Modified dispersion relations and relativistic gas dynamics Class. Quant. Grav. **41** (2023) 015025 [arXiv:2310.01487 [gr-qc]]

Manuel Hohmann

Laboratory of Theoretical Physics, Institute of Physics, University of Tartu Center of Excellence "Fundamental Universe"

BridgeQG first annual conference - 10. July 2025

- How can we quantize gravity?
 - $\circ~$ Use same methods as in QFT \rightsquigarrow doesn't work ${\not {\! / }}.$

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems ${\not {}_{\sharp}}$.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity → hard ¼.
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - $\circ~$ Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - $\circ~$ Assume gravity is classical \leadsto leaves unsolved problems ${\not {}_{2}}$.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work ${\not {}_{2}}$.
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - $\circ~$ Assume gravity is classical \leadsto leaves unsolved problems ${\not {}_{2}}$.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work ${\not {}_{2}}$.
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work ${\not {}_{2}}$.
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - o Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - o Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - o Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - o Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.
 - Think of possible observables in the chosen system.

- How can we quantize gravity?
 - Use same methods as in QFT \rightsquigarrow doesn't work \oint .
 - Guess a complete theory of quantum gravity \rightsquigarrow hard \oint .
 - Assume gravity is classical \rightsquigarrow leaves unsolved problems \oint .
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - o Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.
 - Think of possible observables in the chosen system.
 - Calculate how effective quantum gravity influences observables.

- How can we quantize gravity?
 - $\circ~$ Use same methods as in QFT \rightsquigarrow doesn't work ${\not {}_{\!\!\!\!\!/}}\,.$
 - Guess a complete theory of quantum gravity \rightsquigarrow hard ${\not {}_{4}}$.
 - $\circ~$ Assume gravity is classical \leadsto leaves unsolved problems ${\not {}_{2}}$.
 - Study effective quantum gravity model phenomenology \rightsquigarrow maybe feasible (\checkmark).
- How can we study effective gravity models?
 - Don't care (too much) about fundamental laws of gravity.
 - Assume that general relativity (GR) is almost correct.
 - Think of possible sources of quantum corrections to GR.
 - Study the phenomenology of quantum corrections.
- How can we study quantum gravity phenomenology?
 - Find physical system which could amplify deviations from general relativity.
 - Example: study compact system with very strong gravity.
 - Think of possible observables in the chosen system.
 - Calculate how effective quantum gravity influences observables.

\Rightarrow Here: effective quantum gravity phenomenology with gas dynamics near black holes.

• Basic operating principle of (quantum) gravity theory:

• Basic operating principle of (quantum) gravity theory:

¿ Quantum gravity is a black box!

• Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

• Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

 \rightsquigarrow We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation.

• Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation. General relativity is a very simple theory!

• Basic operating principle of (quantum) gravity theory:

- Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

- \rightsquigarrow We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation.
- ✓ General relativity is a very simple theory!
- \Rightarrow We know what is in the white box:

• Basic operating principle of (quantum) gravity theory:

- ✓ Quantum gravity is a black box!
- Quantum gravity must approximate general relativity:

- \rightsquigarrow We still have a black box, but it is multiplied by $\epsilon \ll 1 \rightsquigarrow$ perturbation.
- ✓ General relativity is a very simple theory!
- \Rightarrow We know what is in the white box:

→ Only need to study (all) possible quantum corrections!

Manuel Hohmann (University of Tartu)

• Gas is constituted by particles of equal mass.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- → Kinetic gas is density distribution in 8-dimensional position-momentum phase space.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- → Kinetic gas is density distribution in 8-dimensional position-momentum phase space.
- \Rightarrow Gas dynamics follows from Hamiltonian particle dynamics.

- Gas is constituted by particles of equal mass.
- Particle trajectories follow (relativistic) Hamiltonian dynamics.
- Each particle is described by (spacetime) position and four-momentum.
- → Kinetic gas is density distribution in 8-dimensional position-momentum phase space.
- \Rightarrow Gas dynamics follows from Hamiltonian particle dynamics.

Collisionless gas

Particle density function is constant along particle trajectories in phase space.

• Model particle dynamics on cotangent bundle T^*M with coordinates (x^{μ}, \bar{x}_{μ}) .

