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1)   Magnetic compactifications
                          Consider a 6-dim. theory :
An internal magnetic field        
                  

- Charged states: turns KK states            into Landau levels      , 
mass (Bachas)

where           is the internal helicity of particles.  
- Uncharged states : standard KK masses 
         An internal magnetic field is quantized
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k1, k2 n

⌃45

Cartan gauge 
group generator

x0x1x2x3x4x5

hF45i = BHI = fHI

�M2 = (2n+ 1)|qf |+ 2qf⌃45



•         
                                                                                   ; N = int.

• Each Landau level is N times degenerate. 

• chiral fermion zero modes (index theorem) : 

                                                                

• It adds a vacuum energy (Fayet-Iliopoulos term in SUSY) 
• breaks SUSY, due to the magnetic moment coupling     
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2D

2 = 1
2f
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GUT
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2⇡R1R2
⇠ M2

GUT
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2⇡
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T 2 F = N

H = �µB = � q
mSB

• It breaks SUSY due to the spin-magnetic field coupling
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More general case: compactification  (S)YM theory 
from 10d to 4d,  fluxes in each tori 
                                              torus 

                                             Cartan generator

i = 1, 2, 3

nL � nR = ( 1
2⇡ )

3
R
T 6 F ^ F ^ F = N1N2N3

R
T 2
i
F = 2⇡Ni f i

I = Ni
2⇡R1R2

F
i = f

i
IHI

, 

flux integers

Number of 4d chiral fermions is given by an index theorem, 
determined by the magnetic fluxes
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The mass of a charged state given in general by

charge internal helicity
torus i

Whenever a charged scalar becomes of zero mass, there is 
some SUSY in the spectrum (Berkooz-Douglas-Leigh, T-dual language).  

f i
q

f1
q ± f2

q ± f3
q 6= 0 ! N = 0 SUSY

f1
q ± f2

q ± f3
q = 0 ! N = 1 SUSY

f1
q ± f2

q = 0 , f3
q = 0 ! N = 2 SUSY

�M2
q =

P3
i=1

⇥
(2ni + 1)|

P
I qIf

i
I |+ 2

P
I qIf

i
I⌃i

⇤



7Multiplicity equal to the total number of times the

branes intersect in the compact space

D(a)
°D(b) : I(ab) =

3Y

i=1
I(ab)
i =

3Y

i=1
(m(a)

i n(b)
i ° n(a)

i m(b)
i ) .

Widely studied in type I/II string theory :

Internal magnetic fields                     intersecting branes
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T-dual

Elegant geometrical intepretations :
- chiral fermions live at the intersection of branes
- Number of generations:  intersection numbers
- Yukawa couplings : governed by areas 



”Standard Model” quiver
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Among the most succesful quasi-realistic Standard 
Model realizations in String Theory  
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Fluxes are not arbitrary. The are constrained by:

- Field Theory:  anomaly cancelation conditions

- String Theory: RR tadpole conditions. For toroidal comp.:  
P

a Ma = 16 ,
P

a MaNa
2N

a
3 = 0 ,P

a MaNa
1N
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3 = 0 ,
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2 = 0



10

Why effective field theory action ?   

§ If broken SUSY, quantum corrections difficult in string theory 
(NS-NS tadpoles) 
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§ Chirality, (split ) SUSY breaking: different sectors 
    have different SUSY

§ Electroweak symmetry breaking (Nielsen-Olesen instability) ?

§ Magnetic field breaks spontaneously a global symmetry 
invisible from four dimensions. 

§ Subtlety: No mass gap :  masses given by the magnetic field
     of the same order (           )  as Landau levels                 
     one needs an effective theory for the whole tower.
           Truncation to « zero modes »  inconsistent.  

1/R
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2) Effective field theory (simple ex.)
Consider a 6d Weyl fermion interacting with an abelian gauge 
field

been carefully studied in [19].
Notice that our field theory setup was widely studied in string theory compactifi-

cations with internal magnetic fields [5, 20] and in the T-dual version of D-branes at
angles (or intersecting brane models) [21–23], as a way to partially or completely break
supersymmetry and to induce fermion chirality. However, a field theory approach has
its own advantages, namely, more flexibility in searching for realistic models of particle
physics and the avoidance of technical di�culties with quantum corrections for string
theory models with broken supersymmetry, see e.g. [24].

