

Don't reinvent the wheel Including EMRIs in the global fit

Alessandro Santini

& Michael Katz, Natalia Korsakova, Nikos Karnesis, Jonathan Gair EMRI Search and Inference within the LISA Global Fit 25/06/25

Global Fit framework: the wheel

Simultaneous analysis of all the sources

Fancy a drink?

the LDC2A: Sangria

Sangria:

- Red wine + Brandy)
- Fruit Oranges, apples...)
- Cinn mon
- Combined in a ar

Instrumental Noise

Galactic Binaries

MBHBs (PhenomD)

1-year-long dataset

From Sangria to Mojito (light)

Throw 8 EMRIs in the mix

[+ better models for the other sources]

Erebor: Sangria tools

Katz:2024oqg

Eryn
https://github.com/
mikekatz04/Eryn

BBHx https://github.com/mikekatz04/BBHx

MBHB

GBGPU
https://github.com/mikekatz04/GBGPU

GB

Stochastic

LISAanalysistools
https://github.com/mikekatz04/LISAanalysistools

Instrument
Noise
Calibration

Erebor: Mojito tools

Katz:2024oqg

Eryn
https://github.com/
mikekatz04/Eryn

BBHx https://github.com/mikekatz04/BBHx

MBHB

GBGPU
https://github.com/mikekatz04/GBGPU

GB

Stochastic

LISAanalysistools
https://github.com/mikekatz04/LISAanalysistools

Instrument
Noise
Calibration

FEW, Fastlisaresponse

https://github.com/
BlackHolePerturbationToolkit/
FastEMRIWaveforms
https://github.com/mikekatz04//lisaon-gpu

EMRI

Erebor's core: data residuals

Residual-based Global Fit

@ sampler iteration *n*

Source type *k*

Fix all the parameters $\theta^n_{i\neq k,j}$

Take
$$\theta_{k,j}^{n-1}$$
 and produce $H_k^{n-1} = \sum_j h(\theta_{k,j}^{n-1})$

k-1

Take the "pseudo-residuals" $\tilde{r} = r + H_k^{n-1}$

Propose new points
$$\theta_{k,j}^n \to \text{accept/reject}$$

Compute
$$r' = \tilde{r} - H_k^n = \tilde{r} - \sum_j h(\theta_{k,j}^n)$$

$$n_{\text{repeat}}$$
 $k+1$

Add one, Remove one

All of this is source-independent (ish), and ultimately propose = compute a $\log\mathcal{L}$

Base propo of residua

""Easy"" to add a new source type

:Move, Move):

Encode source-specific operations in child proposals

You, 1 second ago | 2 authors (Michael Katz and one other)

e.g. Heterodyning for MBHs]

EMRIs as fancy MBHBs

Modular proposal blocks

EMRIs single source PE

Straightforward to add the EMRIs block

```
gf_branch_information = (
    GFBranchInfo("mbh", 11, 15, 15, branch_state=MBHState, branch_backend=MBHHDFBackend)
    + GFBranchInfo("gb", 8, 15000, 0, branch_state=GBState, branch_backend=GBHDFBackend)
    + GFBranchInfo("emri", 12, 1, 1, branch_state=EMRIState, branch_backend=EMRIHDFBackend)
    + GFBranchInfo("galfor", 5, 1, 1)
    + GFBranchInfo("psd", 4, 1, 1)
)
```


Galactic Binaries are tricky

~10000 resolvable over one year, but very compact in frequency

Update the odd/even frequency sub-bands in turn

$$\tilde{r}_{\text{odd}} = r + H_{k, \text{odd}}^{n-1}$$

Odd

For each walker w, temperature t:

$$\tilde{r}_{\text{even}} = r + H_{k, \text{ even}}^{n-1}$$

Galactic Binaries are tricky

Must consider global memory storage: save only cold chain residual and parameters

For each sub-band, load a buffer

Update the even bands

Use cold chain residuals for all the odd bands for all the walkers

 $even \leftrightarrow odd$

(w, t_1)	(w, t_1)	(w, t_1)
(w, t_1)	(w, t_2)	(w, t_1)
	• •	
(w, t_1)	(w, t_{k-1})	(w, t_1)
(w, t_1)	(w, t_k)	(w, t_1)

Back to EMRIs

We do have a working proposal for EMRIs, FEW 2.0

Current roadmap:

- Take the Sangria training data
- Take the Erebor catalogs https://zenodo.org/records/11130700
- Subtract MBHBs and GBs
- Add an EMRI to the residuals
- Take the last PSD + foreground state
- Run on EMRI, PSD, foreground

The elephants in the room

- No search is done here, just looking at the PE stage
- Not looking at correlations between source types
- Building a global fit has never been about building a global fit

- Ensure compatibility with external search pipelines (priors, starting point)
- Repeat the entire
 Sangria(HM) analysis with
 (at least) one EMRI(s)
- Investigate if we can be more efficient in the EMRI proposal / back to MPI

Conclusions

- With all the base residual operations already in place, it's easy to add a new block
- EMRIs make no difference
- We can now sample in EMRIs together with the rest, but still in a 'naive' way
- Start to run on signals injected in our residuals
- Increase the complexity from there [include MBHBs, multiple EMRIs...]

TODOs

- Start to think about a time-iterative pipeline
- Address the elephants

