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The Issue of Covariance

• Different ideas of QG are being tested in spherically
symmetric models, as they contain local degrees of freedom
rather than the Mini-superspace models.

• In some spherically symmetric models of LQG, the effetive
metrics give the spacetime structures dramatically differennt
from those of classical metrics [Haggard and Rovelli 2015,
Ashetekar el 2018, Lewandowski el 2023].

• Could the BH to WH transition happens in some effective
dynamics of spherically symmetric QG model?

• If so, whether is the spherically symmetric effective theory
covariant?

• How to formulate the conditions of covariance into tractable
equations in the models?
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Kinematical Setting of Spherically Symmetric Models

• The kinematics of the spherically symmetric GR is defined on
a 4-dimensional manifold M2 × S2, where S2 denots the
2-sphere and M2

∼= R× Σ with Σ being an 1-dimensional
manifold.

• The phase space of the model contains the canonical pairs
(K2,E

2) for the 2-dimensional gravity and (K1,E
1) for the

dilaton, where E 2 and K1 are scalar densities of weight 1,
while K2 and E 1 are scalars on Σ [Bojowald, Swiderski, 2005].

• The nontrivial Poisson brackets read:
{K1(x),E

1(y)} = 2δ(x , y) and {K2(x),E
2(y)} = δ(x , y),

where the geometric units with G = 1 = c are applied.
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Ansatz of the Effective Models

• For an arbitrary effective model of some canonical QG theory,
we assume that the diffeomorphism constraint keeps the same
as the classical expression, but the effective Hamiltonian
constraint Heff deviates from the classical one.

• The constraint algebra is expected to mirror the classical one
but with a correction factor µ to account for QG effects:

{Hx [N
x
1 ],Hx [N

x
2 ]} = Hx [N

x
1 ∂xN

x
2 − Nx

2 ∂xN
x
1 ],

{Hx [N
x
1 ],Heff [N1]} = Heff [N

x
1 ∂xN1],

{Heff [N1],Heff [N2]} = Hx [S(N1∂xN2 − N2∂xN1)],

with S ≡ µE 1(E 2)−2 being the structure function.
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Covariance Issue in Effective Models

• Assuming that the function S in the constraint algebra
represents the (x , x)-component of the inverse spatial metric
of g (µ)

ρσ , the algebra can retain the same geometric
interpretation as in the classical case. Then

ds2 = −N2dt2 +
(E 2)2

µE 1
(dx + Nxdt)2 + E 1dΩ2.

• To ensure the covariance with respect to g (µ)
ρσ , we seek the

effective Hamiltonian constraint Heff such that

δg (µ)
ρσ = LαNg

(µ)
ρσ ,

up to terms proportional to constraints. Here,
N = ∂t − Nx∂x , and δg (µ)

ρσ represents the infinitesimal gauge
transformation generated by Heff [αN].
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Conditions for the Covariance
• By the covariance condition, one can employ E 2 and the
following basic scalars to construct Heff

s1 = E 1, s2 = K2, s3 =
K1

E 2
, s4 =

∂xs1
E 2

, s5 =
∂xs4
E 2

.

• The covariance condition and the form of the constraint
algabra require that Heff takes the form

Heff = −2E 2
[
∂s1Meff +

∂s2Meff

2
s3 +

∂s4Meff

s4
s5 +R

]
,

where R is an arbitrary function of s1 and Meff , and Meff

depending on s1, s2, s4 is a solution to:

µs1s4
4

= (∂s2Meff)∂s2∂s4Meff − (∂s4Meff)∂
2
s2Meff ,

(∂s2µ)∂s4Meff − (∂s2Meff)∂s4µ = 0.
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The Effective Model I

• The first effective mass, satisfying the above equations with
µ ≡ µ1 = 1 and a quantum parameter ζ ∝

√
ℏ, reads

M
(1)
eff =

√
s1
2

+

√
s1

3 sin2
(

ζs2√
s1

)
2ζ2

−
√
s1(s4)

2

8
e

2iζs2√
s1 .

• A stationary BH solution to this model reads

ds2(1) =− f1dt
2 + f −1

1 dx2 + x2dΩ2,

f1 =1− 2M

x
+

ζ2

x2

(
1− 2M

x

)2

.

• The function f1 has two positive roots for all M > 0: x+ = 2M

and x− = ζ2/β − β/3, with β3 = 3ζ2
(√

81M2 + 3ζ2 − 9M
)
.
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Spacetime Stucture of the BH in Model I
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• While the classical
Schwarzschild singularity
is resolved in this
spacetime by a transition
region connecting a BH
to a WH, the timelike
singularities persist at
x = 0.
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The Effective Model II

• The second effective mass, satisfying the above equations

with µ ≡ µ2 = 1 +
ζ2

√
s1

3

(√
s1 − 2M

(2)
eff

)
, reads

M
(2)
eff =

√
s1
2

+

√
s1

3 sin2
(

ζs2√
s1

)
2ζ2

−
√
s1(s4)

2 cos2
(

ζs2√
s1

)
8

.

• A stationary BH solution to this model reads

ds2(2) =− f2dt
2 + µ−1

2 f −1
2 dx2 + x2dΩ2,

f2 =1− 2M

x
, µ2 = 1 +

ζ2

x2

(
1− 2M

x

)
.
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Spacetime Structure of the BH in Model II

• The classical singularity is
replaced by a transition
surface T connecting the
regions B and W , where
the Kretschmann scalar is
bounded by K

∣∣
T =

81

4ζ4
+ O((Mζ5)−2/3).
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The Effective Model III

• The third effective mass, satisfying the above equations with

µ ≡ µ3 = 1−
4ζ4(M

(3)
eff )2

s31
, reads

M
(3)
eff =

s1
3/2

2ζ2
sin

(
ζ2

s1
(1 + (s2)

2 − (s4)
2

4
)

)

• A stationary BH solution to this model reads

ds2(3) =− f
(n)
3 dt2 + µ−1

3 (f
(n)
3 )−1dx2 + x2dΩ2,

f
(n)
3 =1− (−1)n

x2

ζ2
arcsin(

2Mζ2

x3
)− nπx2

ζ2
,

µ3 =1− 4ζ4M2

x6
.
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Spacetime Structure of the BH in Model III

A

B

W

A
x = x h

x = ∞

x = ∞

x = x h x =
xh

x =
xh

x = xmin

x = xmin

S

S

• The case of M >
ζ

2

(
2

π

)3/2

: The spacetime is extended

beyond the singularity into an asympototic Schwarzschild-de
Sitter one with negative mass and does not contain any
Cauchy horizons.
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Summary

• General covariance is precisely formulated into a set of
equations in spherically symmetric models, leading to the
tractable conditions for ensuring the covariance.

• Alternative candidates of effective Hamiltonian constraints
satisfying the covaraince conditions are proposed.

• The quantum modified BH solutions of the effective models
are obtained. Some of them capture qualitative characters of
the previous effective models of LQG, including the singularity
resolution and BH to WH transitions, while preserving the
covariance.

• In a particular covariant model, the BH spacetime is extended
beyond the singularity into an asympototic Schwarzschild-de
Sitter one with negative mass and does not contain any
Cauchy horizons.
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!Thanks!
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