In this paper we study the cancellation of loop corrections to the mass of the WL
scalar in more detail. Since the cancellation is independent of supersymmetry, we focus
on the simplest possible model, a single 6d Weyl fermion interacting with an Abelian
gauge field. In Section 2 we provide details of the flux compactification on a torus
with emphasis on the symmetries of the 6d theory and the couplings of the tower of
massive states in the e↵ective 4d theory. Quantum corrections to the mass of the WL
scalar are discussed in Section 3. We first recall the cancellations at one-loop order once
the tower of massive states is taken into account. We then show that the 4d action
possesses an exact shift symmetry, including the couplings to all massive states. In
Section 4, we summarize our results and discuss the prospects to extend the presented
model to chiral Higgs models. The connection between the considered field theory and
quantum mechanics on a magnetized torus is discussed in the appendix.

2 Flux compactification on a torus

Let us now consider a left-handed 6d Weyl fermion interacting with an Abelian gauge
field,1

S6 =

Z
d
6
x

✓
�1

4
F

MN
FMN + i �M

DM 

◆
, (1)

where DM = @M + iqAM , M = 0, . . . 6, FMN = @MAN � @NAM and �7 = � . The
6d space is a product of 4d Minkowski space and a square torus T

2 of area L
2. It

is convenient to decompose the 6d Weyl spinor into two independent two-component
Weyl spinors  and �. For gamma matrices in the Weyl basis, one has2

 =

✓
 L

 R

◆
: �5 L = � L , �5 R =  R , (2)

 L =

✓
 

0

◆
,  R =

✓
0
�

◆
. (3)

1In the following we ignore anomalies. Note that our discussion will not change for an anomaly-free
fermion spectrum.

2We follow the conventions in Ref. [25]. Our 6d gamma matrices satisfy the algebra {�M ,�N} =
�2⌘MN , with diag(⌘MN ) = (�1,+1, . . . ,+1).

3

4d notation, two Weyl fermions of charges q,-q ; fermionic part of 
the action is

The Weyl fermions  and � have charges q and �q, respectively, and the fermionic part
of the action (1) reads

S6f =

Z
d
6
x
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where Dµ = @µ + iqAµ, Dµ = @µ � iqAµ and

� =
1p
2
(A6 + iA5) , z =

1

2
(x5 + ix6) , @z = @5 � i@6 . (5)

The coordinates take values in the interval x5,6 2 [0, L). In the following we set L = 1.
The gauge kinetic term can be expressed in terms of the fields Aµ and �,

S6g =

Z
d
6
x
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⇣
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Constant magnetic flux in the compact dimensions corresponds to a vacuum configu-
ration. For hA5i = �1

2fx6, hA6i = 1
2fx5, corresponding to h�i = 1p

2
f z̄, the vacuum

field equations are satisfied,3

@z

�
@zh�i+ @z̄h�i

�
= 0 . (7)

The magnetic flux is quantized in units of the torus area,

q

2⇡

Z

T 2

F =
q

2⇡
f = N 2 Z . (8)

Shifting the scalar field � around the flux background,

� =
fp
2
z̄ + ' , (9)

3Note that this non-trivial gauge background requires the introduction of four patches on the torus.

4
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A constant magnetic flux 

The Weyl fermions  and � have charges q and �q, respectively, and the fermionic part
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is a solution of field eqs. 
The effective 4d action can be easily found by using an
 oscillator algebra

fields these are Landau levels obtained from an harmonic oscillator algebra [5, 15, 27].
The identification of annihilation and creation operators depends on the sign of qf .
Without loss of generality we choose qf > 0. There are two pairs of annihilation and
creation operators

a+ =
ip
2qf

(@z + qf z̄) , a
†
+ =

ip
2qf

(@z̄ � qfz) , (15)

a� =
ip
2qf

(@z̄ + qfz) , a
†
� =

ip
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(@z � qf z̄) . (16)

They satisfy the commutation relations [a±, a
†
±] = 1, [a±, a⌥] = 0, [a±, a

†
⌥] = 0. In

terms of the annihilation and creation operators the mass-square operators for the
fermions  with charge +q and � with charge �q are given by

M2
+ = 2qfa†+a+ , M2

� = 2qf
⇣
a
†
�a� + 1

⌘
. (17)

The ground state wave functions are determined by

a+⇠0,j = 0 , a�⇠0,j = 0 , (18)

where j = 0, . . . |N |� 1 labels the degeneracy of the ground state. An orthonormal set
of higher mode functions is given by
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i
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Annihilation and creation operators act on these mode functions as
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p
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+⇠n,j = �i
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p
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†
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p
n+ 1 ⇠

n+1,j , (21)

and the mode expansions of the fermion fields  and � with charges +q and �q,
respectively, read

 =
X

n,j

 n,j⇠n,j , � =
X

n,j

�n,j⇠n,j . (22)

Since the gauge fields Aµ and ' do not feel the flux, they have an expansion in terms of
standard Kaluza-Klein modes. The theory has a number of 4d zero modes. According
to Eq. (17), and in accord with the index theorem, there are |N | left-handed fermionic
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j = 0 · · · , |N |� 1 is the degeneracy of the ground state.

