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Idea and motivation

• How can we quantize gravity?
◦ Use same methods as in QFT⇝ doesn’t work  .

◦ Guess a complete theory of quantum gravity⇝ hard  .
◦ Assume gravity is classical⇝ leaves unsolved problems  .
◦ Study effective quantum gravity model phenomenology⇝ maybe feasible (✓).

• How can we study effective gravity models?

◦ Don’t care (too much) about fundamental laws of gravity.
◦ Assume that general relativity (GR) is almost correct.
◦ Think of possible sources of quantum corrections to GR.
◦ Study the phenomenology of quantum corrections.

• How can we study quantum gravity phenomenology?

◦ Find physical system which could amplify deviations from general relativity.
◦ Example: study compact system with very strong gravity.
◦ Think of possible observables in the chosen system.
◦ Calculate how effective quantum gravity influences observables.

⇒ Here: effective quantum gravity phenomenology with gas dynamics near black holes.
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How does quantum gravity phenomenology work?

• Basic operating principle of (quantum) gravity theory:

matter motion
quantum
gravity

 Quantum gravity is a black box!
• Quantum gravity must approximate general relativity:

quantum
gravity

= general
relativity

+ ϵ · quantum
correction

⇝ We still have a black box, but it is multiplied by ϵ ≪ 1⇝ perturbation.
✓ General relativity is a very simple theory!
⇒ We know what is in the white box:

general
relativity

=

⇝ Only need to study (all) possible quantum corrections!
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Kinetic gas to probe quantum gravity

• Gas is constituted by particles of equal mass.

• Particle trajectories follow (relativistic) Hamiltonian dynamics.
• Each particle is described by (spacetime) position and four-momentum.
⇝ Kinetic gas is density distribution in 8-dimensional position-momentum phase space.
⇒ Gas dynamics follows from Hamiltonian particle dynamics.

Collisionless gas
Particle density function is constant along particle trajectories in phase space.

p

x
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Hamiltonian formulation of relativistic particle dynamics

• Model particle dynamics on cotangent bundle T ∗M with coordinates (xµ, x̄µ).

• (Modified) dispersion relation: mass shell condition for Hamiltonian:

−m2

2
= H(xµ, x̄µ) . (1)

• Particle trajectories derived from Hamilton’s equations of motion:

ẋµ = ∂̄µH , ˙̄xµ = −∂µH . (2)

• Canonical cotangent bundle geometry: symplectic form ω ∈ Ω2(T ∗M) as

θ = x̄µdxµ , ω = dθ = dx̄µ ∧ dxµ . (3)

• Hamiltonian vector field XH on T ∗M: unique solution of

ιXHω = −dH . (4)

⇒ Particle trajectories are integral curves of XH .
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From particle dynamics to gas dynamics

• Introduce symplectic volume form:

Σ =
1
4!
ω ∧ ω ∧ ω ∧ ω = dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx̄0 ∧ dx̄1 ∧ dx̄2 ∧ dx̄3 . (5)

• Kinetic gas: particles of equal mass described by phase space trajectories on T ∗M.
• One particle distribution function ϕ : T ∗M → R+:

N[σ] =

∫
σ
ϕΩ . (6)

◦ σ: hypersurface in T ∗M which is transverse to XH .
◦ N[σ]: number of particle trajectories through σ.
◦ Ω = ιXHΣ: particle measure .

• Collisionless gas: particles follow Hamilton’s equations of motion, no interactions.
⇒ 1-PDF follows Liouville equation: LXHϕ = 0.
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• One particle distribution function ϕ : T ∗M → R+:

N[σ] =

∫
σ
ϕΩ . (6)

◦ σ: hypersurface in T ∗M which is transverse to XH .

◦ N[σ]: number of particle trajectories through σ.
◦ Ω = ιXHΣ: particle measure .

• Collisionless gas: particles follow Hamilton’s equations of motion, no interactions.
⇒ 1-PDF follows Liouville equation: LXHϕ = 0.
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Static spherically symmetric system

• Symmetry generated by vector fields (XI) = (X0,X1,X2,X3).