- Model particle dynamics on cotangent bundle T^*M with coordinates (x^{μ}, \bar{x}_{μ}) .
- (Modified) dispersion relation: mass shell condition for Hamiltonian:

$$-\frac{m^2}{2} = H(x^{\mu}, \bar{x}_{\mu}).$$
 (1)

- Model particle dynamics on cotangent bundle T^*M with coordinates (x^{μ}, \bar{x}_{μ}) .
- (Modified) dispersion relation: mass shell condition for Hamiltonian:

$$-\frac{m^2}{2} = H(x^{\mu}, \bar{x}_{\mu}).$$
 (1)

• Particle trajectories derived from Hamilton's equations of motion:

$$\dot{x}^{\mu} = \bar{\partial}^{\mu} H, \quad \dot{\bar{x}}^{\mu} = -\partial_{\mu} H.$$
 (2)

- Model particle dynamics on cotangent bundle T^*M with coordinates (x^{μ}, \bar{x}_{μ}) .
- (Modified) dispersion relation: mass shell condition for Hamiltonian:

$$-\frac{m^2}{2} = H(x^{\mu}, \bar{x}_{\mu}).$$
 (1)

• Particle trajectories derived from Hamilton's equations of motion:

$$\dot{x}^{\mu} = \bar{\partial}^{\mu} H, \quad \dot{\bar{x}}^{\mu} = -\partial_{\mu} H.$$
 (2)

• Canonical cotangent bundle geometry: symplectic form $\omega \in \Omega^2(T^*M)$ as

$$\theta = \bar{x}_{\mu} dx^{\mu}, \quad \omega = d\theta = d\bar{x}_{\mu} \wedge dx^{\mu}.$$
 (3)

- Model particle dynamics on cotangent bundle T^*M with coordinates (x^{μ}, \bar{x}_{μ}) .
- (Modified) dispersion relation: mass shell condition for Hamiltonian:

$$-\frac{m^2}{2} = H(x^{\mu}, \bar{x}_{\mu}).$$
 (1)

• Particle trajectories derived from Hamilton's equations of motion:

$$\dot{x}^{\mu} = \bar{\partial}^{\mu} H, \quad \dot{\bar{x}}^{\mu} = -\partial_{\mu} H.$$
 (2)

• Canonical cotangent bundle geometry: symplectic form $\omega \in \Omega^2(T^*M)$ as

$$\theta = \bar{x}_{\mu} dx^{\mu}, \quad \omega = d\theta = d\bar{x}_{\mu} \wedge dx^{\mu}.$$
 (3)

• Hamiltonian vector field X_H on T*M: unique solution of

$$\iota_{X_H}\omega = -\mathsf{d}H. \tag{4}$$

- Model particle dynamics on cotangent bundle T^*M with coordinates (x^{μ}, \bar{x}_{μ}) .
- (Modified) dispersion relation: mass shell condition for Hamiltonian:

$$-\frac{m^2}{2} = H(x^{\mu}, \bar{x}_{\mu}).$$
 (1)

• Particle trajectories derived from Hamilton's equations of motion:

$$\dot{x}^{\mu} = \bar{\partial}^{\mu} H, \quad \dot{\bar{x}}^{\mu} = -\partial_{\mu} H.$$
 (2)

• Canonical cotangent bundle geometry: symplectic form $\omega \in \Omega^2(T^*M)$ as

$$\theta = \bar{x}_{\mu} dx^{\mu}, \quad \omega = d\theta = d\bar{x}_{\mu} \wedge dx^{\mu}.$$
 (3)

• Hamiltonian vector field X_H on T*M: unique solution of

$$\iota_{X_H}\omega = -\mathsf{d}H. \tag{4}$$

 \Rightarrow Particle trajectories are integral curves of X_H .

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = \mathsf{d}x^0 \wedge \mathsf{d}x^1 \wedge \mathsf{d}x^2 \wedge \mathsf{d}x^3 \wedge \mathsf{d}\bar{x}_0 \wedge \mathsf{d}\bar{x}_1 \wedge \mathsf{d}\bar{x}_2 \wedge \mathsf{d}\bar{x}_3.$$
(5)

• Introduce symplectic volume form:

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
(5)

• Kinetic gas: particles of equal mass described by phase space trajectories on T*M.