An orthonormal set of higher mode functions is 

fields these are Landau levels obtained from an harmonic oscillator algebra [5, 15, 27].
The identification of annihilation and creation operators depends on the sign of qf .
Without loss of generality we choose qf > 0. There are two pairs of annihilation and
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Since the gauge fields Aµ and ' do not feel the flux, they have an expansion in terms of
standard Kaluza-Klein modes. The theory has a number of 4d zero modes. According
to Eq. (17), and in accord with the index theorem, there are |N | left-handed fermionic
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The mode expansion of the fermionic fields of charge +q,-q is 

fields these are Landau levels obtained from an harmonic oscillator algebra [5, 15, 27].
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Without loss of generality we choose qf > 0. There are two pairs of annihilation and
creation operators

a+ =
ip
2qf

(@z + qf z̄) , a
†
+ =

ip
2qf

(@z̄ � qfz) , (15)

a� =
ip
2qf

(@z̄ + qfz) , a
†
� =

ip
2qf

(@z � qf z̄) . (16)

They satisfy the commutation relations [a±, a
†
±] = 1, [a±, a⌥] = 0, [a±, a

†
⌥] = 0. In

terms of the annihilation and creation operators the mass-square operators for the
fermions  with charge +q and � with charge �q are given by

M2
+ = 2qfa†+a+ , M2

� = 2qf
⇣
a
†
�a� + 1

⌘
. (17)

The ground state wave functions are determined by

a+⇠0,j = 0 , a�⇠0,j = 0 , (18)
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Since the gauge fields Aµ and ' do not feel the flux, they have an expansion in terms of
standard Kaluza-Klein modes. The theory has a number of 4d zero modes. According
to Eq. (17), and in accord with the index theorem, there are |N | left-handed fermionic

6

Gauge fields         and        have no charge, standard Kaluza-
Klein modes          

Aµ '
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One can prove the invariance of the 4d action under
a symmetry mixing the whole tower

mation law is obtained for the transformation �,

�'
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These equations together with Eqs. (32), (34) and (39),

�'0 =
p
2✏f ,

� n,j =
p
2qf(✏

p
n+ 1 n+1,j � ✏

p
n n�1,j) ,

��n,j =
p
2qf(�✏

p
n�n�1,j + ✏

p
n+ 1�n+1,j) ,

define the transformation behavior of all 4d fields.
Given the mode expansions (22) and (40) it is straightforward to obtain the full

e↵ective 4d action from the 6d action (10). The result reads
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p

2qf(n+ 1)�n,j n+1,j �
p
2q'0�n,j n,j

�
p

2qf(n+ 1)�
n,j
 

n+1,j �
p
2q'0�n,j

 
n,j

⌘

+
X

l,m;n,j;n0,j0

C
l,m

n,j;n0,j0

⇣
� q n0,j0�

µ
Aµ,l,m n,j

+ q�n,j�
µ
Aµ,l,m�n0,j0

�
p
2q'l,m�n,j n0,j0 �

p
2q'�l,�m

�
n0,j0 n,j

⌘⌘
. (46)
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mation law is obtained for the transformation �,

�'
0 = (✏@z + ✏̄@z̄)'

0 =
X

l,m

�'l,m�l,m , (42)

�A
0
µ
= (✏@z + ✏̄@z̄)A

0
µ
=

X

l,m

�Aµ,l,m�l,m , (43)

which yields the transformation law of the mode functions

�'l,m = (✏Ml,m � ✏̄M l,m)'l,m , (44)

�Aµ,l,m = (✏Ml,m � ✏̄M l,m)Aµ,l,m . (45)

These equations together with Eqs. (32), (34) and (39),

�'0 =
p
2✏f ,

� n,j =
p
2qf(✏

p
n+ 1 n+1,j � ✏

p
n n�1,j) ,

��n,j =
p
2qf(�✏

p
n�n�1,j + ✏

p
n+ 1�n+1,j) ,

define the transformation behavior of all 4d fields.
Given the mode expansions (22) and (40) it is straightforward to obtain the full

e↵ective 4d action from the 6d action (10). The result reads
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⇣
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2

