A test for LISA foreground Gaussianity and stationarity Extreme mass-ratio inspirals

Manuel PIARULLI Riccardo BUSCICCHIO, Federico POZZOLI, Ollie BURKE, Matteo BONETTI, Alberto SESANA

Piarulli et al. (2024) [arXiv:2410.08862]

JUN 24, 2025

EMRI Search and Inference within the LISA Global Fit, Paris

2

Extreme Mass Ratio Inspirals (EMRIs)

Credits: Ollie Burke

Kerr MBH masssmall CO massextreme mass ratio:highly eccentric:huge number of cycles:
$$m_1 \sim 10^4 - 10^7 M_{\odot}$$
 $\mu \sim 1 - 100 M_{\odot}$ $q = \frac{m_2}{m_1} \le 1$ $q \sim 10^{-3} - 10^{-6}$ $e \sim 0.1 - 0.9$ $n_{cyc} \approx 10 \left(\frac{M_{tot}}{10^6 M_{\odot}}\right)^{-5/3} \left(\frac{f}{1 \text{ mHz}}\right)^{-5/3} \frac{(1 + 1)^{-5/3}}{1 + 1}$

M. PIARULLI

not all EMRIs are expected to be loud enough to be individually detected

GWB

Pozzoli et. al 2023 [arxiv:2302.07043] Bonetti, Sesana 2020 [arxiv:2007.14403]

EMRI waveforms

we require fully generic EMRI waveforms, capturing:

- high MBH spin ~ 0.98
- high eccentricities $\sim 0.1 0.99$
- inclined orbits

$$h_{+} - ih_{\times} = \sum_{lmnk} A_{lmnk}(t) \exp\left[-i\Phi_{mnk}(t)\right]$$

M. PIARULLI

Credit: Leor Barack

GSF formalism is very accurate \implies computationally expensive

specific family of approximate generic-orbit EMRI waveforms

Kludge waveforms (AK - NK - 5PN AAK)

FastEMRIWaveforms package [arXiv:2104.04582]

EMRI waveforms

we require fully generic EMRI waveforms, capturing:

- high MBH spin ~ 0.98
- high eccentricities $\sim 0.1 0.99$
- inclined orbits

$$h_{+} - ih_{\times} = \sum_{lmnk} A_{lmnk}(t) \exp\left[-i\Phi_{mnk}(t)\right]$$

up to ~1000 different harmonics

M. PIARULLI

FastEMRIWaveforms package Katz et al. 2021 [arXiv:2104.04582]

specific family of approximate generic-orbit EMRI waveforms

Kludge waveforms (AK - NK - 5PN AAK)

EMRI populations

EMRI event rates are uncertain expected between ~ 10 and ~ 20000 per year

Model	Mass function	MBH spin	Cusp erosion	$M{-}\sigma$ relation	$N_{ m p}$	$\mathop{\rm CO}_{ m mass}[M_\odot]$	Total	EMRI rate [yr ⁻¹] Detected (AKK)	Detected (AKS)
M1	Barausse12	a98	yes	Gultekin09	10	10	1600	294	189
M2	Barausse12	a98	yes	KormendyHo13	10	10	1400	220	146
M3	Barausse12	a98	yes	GrahamScott 13	10	10	2770	809	440
M4	Barausse12	a98	yes	Gultekin09	10	30	520~(620)	260	221
M5	Gair10	a98	no	Gultekin09	10	10	140	47	15
M6	Barausse12	a98	no	Gultekin09	10	10	2080	479	261
M7	Barausse12	a98	yes	Gultekin09	0	10	15800	2712	1765
M8	Barausse12	a98	yes	Gultekin09	100	10	180	35	24
M9	Barausse12	aflat	yes	Gultekin09	10	10	1530	217	177
M10	Barausse12	$\mathbf{a0}$	yes	Gultekin09	10	10	1520	188	188
M11	Gair10	$\mathbf{a0}$	no	Gultekin09	100	10	13	1	1
M12	Barausse12	a98	no	Gultekin09	0	10	20000	4219	2279

Babak et al. 2017 [arxiv:1703.09722]

we focus on 3 of the 12 catalogs M1 - M8 - M12 intermediate - pessimistic - optimistic we allow the mass of the small CO to vary: population of compact binary mergers observed by ground-based detector

LVK Population analysis with GWTC-3 (2022) [arxiv:2111.03634]

Statistical Properties of a GWB

- **Stationary**: the statistical properties of the GWB do not depend on time
- Gaussian: central limit theorem VS finite source density
- Isotropic and sky-uncorrelated: extragalactic origin
- $C_{AA'}(\hat{n},\hat{n}') = \frac{1}{4\pi} \delta^2(\hat{n},\hat{n}') \delta_{AA'}$ • Unpolarized

IS IT GAUSSIAN AND STATIONARY AS FREQUENTLY ASSUMED?

$$h_{ij}(t,x) = \sum_{A=+,\times} \int_{-\infty}^{\infty} df \int d^2 \hat{n} \, \tilde{h}_A(f,\hat{n}) e^A_{ij}(\hat{n}) e^{i2\pi f(t-\hat{n}\cdot x/c)}$$

$$\big\langle\,\widetilde{h}_A^*(f,\hat{n})\widetilde{h}_{A'}(f',\hat{n}')\,\big\rangle \propto \delta(f-f')C_{AA'}(\hat{n},\hat{n}')$$

$$C_{AA'}(\hat{n}, \hat{n}') = \frac{1}{4\pi} \delta^2(\hat{n}, \hat{n}') C_{AA'}$$

uniquely characterized by the spectral density $S_h(f)$

Characterize the statistical properties of time-series

a toy model to capture the relevant features

ergodicity of the signal

replace averages over statistical ensemble with averages over time

split each time series into N_{chunks}

Rayleigh test

 $\Theta = \frac{\sigma(|\tilde{s}(f)|^2)}{\mu(|\tilde{s}(f)|^2)}$ in the infinite sample limit

Acernese et. al 2023 [arXiv:2210.15634]

Amplitude [a.u.]