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T*M.
- One particle distribution function $\phi : T^*M \to \mathbb{R}^+$:

$$N[\sigma] = \int_{\sigma} \phi \Omega \,. \tag{6}$$

• Introduce symplectic volume form:

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T*M.
- One particle distribution function $\phi : T^*M \to \mathbb{R}^+$:

$$N[\sigma] = \int_{\sigma} \phi \Omega \,. \tag{6}$$

• σ : hypersurface in T^*M which is transverse to X_H .

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T*M.
- One particle distribution function $\phi : T^*M \to \mathbb{R}^+$:

$$\mathbf{V}[\boldsymbol{\sigma}] = \int_{\boldsymbol{\sigma}} \phi \boldsymbol{\Omega} \,. \tag{6}$$

- σ : hypersurface in T^*M which is transverse to X_H .
- $N[\sigma]$: number of particle trajectories through σ .

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
(5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T*M.
- One particle distribution function $\phi : T^*M \to \mathbb{R}^+$:

$$\mathsf{N}[\sigma] = \int_{\sigma} \phi \mathbf{\Omega} \,. \tag{6}$$

- σ : hypersurface in T^*M which is transverse to X_H .
- $N[\sigma]$: number of particle trajectories through σ .
- $\Omega = \iota_{X_H} \Sigma$: particle measure.

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T*M.
- One particle distribution function $\phi : T^*M \to \mathbb{R}^+$:

$$\mathsf{N}[\sigma] = \int_{\sigma} \phi \Omega \,. \tag{6}$$

- σ : hypersurface in T^*M which is transverse to X_H .
- $N[\sigma]$: number of particle trajectories through σ .
- $\Omega = \iota_{X_H} \Sigma$: particle measure.
- Collisionless gas: particles follow Hamilton's equations of motion, no interactions.

$$\Sigma = \frac{1}{4!}\omega \wedge \omega \wedge \omega \wedge \omega = dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 \wedge d\bar{x}_0 \wedge d\bar{x}_1 \wedge d\bar{x}_2 \wedge d\bar{x}_3.$$
 (5)

- Kinetic gas: particles of equal mass described by phase space trajectories on T*M.
- One particle distribution function $\phi : T^*M \to \mathbb{R}^+$:

$$\mathsf{N}[\sigma] = \int_{\sigma} \phi \Omega \,. \tag{6}$$

- σ : hypersurface in T^*M which is transverse to X_H .
- $N[\sigma]$: number of particle trajectories through σ .
- $\Omega = \iota_{X_H} \Sigma$: particle measure.
- Collisionless gas: particles follow Hamilton's equations of motion, no interactions.
- \Rightarrow 1-PDF follows Liouville equation: $\mathcal{L}_{\chi_H}\phi = 0$.

• Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.

• Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.

⇒ Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{\chi}_{i}}H = \mathcal{L}_{\hat{\chi}_{i}}\phi = 0$ with

$$\hat{X} = X^{\mu}\partial_{\mu} - \bar{x}_{\nu}\partial_{\mu}X^{\nu}\bar{\partial}^{\mu}.$$
(7)

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- ⇒ Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{X}_{l}}H = \mathcal{L}_{\hat{X}_{l}}\phi = 0$ with

$$\hat{X} = X^{\mu}\partial_{\mu} - \bar{x}_{\nu}\partial_{\mu}X^{\nu}\bar{\partial}^{\mu}.$$
(7)

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - Hamiltonian and 1-PDF depend only on *r*, *P*, *E*, *L*.

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- ⇒ Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{X}_{l}}H = \mathcal{L}_{\hat{X}_{l}}\phi = 0$ with

$$\hat{X} = X^{\mu}\partial_{\mu} - \bar{x}_{\nu}\partial_{\mu}X^{\nu}\bar{\partial}^{\mu}.$$
(7)

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - Hamiltonian and 1-PDF depend only on *r*, *P*, *E*, *L*.
 - Also Hamiltonian is constant of motion: $X_H H = 0$.