+
X

l,m

⇣
� 1

4
F

µ⌫

�l,�m
Fµ⌫,l,m +

1

2
M�l,�mMl,mA

µ

�l,�m
Aµ,l,m

� @
µ
'
l,m
@µ'l,m � 1
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��2

� ip
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A
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� ⌘
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X

n,j

⇣
� i n,j�

µ
Dµ n,j

� i�n,j�
µ
Dµ�n,j

�
p

2qf(n+ 1)�n,j n+1,j �
p
2q'0�n,j n,j

�
p

2qf(n+ 1)�
n,j
 

n+1,j �
p
2q'0�n,j

 
n,j

⌘

+
X

l,m;n,j;n0,j0

C
l,m

n,j;n0,j0

⇣
� q n0,j0�

µ
Aµ,l,m n,j

+ q�n,j�
µ
Aµ,l,m�n0,j0
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p
2q'l,m�n,j n0,j0 �

p
2q'�l,�m

�
n0,j0 n,j

⌘⌘
. (46)
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• Abelian 6d SUSY theory compactified on a torus.
N=2 SUSY in 4d before adding the magnetic flux;
4d multiplets:      vector                 
                     charged hyper
• 6d effective action in superfields: (Marcus,Sagnotti,Siegel ; Arkani-

Hamed,Gregoire,Wacker)  
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(V,�)
(Q, Q̃)

Quantum Corrections
WB, Dierigl, Dudas, Schweizer ’16

S6 =

Z
d6x

n
1
4

Z
d2✓W↵W↵ + h.c. +

Z
d4✓

⇣
@V @V + ��+

p
2V

�
@�+ @�

�⌘

+

Z
d2✓ Q̃(@ +

p
2gq�)Q+ h.c. +

Z
d4✓

⇣
Qe2gqV Q+ Q̃e�2gqV Q̃

⌘o
,

@ = @5 � i@6 , �|✓=✓̄=0 = 1p
2
(A6 + iA5)

Bachas ’95: Landau levels

Wilson lines and flux, mode expansion of superfields:

Simplest example: 6d SUSY QED,  compactified on torus:

�0|✓=✓=0 =
f

2
p
2
(x5 � ix6) + ' , ' = 1p

2
(a6 + ia5) ,

Q(xM , ✓, ✓̄) =
X

n,j

Qn,j(xµ, ✓, ✓̄) n,j(xm) , Q̃(xM , ✓, ✓̄) = . . .

→effective 4d action, compute Wilson line potential

SUSY 6d example
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� are internal components of gauge fields  = 
                              Wilson lines

Mode expansions with flux : 

Quantum Corrections
WB, Dierigl, Dudas, Schweizer ’16

S6 =

Z
d6x

n
1
4

Z
d2✓W↵W↵ + h.c. +

Z
d4✓

⇣
@V @V + ��+

p
2V

�
@�+ @�

�⌘

+

Z
d2✓ Q̃(@ +

p
2gq�)Q+ h.c. +

Z
d4✓

⇣
Qe2gqV Q+ Q̃e�2gqV Q̃

⌘o
,

@ = @5 � i@6 , �|✓=✓̄=0 = 1p
2
(A6 + iA5)

Bachas ’95: Landau levels

Wilson lines and flux, mode expansion of superfields:

Simplest example: 6d SUSY QED,  compactified on torus:

�0|✓=✓=0 =
f

2
p
2
(x5 � ix6) + ' , ' = 1p

2
(a6 + ia5) ,

Q(xM , ✓, ✓̄) =
X

n,j

Qn,j(xµ, ✓, ✓̄) n,j(xm) , Q̃(xM , ✓, ✓̄) = . . .

→effective 4d action, compute Wilson line potential

The 6d action (14) then becomes

S6 =

Z
d
4
x

X

n,j,m,k

⇢
�⌘µ⌫DµQn,jD⌫Qm,k

Z

T 2

d
2
x n,j m,k

�Qn,jQm,k

Z

T 2

d
2
x (�2qgf) n,j

�
a
†
a+ 1

2

�
 m,k

�
.

(27)

The four-dimensional e↵ective action is derived by using the harmonic oscillator algebra
and the orthonormality of the internal field profiles in the gauge field background,

S4 =

Z
d
4
x

X

n,j

�
�DµQn,jD

µQn,j + (2qgf)
�
n+ 1

2

�
Qn,jQn,j

�
. (28)

The masses for the 4d fields are given by

m
2
n,j = �2qgf

�
n+ 1

2

�
=

2⇡|N |
L2

(2n+ 1) , (29)

as discussed in [5]. For fields with an internal helicity the mass formula is supplemented
by a term (�2qgf)⌃, where ⌃ is the internal helicity, see [5]. This leads to the appear-
ance of |N | chiral fermion zero modes as predicted by the index theorem for the flux
background (⌃ = 1

2) and a tachyonic mode in the presence of charged gauge fields with
⌃ = 1, as discussed in Sec. 4.

