\frac{\dot{f}}{f}\right)\dot{\phi}_0 + g_{00}\left(R + \xi m^2\right)\phi_0 = 0.$

Non-minimal coupling: standard field theory on curved spacetime tells us that such coupling to gravity occurs due to the natural presence of strong gravitational interaction between the geometrical degrees of freedom and those of matter.

Near the bounce

What do we make of this?

 $\ddot{\phi}_0 - \left(3H + 2\frac{\dot{f}}{f}\right)\dot{\phi}_0 + g_{00}\left(R + \xi m^2\right)\phi_0 = 0.$

Non-minimal coupling: standard field theory on curved spacetime tells us that such coupling to gravity occurs due to the natural presence of strong gravitational interaction between the geometrical degrees of freedom and those of matter.

Near the bounce

•Our model naturally incorporates <u>inflation</u> driving the expansion of the universe.

•<u>Chameleon mechanism</u>: in the presence of other matter fields these scalars can acquire an effective mass parameter that is environmentally dependent.

•

What do we make of this?

 $\ddot{\phi}_0 - \left(3H + 2\frac{\dot{f}}{f}\right)\dot{\phi}_0 + g_{00}\left(R + \xi m^2\right)\phi_0 = 0.$

Non-minimal coupling: standard field theory on curved spacetime tells us that such coupling to gravity occurs due to the natural presence of strong gravitational interaction between the geometrical degrees of freedom and those of matter.

Near the bounce

•Our model naturally incorporates inflation driving the expansion of the universe.

•<u>Chameleon mechanism</u>: in the presence of other matter fields these scalars can acquire an effective mass parameter that is environmentally dependent.

The ingredients at hand:

Background level

The ingredients at hand:

Over a content of the bornogenous scalar field **Mackground effective metric Mo** condensate parametrisation entering the formulation

Background level

The ingredients at hand:

M Dynamics of the homogenous scalar field **Mackground effective metric Mo** condensate parametrisation

entering the formulation

Perturbed level: $\rho_j = \rho_0 + \delta \rho$, $\theta_j = \theta_0 + \delta \theta$.

- **C** Expression for the perturbed scalar field
- **D**ynamics of the perturbed GFT density and phase

Background level

The ingredients at hand:

M Dynamics of the homogenous scalar field **Mackground effective metric**

Mo condensate parametrisation entering the formulation

<u>Goal</u>: Express the effective evolution equation of the perturbed scalar field as a field theory on curved spacetime

Perturbed level: $\rho_j = \rho_0 + \delta \rho$, $\theta_j = \theta_0 + \delta \theta$.

- **C** Expression for the perturbed scalar field
- **D**ynamics of the perturbed GFT density and phase

We need to get rid of the condensate parametrisation

1. Express the coupled dynamics of the perturbed GFT phase and density in terms of only one of them

$$\delta \rho = \left(\tilde{\Box} - \eta_j \right)^{-1} \mathscr{D}[\delta \theta] \,.$$

$$\tilde{\Box}\,\delta\theta + 2\dot{\delta}\theta\frac{\dot{\rho}_0}{\rho_0} + \mathscr{L}\left[\left(\tilde{\Box} - \eta\right)^{-1}\mathscr{D}[\delta\theta]\right] = \alpha_r \nabla^2 \delta$$

them

$$\delta \rho = \left(\tilde{\Box} - \eta_j \right)^{-1} \mathcal{D}[\delta \theta] \,.$$

Find the solution to the above differential equation + derive an inversion relation

$$\delta\theta \equiv \left(\Psi(x^0, \pi_\phi) + \Phi(x, \pi_\phi)\right)^{-1} \delta\phi$$

1. Express the coupled dynamics of the perturbed GFT phase and density in terms of only one of

$$\tilde{\Box}\,\delta\theta + 2\dot{\delta}\theta\frac{\dot{\rho}_0}{\rho_0} + \mathscr{L}\left[\left(\tilde{\Box} - \eta\right)^{-1}\mathscr{D}[\delta\theta]\right] = \alpha_r \nabla^2 \delta$$

$$\delta\phi = \delta\langle\hat{\Phi}\rangle_{\sigma} = \left[\frac{\delta N}{N_0}\phi_0 + N_0\partial_{\pi_{\phi}}\delta\theta\right]_{\pi_{\phi} = \tilde{\pi}_{\phi}}$$

them

$$\delta \rho = \left(\tilde{\Box} - \eta_j \right)^{-1} \mathscr{D}[\delta \theta] \,.$$