⇒ Hamiltonian and 1-PDF invariant under complete lift: LX̂I
H = LX̂I

ϕ = 0 with

X̂ = Xµ∂µ − x̄ν∂µX ν ∂̄µ . (7)

⇝ Introduce new coordinates (t , r ,Θ,Φ,Ψ,E ,P,L) such that:
◦ Θ,Φ,E ,L are constant along trajectories (Noether symmetries).
◦ Hamiltonian and 1-PDF depend only on r ,P,E ,L.

• Also Hamiltonian is constant of motion: XHH = 0.
⇝ Replace P by H in new coordinates (t , r ,Θ,Φ,Ψ,E ,H,L) such that:

◦ Θ,Φ,E ,L,H are constant along trajectories.
◦ 1-PDF depends only on r ,E ,L,H.

⇒ Liouville equation becomes ∂rϕ = 0.
⇒ Most general solution to static spherically symmetric gas: ϕ = ϕ(E ,L,H).
⇝ Consider gas ϕ ∼ δ(E)δ(L)δ(H) of identical energy, angular momentum, mass.
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κ-Poincaré correction of Schwarzschild spacetime

• General κ-Poincaré modification of metric dispersion relation:

H = − 2
ℓ2 sinh2

(
ℓ

2
Zµx̄µ

)
+

1
2

eℓZµx̄µ(gµν + ZµZ ν)x̄µx̄ν . (8)

◦ Spacetime metric gµν .
◦ Unit timelike vector field Zµ satisfying ZµZ νgµν = −1.
◦ Planck length ℓ.

⇒ Static spherically symmetric case defined by functions a,b, c,d of r :

H = − 2
ℓ2 sinh2

[
ℓ

2
(−cE + dP)

]
+

1
2

eℓ(−cE+dP)

[
(−a + c2)E2 − 2cdEP + (b + d2)P2 +

L2

r2

]
. (9)

⇒ Minimal modification of Schwarzschild spacetime of mass M:

a−1 = b = c−2 = 1 − 2M
r

, d = 0 . (10)
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Example: swarm of orbiting particles

• Properties of particle ensemble:
◦ Identical angular momentum L > 0 (motion has angular component).
◦ Energy E such that particles are gravitationally bound.

⇒ Orbit oscillates between two radii R1,2.
• Calculate number of trajectories through time slice σ with R < r < R + dr .
• Plot (inverse of) relative particle density N/(dN/dr):

3.0 3.5 4.0 4.5 5.0 5.5 6.0

r

rS

1

2

3

4

5

Nκ

dNκ/dr

ℓ  0.1

ℓ  0.2

ℓ  0.3
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ℓ  0.5

ℓ  0.6

ℓ  0.7

ℓ  0.8
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r
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1.3

Nκ dNS /dr

NS dNκ/dr

ℓ  0.1

ℓ  0.2

ℓ  0.3

ℓ  0.4

ℓ  0.5

ℓ  0.6

ℓ  0.7

ℓ  0.8

⇒ κ-Poincaré modification shifts particles inward.
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Example: radial free fall from infinity

• Properties of particle ensemble:
◦ Identical angular momentum L = 0 (purely radial motion).
◦ Energy E such that particles are marginally bound (drop from rest at r = ∞).

• Assume constant flow rate through radial slice.
• Calculate number of trajectories through time slice σ with R < r < R + dr .
• Plot particle density dN/dr per flow rate dN/dt :
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Conclusion

• Summary:
 Fundamental theory of quantum gravity is unknown.
⇒ Consider effective quantum gravity models instead.
◦ Effective model is small correction to general relativity.

⇒ Study observable effects of possible quantum corrections.
◦ κ-Poincaré modification changes matter density near black hole.

• Outlook:
◦ Consider more general quantum corrections.
◦ Consider spinning black holes.
◦ Consider more general gases or matter distributions with less symmetry:

· Accretion disks and jets⇝ blazars.
· Tidal disruption events.
· Stellar wake of passing black hole and dynamical friction.

◦ Derive observable properties of black holes, quasars, AGN. . .

• MH, “Kinetic gases in static spherically symmetric modified dispersion relations,”
Class. Quant. Grav. 41 (2024) no.1, 015025 [arXiv:2310.01487 [gr-qc]].
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