3.2 Supersymmetric e↵ective action for Abelian flux

The field profiles for charged fermions and bosons are identical because both arise as
solutions to the gauge covariant Laplace equation on the torus. Therefore, instead
of decomposing only the component fields with respect to the Landau levels we can
decompose the superfield as a whole, similar to the procedure for the standard KK
tower in Sec. 2. As mentioned above, the six-dimensional hypermultiplet can be written
in terms of two chiral multiplets with opposite charge,

Q(xM , ✓, ✓) =
X

n,j

Qn,j(xµ, ✓, ✓) n,j(xm) ,

Q̃(xM , ✓, ✓) =
X

n,j

Q̃n,j(xµ, ✓, ✓) n,j(xm) .
(30)

Furthermore, the index theorem guarantees |N | fermion zero modes. In our convention,
c.f. [25], we choose f to be negative which corresponds to zero modes contained in the
Q̃ multiplet.

9
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The final 4d effective action for Landau levels is

                                                                               FI term

action as in Sec. 2,

S
⇤
4 �

Z
d
4
x

Z

T 2

d
2
x

✓Z
d
2
✓
1

4
W↵W↵ + h.c.

◆

=

Z
d
4
x

✓Z
d
2
✓
1

4
W↵

0 W↵,0 + h.c.

◆
.

(35)

The last contribution we have to add leads to a kinetic term for the complex Wilson
line ' as well as a Fayet-Iliopoulos (FI) term5

S
⇤
4 �

Z
d
4
x

Z

T 2

d
2
x

Z
d
4
✓

⇣
@V0@V0 + �0�0 +

p
2V0@�0 +

p
2V0@�0

⌘

=

Z
d
4
x

Z
d
4
✓ (''+ 2fV0) .

(36)

Note again that compared to [10] our action di↵ers by an integration by parts. This is
important since the boundary terms do not vanish in the flux background. In summary,
the 4d e↵ective action with the complete tower of charged states and a restriction to
the zero modes in the uncharged sector reads

S
⇤
4 =

Z
d
4
x

"Z
d
4
✓

 
''+

X

n,j

(Qn,je
2gqV0Qn,j + Q̃n,je

�2qgV0Q̃n,j) + 2fV0

!

+

Z
d
2
✓

✓
1

4
W↵

0 W↵,0 (37)

+
X

n,j

⇣
�i

p
�2qgf(n+ 1)Q̃n+1,jQn,j +

p
2qgQ̃n,j 'Qn,j

⌘!
+ h.c.

#
.

In order to obtain the mass spectrum of the charged fields and their interactions
with the uncharged field ' one has to integrate out the auxiliary fields. The bosonic
mass terms receive contributions from F - and D-terms, whereas only the F -terms enter
for the fermion masses. The couplings of the auxiliary field D are given by

LD = fD + |Qn,j|2qgD � |Q̃n,j|2qgD +
1

2
D

2
, (38)

yielding

D = �f � qg

X

n,j

⇣
|Qn,j|2 � |Q̃n,j|2

⌘
. (39)

5
Here, we use @� = @� = f/

p
2 in the flux background, since @' = 0 = @', and @V = 0 = @V .

11

Coupled mass terms

• SUSY broken like in the FI model, with an infinite number of 
fields. Truncation to a finite number inconsistent.  
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The mass formula for charged states is nontrivial in the effective 
theory (ex. below 10d comp. of SYM theory):

- Physical eigenstates are linear combination of Landau levels. 
    Ex (fluxes in two tori        ,        )

��(x; z1, z2, z3) =
X

nj,n0j0

��
nj,n0j0(x)⇠n,j(z2)⇠n0,j0(z3) , etc. , (62)

where, for simplicity, we only consider the lowest KK mode in the first torus. According
to the quantization condition (51) the multiplicity in the second and third torus is two
and one, respectively, giving a total multiplicity of two for all fields.

Inserting the mode expansion of the fields in the 10d action, using Eq. (57) and
the orthonomality of the mode functions, and dropping the indices j, j0 that label the
degeneracy, one arrives at the 4d e↵ective Lagrangian

L4 �
Z

d2✓
⇣1
4
W0W0 +

X

nn0

⇣1
2
W+

n,n0W�
n,n0

�
p
2gf2(n+ 1)

�
�1+
n+1,n0�3�

n,n0 � �3+
n+1,n0�1�

n,n0

�

�
p
2gf3(n0 + 1)

�
�2+
n,n0+1�

1�
n,n0 � �1+

n,n0+1�
2�
n,n0

�⌘⌘
+ h.c.