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- ⇒ Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{X}_{l}}H = \mathcal{L}_{\hat{X}_{l}}\phi = 0$ with

$$\hat{X} = X^{\mu}\partial_{\mu} - \bar{x}_{\nu}\partial_{\mu}X^{\nu}\bar{\partial}^{\mu}.$$
(7)

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - Hamiltonian and 1-PDF depend only on *r*, *P*, *E*, *L*.
- Also Hamiltonian is constant of motion: $X_H H = 0$.
- \rightarrow Replace *P* by *H* in new coordinates $(t, r, \Theta, \Phi, \Psi, E, H, L)$ such that:
 - Θ , Φ , E, L, H are constant along trajectories.
 - 1-PDF depends only on *r*, *E*, *L*, *H*.

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- ⇒ Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{X}_{I}}H = \mathcal{L}_{\hat{X}_{I}}\phi = 0$ with

$$\hat{X} = X^{\mu}\partial_{\mu} - \bar{x}_{\nu}\partial_{\mu}X^{\nu}\bar{\partial}^{\mu}.$$
(7)

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - Hamiltonian and 1-PDF depend only on *r*, *P*, *E*, *L*.
- Also Hamiltonian is constant of motion: $X_H H = 0$.
- → Replace *P* by *H* in new coordinates $(t, r, \Theta, \Phi, \Psi, E, H, L)$ such that:
 - Θ , Φ , E, L, H are constant along trajectories.
 - 1-PDF depends only on r, E, L, H.
- ⇒ Liouville equation becomes $\partial_r \phi = 0$.

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- ⇒ Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{X}_{l}}H = \mathcal{L}_{\hat{X}_{l}}\phi = 0$ with

$$\hat{X} = X^{\mu}\partial_{\mu} - \bar{x}_{\nu}\partial_{\mu}X^{\nu}\bar{\partial}^{\mu}.$$
(7)

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - Hamiltonian and 1-PDF depend only on *r*, *P*, *E*, *L*.
- Also Hamiltonian is constant of motion: $X_H H = 0$.
- → Replace *P* by *H* in new coordinates $(t, r, \Theta, \Phi, \Psi, E, H, L)$ such that:
 - Θ , Φ , E, L, H are constant along trajectories.
 - 1-PDF depends only on r, E, L, H.
- ⇒ Liouville equation becomes $\partial_r \phi = 0$.
- ⇒ Most general solution to static spherically symmetric gas: $\phi = \phi(E, L, H)$.

- Symmetry generated by vector fields $(X_1) = (X_0, X_1, X_2, X_3)$.
- ⇒ Hamiltonian and 1-PDF invariant under complete lift: $\mathcal{L}_{\hat{X}_l}H = \mathcal{L}_{\hat{X}_l}\phi = 0$ with

$$\hat{X} = X^{\mu}\partial_{\mu} - \bar{x}_{\nu}\partial_{\mu}X^{\nu}\bar{\partial}^{\mu}.$$
(7)

- → Introduce new coordinates $(t, r, \Theta, \Phi, \Psi, E, P, L)$ such that:
 - Θ , Φ , E, L are constant along trajectories (Noether symmetries).
 - Hamiltonian and 1-PDF depend only on *r*, *P*, *E*, *L*.
- Also Hamiltonian is constant of motion: $X_H H = 0$.
- → Replace *P* by *H* in new coordinates $(t, r, \Theta, \Phi, \Psi, E, H, L)$ such that:
 - Θ , Φ , E, L, H are constant along trajectories.
 - 1-PDF depends only on r, E, L, H.
- ⇒ Liouville equation becomes $\partial_r \phi = 0$.
- ⇒ Most general solution to static spherically symmetric gas: $\phi = \phi(E, L, H)$.
- \rightsquigarrow Consider gas $\phi \sim \delta(E)\delta(L)\delta(H)$ of identical energy, angular momentum, mass.

• General *κ*-Poincaré modification of metric dispersion relation:

$$H = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^{\mu} \bar{x}_{\mu}\right) + \frac{1}{2} e^{\ell Z^{\mu} \bar{x}_{\mu}} (g^{\mu\nu} + Z^{\mu} Z^{\nu}) \bar{x}_{\mu} \bar{x}_{\nu} . \tag{8}$$

• General *κ*-Poincaré modification of metric dispersion relation:

$$H = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^{\mu} \bar{x}_{\mu}\right) + \frac{1}{2} e^{\ell Z^{\mu} \bar{x}_{\mu}} (g^{\mu\nu} + Z^{\mu} Z^{\nu}) \bar{x}_{\mu} \bar{x}_{\nu} . \tag{8}$$

• Spacetime metric $g_{\mu\nu}$.