Amplitude [a.u.]

Analysis breakdown

Steps to characterize the GWB from EMRIs in LISA:

i) build EMRI populations Models by Babak et al. 2017 + LVK population + Bonetti, Sesana 2020 [arXiv:2007.14403] \rightarrow ii) compute the gravitational wave signal Fast EMRIs Waveform, Augmented Analytic Kludge (5PN AAK) \rightarrow iii)inject it inside LISA 1st Gen. Time Delay Interferometry \rightarrow

iv) characterize statistical properties of the GWB Rayleigh test \rightarrow

i)

M. PIARULLI

EMRI catalogs definition

LISA launch: 2035 me waiting for M12: 2085

Model	$N_{ m start}$	
M1	1217952	spe
M8	124968	
M12	21315202	

Katz et al. 2021 [arXiv:2104.04582]

M. PIARULLI

Pozzoli et al. 2023 [arxiv:2302.07043]

EMRI background spectra and SNR

A Channel

M. PIARULLI

resolvable sources with $\rho_i > 20$

when computing the single source ρ_i

 $S_n(f) = S_{instr}(f) + S_{WD}(f)$

A more realistic approach would be to perform an <u>Iterative Foreground Estimation (IFE)</u> including also the EMRI GWB in the $S_n(f)$

see: Karnesis et al. 2021 [arXiv:2103.14598]

pile-up of the unresolvable sources

3 possible scenarios between an upper and lower limit

Is it Gaussian and Stationary?

M. PIARULLI

Model	$N_{ m final}$	Detections	$ ho_{ m gwb}$
M1	26932	522	311
M8	3209	64	38
M12	319309	5909	3684

M12: we do not reject the hypothesis of stationarity and Gaussianity. $N_{final} = 319309$

M1: presence of either non-Gaussianities or nonstationarities for frequencies exceeding 1mHz. $N_{final} = 26932$

M8: rejects the hypotheses of stationarity and Gaussianity, due to the low number of sources in the catalog. $N_{final} = 3209$

11 / 18

Is our choice of excluding faint EMRIs robust?

relax the threshold for source removal for model M1

$$\rho_{AK,th} = 1 \rightarrow 0.1$$

$$N_{final} = 2$$

 \Rightarrow

the Rayleigh test remains largely unchanged the choice of considering only $\rho_{AH} > 1$ suffices to support our conclusions.

M. PIARULLI

 $26932 \rightarrow 209072$

$$\Rightarrow$$

 $\rho_{gwb} = 311 \rightarrow 319$

Is it Gaussian and Stationary?

M. PIARULLI

Consequences

- Gaussian-likelihood could be only approximately valid
- Global fit couples SGWB detection, estimation, and resolvable source PE

inadequate modeling could potentially introduce biases in global inference results, affecting foreground estimation, background detection, and individual source parameter reconstruction.

More work is needed to assess the impact of such biases.

 10^{-2}

Updating EMRI detection rates and parameter uncertainties

Manuel PIARULLI, Danny LAGHI, Ollie BURKE, Shubam KEJRIWAL Christian CHAPMAN-BIRD, Federico POZZOLI, Nikos KARNESIS

We focus on 5 EMRI catalogs M1-M6 - M5-M11 - M7 intermediate - pessimistic - optimistic

Updates from previous work:

2ndGenTDI

IFE for subtraction of resolvable sources

Model	# before IFE	# after IFE
M1	420	385
M5	26	26
M6	387	352
M7	3228	RUNNING
M11	1	1

Number of resolvable sources (before and after IFE) $T_{LISA} = 4$ years 5PN-AAK waveform

We focus on 5 EMRI catalogs M1-M6 - M5-M11 - M7 intermediate - pessimistic - optimistic

Updates from previous work:

Catalog definition 2ndGenTDI IFE for subtraction of resolvable sources

Model	# before IFE	# after IFE
M1	420	385
M5	26	26
M6	387	352
M7	3228	RUNNING
M11	1	1

Resolvable sources (before / after IFE) $T_{LISA} = 4 \text{ yrs}$ AAK waveform

16 / 18

AAK

10⁻³

 10^{-4}

^N 10⁻⁵ ₩/^N ₩ 10⁻⁶

 10^{-7}

 10^{-8}

 10^{-2}

10-3

 10^{-4}

 $^{z}\eta/^{z}\eta\nabla$

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-1}

10-2

 $\Delta D_L/D_L$

Babak et al. 2017 [arxiv:1703.09722]

-	
.1	
_	
1	
)	
-	
1	
-	
-	
)	
•	
_	
_	
1	
1	
+	
2	

AAK

Next steps:

- KerrEccentricEquatorial to asses SNR accuracy, and so possible changes in the detection rate. Limited parameter space (Equatorial and $e_0 < 0.9$)

- Full Bayesian PE for Fisher validation on a few detections

$e_0 < 0.9$ the only difference is Y_0

18 / 18

Thanks for the attention!

M. PIARULLI

happy to take questions