Find the solution to the above differential equation + derive an inversion relation

$$\delta \theta \equiv \left(\Psi(x^0,\pi_\phi) + \Phi(x,\pi_\phi) \right)^{-1} \delta \phi$$

1. Express the coupled dynamics of the perturbed GFT phase and density in terms of only one of

$$\tilde{\Box}\,\delta\theta + 2\dot{\delta}\theta \frac{\dot{\rho}_0}{\rho_0} + \mathscr{L}\left[\left(\tilde{\Box} - \eta\right)^{-1}\mathscr{D}[\delta\theta]\right] = \alpha_r \nabla^2 \delta$$

$$\delta\phi = \delta\langle\hat{\Phi}\rangle_{\sigma} = \left[\frac{\delta N}{N_0}\phi_0 + N_0\partial_{\pi_{\phi}}\delta\theta\right]_{\pi_{\phi} = \tilde{\pi}_{\phi}}$$

→Using the inversion relation, extract the effective dynamics of the inhomogeneous scalar field: $\delta\ddot{\phi} - \left(2\frac{\dot{\Psi} + \dot{\Phi}}{\Psi + \Phi} - \frac{\lambda_2}{\lambda_1}\right)\delta\dot{\phi} - \left(\frac{\ddot{\Psi} + \ddot{\Phi}}{\Psi + \Phi} - 2\frac{(\dot{\Psi} + \dot{\Phi})^2}{(\Psi + \Phi)^2} + \frac{\lambda_2}{\lambda_1}\frac{\dot{\Psi} + \dot{\Phi}}{\Psi + \Phi} - \frac{\lambda_3}{\lambda_1}\right)\delta\phi = \frac{-\alpha_r}{\lambda_1}\nabla^2\delta\phi \,.$

them

$$\delta \rho = \left(\tilde{\Box} - \eta_j \right)^{-1} \mathscr{D}[\delta \theta] \,.$$

Find the solution to the above differential equation + derive an inversion relation

$$\delta \theta \equiv \left(\Psi(x^0,\pi_\phi) + \Phi(x,\pi_\phi) \right)^{-1} \delta \phi$$

Indications of possible phenomenology

1. Express the coupled dynamics of the perturbed GFT phase and density in terms of only one of

$$\tilde{\Box}\,\delta\theta + 2\dot{\delta}\theta \frac{\dot{\rho}_0}{\rho_0} + \mathscr{L}\Big[\Big(\tilde{\Box} - \eta\Big)^{-1}\mathscr{D}[\delta\theta]\Big] = \alpha_r \nabla^2 \delta\theta \,.$$

$$\delta\phi = \delta\langle\hat{\Phi}\rangle_{\sigma} = \left[\frac{\delta N}{N_0}\phi_0 + N_0\partial_{\pi_{\phi}}\delta\theta\right]_{\pi_{\phi} = \tilde{\pi}_{\phi}}$$

→Using the inversion relation, extract the effective dynamics of the inhomogeneous scalar field: $\delta\ddot{\phi} - \left(2\frac{\dot{\Psi} + \dot{\Phi}}{\Psi + \Phi} - \frac{\lambda_2}{\lambda_1}\right)\delta\dot{\phi} - \left(\frac{\ddot{\Psi} + \ddot{\Phi}}{\Psi + \Phi} - 2\frac{(\dot{\Psi} + \dot{\Phi})^2}{(\Psi + \Phi)^2} + \frac{\lambda_2}{\lambda_1}\frac{\dot{\Psi} + \dot{\Phi}}{\Psi + \Phi} - \frac{\lambda_3}{\lambda_1}\right)\delta\phi = \frac{-\alpha_r}{\lambda_1}\nabla^2\delta\phi \,.$

> Extract the Bardeen Potentials from the effective dynamics

What did we achieve?

theory on a curved spacetime.

At early times, this resulted in the emergence of possibly:

Starting from a full quantum gravity setting: we extracted an effective scalar field

- Non-minimal coupling to gravity at early times —> Modified theory of gravity
- Mass/matter or potential term that can be studied in the inflationary scenario or Chameleon mechanism
- The ground now is set for phenomenology and contact with observations!

Open questions and outlook

Identify modified gravity theories that are produced from the effective dynamics outlined above.

Classify such theories according to the QG parameters.

Phenomenological investigations: Study the Inflationary potential, Mass term (chameleon mech.), the modified dispersion relation (dissipation effects) ..

Canonical quantization of the scalar field : study all phenomena that a standard QFT theory produces: Correlation functions, CMB spectrum —> observational cosmology.

Thank you for your altention!