• General *κ*-Poincaré modification of metric dispersion relation:

$$H = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^{\mu} \bar{x}_{\mu}\right) + \frac{1}{2} e^{\ell Z^{\mu} \bar{x}_{\mu}} (g^{\mu\nu} + Z^{\mu} Z^{\nu}) \bar{x}_{\mu} \bar{x}_{\nu} . \tag{8}$$

- Spacetime metric $g_{\mu\nu}$.
- Unit timelike vector field Z^{μ} satisfying $Z^{\mu}Z^{\nu}g_{\mu\nu} = -1$.

• General *κ*-Poincaré modification of metric dispersion relation:

$$H = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^{\mu} \bar{x}_{\mu}\right) + \frac{1}{2} e^{\ell Z^{\mu} \bar{x}_{\mu}} (g^{\mu\nu} + Z^{\mu} Z^{\nu}) \bar{x}_{\mu} \bar{x}_{\nu} \,. \tag{8}$$

- Spacetime metric $g_{\mu\nu}$.
- Unit timelike vector field Z^{μ} satisfying $Z^{\mu}Z^{\nu}g_{\mu\nu} = -1$.
- \circ Planck length ℓ .

• General *κ*-Poincaré modification of metric dispersion relation:

$$H = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^{\mu} \bar{x}_{\mu}\right) + \frac{1}{2} e^{\ell Z^{\mu} \bar{x}_{\mu}} (g^{\mu\nu} + Z^{\mu} Z^{\nu}) \bar{x}_{\mu} \bar{x}_{\nu} .$$
 (8)

- Spacetime metric $g_{\mu\nu}$.
- Unit timelike vector field Z^{μ} satisfying $Z^{\mu}Z^{\nu}g_{\mu\nu} = -1$.
- Planck length ℓ.

 \Rightarrow Static spherically symmetric case defined by functions *a*, *b*, *c*, *d* of *r*:

$$H = -\frac{2}{\ell^2} \sinh^2 \left[\frac{\ell}{2} (-cE + dP) \right] + \frac{1}{2} e^{\ell(-cE + dP)} \left[(-a + c^2)E^2 - 2cdEP + (b + d^2)P^2 + \frac{L^2}{r^2} \right].$$
 (9)

• General κ-Poincaré modification of metric dispersion relation:

$$H = -\frac{2}{\ell^2} \sinh^2\left(\frac{\ell}{2} Z^{\mu} \bar{x}_{\mu}\right) + \frac{1}{2} e^{\ell Z^{\mu} \bar{x}_{\mu}} (g^{\mu\nu} + Z^{\mu} Z^{\nu}) \bar{x}_{\mu} \bar{x}_{\nu} .$$
 (8)

- Spacetime metric $g_{\mu\nu}$.
- Unit timelike vector field Z^{μ} satisfying $Z^{\mu}Z^{\nu}g_{\mu\nu} = -1$.
- Planck length ℓ.

 \Rightarrow Static spherically symmetric case defined by functions *a*, *b*, *c*, *d* of *r*:

$$H = -\frac{2}{\ell^2} \sinh^2 \left[\frac{\ell}{2} (-cE + dP) \right] + \frac{1}{2} e^{\ell(-cE + dP)} \left[(-a + c^2)E^2 - 2cdEP + (b + d^2)P^2 + \frac{L^2}{r^2} \right].$$
 (9)

 \Rightarrow Minimal modification of Schwarzschild spacetime of mass *M*:

$$a^{-1} = b = c^{-2} = 1 - \frac{2M}{r}, \quad d = 0.$$
 (10)

- Properties of particle ensemble:
 - Identical angular momentum L > 0 (motion has angular component).
 - Energy *E* such that particles are gravitationally bound.

- Properties of particle ensemble:
 - Identical angular momentum L > 0 (motion has angular component).
 - Energy E such that particles are gravitationally bound.
- \Rightarrow Orbit oscillates between two radii $R_{1,2}$.