+

Z
d4✓

⇣
2
p
N(f2 + f3)V0 +

X

nn0

⇣
�̄i+
n,n0�i+

n,n0 + �̄i�
n,n0�i�

n,n0

+
2gp
N

�
�̄i+
n,n0�i+

n,n0 � �̄i�
n,n0�i�

n,n0

�
V0

� 2
��p

gf2
�p

n�̄2+
n�1,n0 �

p
n+ 1�2�

n+1,n0

�

+
p

gf3
�p

n0�̄3+
n,n0�1 �

p
n0 + 1�3�

n,n0+1

��
V +
n,n0 + h.c.

�

+ 2M2
n,n0V +

n,n0V �
n,n0

⌘⌘
, (63)

where

Mn,n0 = (gf2(2n+ 1) + gf3(2n
0 + 1))1/2 . (64)

The magnetic flux mixes di↵erent Landau levels of the KK towers and it is therefore
convenient to introduce linear combinations of the original chiral superfields,

��
n,n0 =

1

µn,n0

�p
2gf2n �3�

n�1,n0 �
p
2gf3n0 �2�

n,n0�1

�
, (n, n0) 6= 0 ; ��

0,0 = 0 , (65)

��
n,n0 =

1

µn+1,n0+1

�p
2gf3(n0 + 1) �3�

n,n0+1 +
p
2gf2(n+ 1) �2�

n+1,n0

�
, (66)

�+
n,n0 =

1

µn+1,n0+1

�p
2gf3(n0 + 1) �2+

n,n0+1 �
p
2gf2(n+ 1) �3+

n+1,n0

�
, (67)

�+
n,n0 =

1

µn,n0

�p
2gf2n �2+

n�1,n0 +
p
2gf3n0 �3+

n,n0�1

�
, (n, n0) 6= 0 ; �+

0,0 = 0 , (68)

with

µn,n0 = (2gf2n+ 2gf3n
0)1/2 . (69)
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- Part of the charged scalar tower is unphysical: Goldstone 
bosons absorbed by the massive charged gauge bosons

In terms of the new fields the 4d Lagrangian reads

L4 �
Z

d2✓
⇣1
4
W0W0 +

X

nn0

⇣1
2
W+

n,n0W�
n,n0 � µn,n0�1+

n,n0��
n,n0

� µn+1,n0+1�
1�
n,n0�+

n,n0

⌘⌘
+ h.c.

+

Z
d4✓

⇣
2
p
N(f2 + f3)V0 +

X

nn0

⇣
|�1+

n,n0 |2 + |�1�
n,n0 |2 + |�+

n,n0 |2 + |��
n,n0 |2

+ |�+
n,n0 |2 + |��

n,n0 |2 +
2gp
N

�
|�1+

n,n0 |2 + |�+
n,n0 |2 + |�+

n,n0 |2

� |�1�
n,n0 |2 � |��

n,n0 |2 � |��
n,n0 |2

�
V0

�
p
2
��
µn,n0�̄+

n,n0 � µn+1,n0+1�
�
n,n0

�
V +
n,n0 + h.c.

�

+ 2M2
n,n0V +

n,n0V �
n,n0

⌘⌘
. (70)

So far the diagonalization could be performed in terms of superfields. Since the
magnetic flux breaks supersymmetry, one has to expand the superfields in components7

in the final step (cf. Appendix C),

� = (�, , F ) , V = (Aµ,�, D) . (71)

The mixing term between chiral and vector superfields then leads to a charged D-term
and a derivative coupling between Goldstone bosons and vector fields,

Z
d4✓

�
µn,n0�̄+

n,n0 � µn+1,n0+1�
�
n,n0

�
V +
n,n0

=
1

2

�
µn,n0�̄+

n,n0 � µn+1,n0+1�
�
n,n0

�
D+ � ip

2
Mn,n0@µ⇧

�
n,n0A

+µ

n,n0 . (72)

Here the Goldstone fields ⇧� and the orthogonal complex scalars ⌃�, formed from the
complex scalars �̄+ and ��, are given by

⇧�
n,n0 =

1p
2Mn,n0

�
µn,n0�̄+

n,n0 + µn+1,n0+1�
�
n,n0

�
, (73)

⌃�
n,n0 =

1p
2Mn,n0

�
µn+1,n0+1�̄

+
n,n0 � µn,n0��

n,n0

�
. (74)

The vector bosons of the tower of Landau levels aquire their mass by the Stückelberg
mechanism, and a shift of the vector bosons,

A�µ

n,n0 ! A�µ

n,n0 +
i

Mn,n0
@µ⇧

�
n,n0 , (75)