- Properties of particle ensemble:
 - Identical angular momentum L > 0 (motion has angular component).
 - Energy E such that particles are gravitationally bound.
- \Rightarrow Orbit oscillates between two radii $R_{1,2}$.
- Calculate number of trajectories through time slice σ with R < r < R + dr.

- Properties of particle ensemble:
 - Identical angular momentum L > 0 (motion has angular component).
 - Energy E such that particles are gravitationally bound.
- \Rightarrow Orbit oscillates between two radii $R_{1,2}$.
- Calculate number of trajectories through time slice σ with R < r < R + dr.
- Plot (inverse of) relative particle density N/(dN/dr):

- Properties of particle ensemble:
 - Identical angular momentum L > 0 (motion has angular component).
 - Energy E such that particles are gravitationally bound.
- \Rightarrow Orbit oscillates between two radii $R_{1,2}$.
- Calculate number of trajectories through time slice σ with R < r < R + dr.
- Plot (inverse of) relative particle density N/(dN/dr):

 $\Rightarrow \kappa$ -Poincaré modification shifts particles inward.

- Properties of particle ensemble:
 - Identical angular momentum L = 0 (purely radial motion).
 - Energy *E* such that particles are marginally bound (drop from rest at $r = \infty$).

- Properties of particle ensemble:
 - Identical angular momentum L = 0 (purely radial motion).
 - Energy *E* such that particles are marginally bound (drop from rest at $r = \infty$).
- Assume constant flow rate through radial slice.

- Properties of particle ensemble:
 - Identical angular momentum L = 0 (purely radial motion).
 - Energy *E* such that particles are marginally bound (drop from rest at $r = \infty$).
- Assume constant flow rate through radial slice.
- Calculate number of trajectories through time slice σ with R < r < R + dr.

- Properties of particle ensemble:
 - Identical angular momentum L = 0 (purely radial motion).
 - Energy *E* such that particles are marginally bound (drop from rest at $r = \infty$).
- Assume constant flow rate through radial slice.
- Calculate number of trajectories through time slice σ with R < r < R + dr.
- Plot particle density dN/dr per flow rate dN/dt:

- Properties of particle ensemble:
 - Identical angular momentum L = 0 (purely radial motion).
 - Energy *E* such that particles are marginally bound (drop from rest at $r = \infty$).
- Assume constant flow rate through radial slice.
- Calculate number of trajectories through time slice σ with R < r < R + dr.
- Plot particle density d*N*/d*r* per flow rate d*N*/d*t*:

 $\Rightarrow \kappa$ -Poincaré modification decreases particle density.

Conclusion

• Summary:

- ⇒ Consider effective quantum gravity models instead.
- Effective model is small correction to general relativity.
- ⇒ Study observable effects of possible quantum corrections.
- κ-Poincaré modification changes matter density near black hole.

Conclusion

• Summary:

- \Rightarrow Consider effective quantum gravity models instead.
 - Effective model is small correction to general relativity.
- \Rightarrow Study observable effects of possible quantum corrections.
- ο κ-Poincaré modification changes matter density near black hole.
- Outlook:
 - Consider more general quantum corrections.
 - Consider spinning black holes.
 - Consider more general gases or matter distributions with less symmetry:
 - Accretion disks and jets ~> blazars.
 - Tidal disruption events.
 - Stellar wake of passing black hole and dynamical friction.
 - Derive observable properties of black holes, quasars, AGN...

Conclusion

• Summary:

- \Rightarrow Consider effective quantum gravity models instead.
 - Effective model is small correction to general relativity.
- ⇒ Study observable effects of possible quantum corrections.
- κ-Poincaré modification changes matter density near black hole.
- Outlook:
 - Consider more general quantum corrections.
 - Consider spinning black holes.
 - Consider more general gases or matter distributions with less symmetry:
 - Accretion disks and jets → blazars.
 - Tidal disruption events.
 - Stellar wake of passing black hole and dynamical friction.
 - Derive observable properties of black holes, quasars, AGN...
- MH, "Kinetic gases in static spherically symmetric modified dispersion relations," Class. Quant. Grav. **41** (2024) no.1, 015025 [arXiv:2310.01487 [gr-qc]].