7Note, that we use the same symbol for the chiral superfield and its scalar component.
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and one, respectively, giving a total multiplicity of two for all fields.
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where
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The magnetic flux mixes di↵erent Landau levels of the KK towers and it is therefore
convenient to introduce linear combinations of the original chiral superfields,
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to the quantization condition (51) the multiplicity in the second and third torus is two
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2gf2(n+ 1) �2�
n+1,n0

�
, (66)

�+
n,n0 =

1

µn+1,n0+1

�p
2gf3(n0 + 1) �2+

n,n0+1 �
p

2gf2(n+ 1) �3+
n+1,n0

�
, (67)

�+
n,n0 =

1

µn,n0

�p
2gf2n �2+

n�1,n0 +
p

2gf3n0 �3+
n,n0�1

�
, (n, n0) 6= 0 ; �+

0,0 = 0 , (68)

with

µn,n0 = (2gf2n+ 2gf3n
0)1/2 . (69)
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Masses of elementary particles in the Standard Model
have various mysteries: 
 
The smallness of fermion masses is technically natural due to 
chiral symmetries                               , which protect
quantum corrections 
    

                                         

 ! ei�5↵ 

�m ⇠ g2

16⇡2m ln ⇤
m

Masses of elementary scalars are a bigger puzzle,
UV sensitivity               the hierarchy problem  
  (widely studied sols. SUSY, compositeness, symmetries, anthropics/landscape,    
one-loop accidents. Many talks workshop)  
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-    Can Higher-dim. symmetries protect 
        quantum corrections in a way invisible from 4d ?   YES 

Ex: Internal comp.  of a gauge field  protected by gauge 
symmetry (gauge-Higgs unification)

                                                  (Antoniadis,Benakli,Quiros,2001…)

• Compactification scale                       could be the 
     GUT/unification scale, but also much lower.

        

Mc = R�1

�m2 ⇠ (loop)⇥ 1
R2

In magnetic compactifications with SUSY broken by magnetic 
flux, dimensional arguments fix quantum corrections

<latexit sha1_base64="eM7jnkW9+nrTNGIz4Wd9tRZ1SMQ="></latexit>

ωm2 → g2

16ω2B → g2

16ω2
1
R2
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Usually, Yukawa and gauge interactions generate scalar masses  
after quantum corrections.  Fermionic loop would generate

'0 '0

 Lj

 0,j

'0 '0

 n,j

 n+1,j

Figure 1: One-loop contributions to the scalar mass term. Left: contribution of  Lj

and  0,j; right: contributions of the massive fermions  n,j and  n+1,j.

where we have used the equation of motion for  Lj to leading order, i.e. �µ@µ Lj = 0.
One easily verifies that this e↵ective action is invariant under a constant shift of '0.

The e↵ective action (27) is very di↵erent from the 4d action without magnetic flux.
In this case one obtains a vector-like theory, and after spontaneous symmetry breaking
the lowest states of the spectrum consist of a Dirac fermion, a real scalar and a vector,
which all have masses of the order of the compactification scale. No massless states
are left. On the contrary, the action (27) does contain massless chiral fermions and a
WL scalar which is kept massless by a continuous shift symmetry. However, contrary
to the case of the Standard Model, its vacuum expectation value does not give mass to
the chiral fermions.

3 Quantum corrections and shift symmetry

In general, Yukawa interactions violate the shift symmetry of a free massless scalar,
and as a consequence quantum corrections generate a mass term. Indeed, keeping the
lightest massive fermion  0,j in addition to the zero modes  Lj, one obtains from the
standard one-loop diagrams (see Figure 1, left),

�m
2
'0

= �2q2|N |
Z

d
4
k

(2⇡)4
2k2

k2 (k2 + 2qf)

= �q
2|N |
4⇡2

✓
⇤2 � 2qf ln

⇣ ⇤2

2qf

⌘
+ . . .

◆
, (28)

where we have introduced a momentum cuto↵ ⇤ as regulator. Usually, the quadratic
divergence is removed by a counter term, leaving an undetermined finite mass for the
scalar '0. In Ref. [18] it was shown that the situation drastically changes once the
Yukawa couplings to the entire tower of massive states are taken into account (see
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4
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+ . . .
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where we have introduced a momentum cuto↵ ⇤ as regulator. Usually, the quadratic
divergence is removed by a counter term, leaving an undetermined finite mass for the
scalar '0. In Ref. [18] it was shown that the situation drastically changes once the
Yukawa couplings to the entire tower of massive states are taken into account (see

8

�m2 << 1
R2

Can one get                                          ?   
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However,  summing over the whole tower, one getsFigure 1, right). One then obtains

�m
2
'0

= �2q2|N |
X

n

Z
d
4
k

(2⇡)4
2k2

(k2 + 2qfn) (k2 + 2qf(n+ 1))

= 4q2|N |
X

n

Z
d
4
k

(2⇡)4

✓
n

k2 + 2qfn
� n+ 1

k2 + 2qf(n+ 1)

◆
. (29)

Using the Schwinger representation of the propagators, performing the momentum
integrations and interchanging t-integration and summation, one finds

�m
2
'0

=
q
2

4⇡2
|N |

X

n

Z 1

0

dt
1

t2

�
ne

�2qfnt � (n+ 1)e�2qf(n+1)t
�

=
q
2

4⇡2
|N |

Z 1

0

dt
1

t2

✓
e
2qft

(e2qft � 1)2
� e

2qft

(e2qft � 1)2

◆

= 0 . (30)

To obtain this remarkable cancellation it is crucial to perform the summation before
the momentum integration, as in Ref. [14]. In this way the symmetries of the gauge
theory in the compact dimensions are preserved.

What is the origin of the cancellation of the quantum corrections to the scalar mass
term and can one understand it at the level of the four-dimensional theory? As discussed
in the previous section the six-dimensional theory is invariant under translations, which
include a shift of the scalar field '0. The generators of the translations, @z and @z̄, do
not commute with the mass-squared operators M2

±. However, the mode functions are
eigenfunctions of M2

±. Therefore, they have no simple transformation law under the
action of @z and @z̄. Instead, the whole tower is reshu✏ed. A simple transformation of
the mode function can be obtained by combining translations with the transformation
�⇤, Eq. (13), as follows:

� = (�T + �⇤,↵=✏) 

= (✏@z + ✏̄@z̄ + qf(✏z̄ � ✏̄z)) 

= �i

p
2qf(✏a+ + ✏̄a

†
+) . (31)

Clearly, this infinitesimal transformation only connects mode functions of neighboring
mass eigenvalues. As we show in Appendix A, this symmetry also manifests itself in
the quantum mechanical analysis of a charged particle on a magnetized torus. Using
Eqs. (20) one obtains

� = �i

p
2qf

X

n,j

 n,j(✏a+ + ✏̄a
†
+)⇠n,j =

X

n,j

� n,j⇠n,j ,

9

      (regularization issues discussed in the literature)  

= 0



23

We believe the higher-dimensional, spontaneously broken 
symmetry, mixing the whole  tower, protects the scalar, 
Goldstone boson. The symmetry is invisible from 4d.

E. Dudas – CNRS and E. Polytechnique  

- The symmetry ensures that the cancelation is valid to all 
orders   in  perturbation theory.

  See also Ghilencea+H.M.Lee, Hirose+Maru, Honda+Shibasaki, etc  
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Another way to get a light scalar: tuning 
   of charged scalar masses (10d comp.) 

                 10d gauge field                  4d fields  

E. Dudas – CNRS and E. Polytechnique  

AN ! Aµ,�1,�2,�3

Mass of lightest field in the        tower is �1

�1 can be light  for specific values of moduli  fields: 
moduli stabilization details or landscape. 
                                              
                                                    SUSY                        

M2
�1

= �|f1
q |+ |f2

q |+ |f3
q |

M2
�1

= 0
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Magnetic compactifications are generically unstable: 
Internal components of charged gauge fields are often tachyonic: 
Nielsen-Olesen instabilities. Stable field-theory models possible.

• Tachyons imply condensation of  charged scalars.  Simplest 
cases : restoration of full                          after condensation. 
Not clear that always true. 

If no tachyon condensation        R-symmetry, no gaugino masses. 
Tachyon condensation therefore needed.

• Flux leading to                or                SUSY assumed 
to be stable. However, the SUSY flux conditions depend on tori 
areas (moduli fields). If no additional potential for moduli, 
dynamics drives the system towards decompactification limit.     

N = 4 SUSY

N = 1 N = 2
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Perspectives
u Magnetized compactifications generate chirality
and can break SUSY (in some sectors) such that

u Magnetic fields breaks spontaneously symmetries invisible 
from 4d          (pseudo) Goldstones from higher-dim. 
symmetries.  Tuning/moduli stabilization close to SUSY point 
another way to get light scalars. 

u Various open questions: tachyon condensation, stability
     of SUSY vacua. Quantum corrections ? 

u Applications:  SM/hierarchy problem, moduli stabilization, 
inflation,  orbifold GUT’s, flavor symmetries  (talk S.King) 

   Another Xtra dims. scenario for LHC for                              TeV                

MSUSY ⇠ MGUT ⇠ R�1
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