

Restoring Naturalness to Composite Higgs Models

Maya Hager Max-Planck-Institut für Kernphysik Heidelberg maya.hager@mpi-hd.mpg.de

in collaboration with Andrei Angelescu, Andreas Bally & Florian Goertz arXiv:2309.05698, published in PRD

> May 22, 2025 "New Approaches to Naturalness", Lyon

Conjugate Fermions

Content...

... of the talk:

- Composite Higgs & its Problems
- Conjugate Fermion Mechanism
- Explicit Model ullet
- Numerical Scan
- Phenomenology of Exotics \bullet
- Conclusion

"New Approaches to Naturalness", 2025

Maya Hager

2

Motivation

Hierarchy Problem

 $M_{Pl} \sim 10^{19} \text{ GeV}$ $M_{GUT} \sim 10^{15} \text{ GeV}$ $M_{Higgs} \sim 125 \text{ GeV}$

"New Approaches to Naturalness", 2025

Sandbox Studio, Chicago

additional pNGBs

(n-4 dof)

"New Approaches to Naturalness", 2025

Kaplan, Georgi, Dimopoulos, ... Corrections @ O(TeV) $\mathcal{L} \supset \mathcal{L}_{el} + \mathcal{L}_{comp} + \mathcal{L}_{mix}$

G ≃124.97 GeV/c² H Higgs +Additional pNGBs ±1 W g W-Boson Z-Boson Photon Gluon

Higgs as a pseudo-Nambu Goldstone Boson

No tree-level potential \Rightarrow naturally light Higgs (protected by shift symmetry & compositeness)

Higgs

Partial Compositeness $\mathcal{L} \supset \mathcal{L}_{el} + \mathcal{L}_{comp} + \mathcal{L}_{mix}$

Lightest Mass Eigenstates: **SM** Fields

Other Mass Eigenstates: **Composite Partners**

Explicit Breaking of global symmetry by SM fields which transform under

Kaplan, Agashe, Contino, Nomura, Pomarol, ...

 $|\mathrm{SM}_n\rangle = \cos \varphi_n |\mathrm{elementary}_n\rangle + \sin \varphi_n |\mathrm{composite}_n\rangle$

after **EWSB**: masses for SM fermions induced

Common CH Problems (1)

• (double-)tuning the Higgs
$$\mu$$

 $N_h = -\alpha \sin^2 \frac{h}{f} + \beta \sin^4 \frac{h}{f}$

vacuum misalignment $\xi = \sin^2(\langle h \rangle / f) = \frac{v_{SM}^2}{f^2} \propto \frac{\alpha}{\beta}$

"New Approaches to Naturalness", 2025

potential

Estimate tuning by

$$\Delta = \frac{(\alpha/\beta)_{\text{expected}}}{(\alpha/\beta)_{\text{needed}}}$$

SSB scale

minimal tuning if $\alpha \sim \beta$ $\Delta_{\rm min} = f^2 / v_{\rm SM}^2$

Panico, Redi, Tesi, Wulzer (2013)

often
$$\alpha > \beta$$

 $\Delta = (\alpha/\beta) \times \Delta_{\min}$

when \sin^4 -term arises at subleasing order wrt \sin^2 -term

Common CH Problems (2)

LHC constraints on light composite resonances

Composite partners decay preferably to heavy SM fields

 \Rightarrow Sensitive to collider searches:

top partner mass \geq 1.5 TeV

CMS, arXiv:2209.0737; ATLAS, arXiv:2210.15413; +many more!

"New Approaches to Naturalness", 2025

 $\min(m_T)$ $m_H \propto -$

analytical estimate (from 2-site model)

little hierarchy problem (tuning $\propto f^2$)

We want to make sure that...

- (so that $\alpha \sim \beta$) \rightarrow no double tuning
- ... there are heavy top partners (with low tuning)
 - \rightarrow avoid LHC bounds

"New Approaches to Naturalness", 2025

• ... quadratic and quartic term in Higgs potential arise at the same order expansion in $\mathcal{O}(\lambda/g_*)$

relevant: top-sector

Maximal Symmetry (Csáki et al 2017), Softened Symmetry Breaking (Blasi, Goertz 2019), Enhanced Symmetries (Cheng, Chung 2020) Gegenbauer Goldstone (Durieux, McCullough, Salvioni 2021)

Conjugate Fermion Mechanism

The quadratic contribution of a chiral fermion ψ to the pNGB potential of a coset G/H is **cancelled** when a new chiral fermion ψ' with conjugated gauge quantum numbers is added, called mirror fermion, if the fermions talk to the same composite operator in a real representation ${f R}$ of the group G which decomposes as $\mathbf{R} \to \mathbf{C} \oplus \mathbf{C}$ under H, with \mathbf{C} a complex representation and \mathbf{C} its complex conjugate.

explicitly: The quadratic contribution of the top quark to the Higgs potential is cancelled!

"New Approaches to Naturalness", 2025

Anglescu, Bally, Goertz, MH arXiv:2309.05698

> mirror fermion has Dirac mass

$SU(5) \supset SU(3) \times SU(2) \times U(1)$

Conjugate Fermion **Explicit Model - Composite Grand Unified Theories**

minimal:

$\mathbf{20} ightarrow \mathbf{10} \oplus \mathbf{\overline{10}}$

non-custodial \Rightarrow tree-level corrections to T parameter

$$\begin{array}{ccc} & & & & & \\ \hline q_L & & & & \\ \mathbf{10} \to (\mathbf{3}, \mathbf{2})_{\mathbf{1/6}} \oplus (\mathbf{3}^*, \mathbf{1})_{-\mathbf{2/3}} \oplus (\mathbf{1}, \mathbf{1})_{\mathbf{1}} \\ \mathbf{10}^* \to (\mathbf{3}^*, \mathbf{2})_{-\mathbf{1/6}} \oplus (\mathbf{3}, \mathbf{1})_{\mathbf{2/3}} \oplus (\mathbf{1}, \mathbf{1})_{-\mathbf{1}} \\ & & \\ \hline \theta_L & & \\ 10 & & t_R \end{array}$$

"New Approaches to Naturalness", 2025

Anglescu, Bally, Goertz, MH arXiv:2309.05698

Coset G/HGoldstone matrix: $U = \exp(i\Pi_{\hat{a}}T^{\hat{a}})$ $U \rightarrow gUh^{\dagger}$

CCWZ mechanism \rightarrow low-energy effective Lagrangians Callan, Coleman, Wess, Zumino (1969)

- 1) form spurions: elementary fields embedded in incomplete G multiplets
- 2) make spurions transform under H: dress with Goldstone matrix
- 3) **build H-invariants:** G invariance is now built in
- 4) set spurions to vev: read off pNGB potential

$$\begin{split} V^{\mathbf{C}} &\propto \lambda^{2} (\Delta_{D}^{\mathbf{C}})^{\dagger} \Delta_{D}^{\mathbf{C}} + \lambda'^{2} (\Delta_{D}'^{\mathbf{C}})^{\dagger} \Delta_{D}'^{\mathbf{C}} \\ & \downarrow \\ (\Delta_{D}^{\mathbf{C}})^{\dagger} \Delta_{D}^{\mathbf{C}} = (\Delta_{D}'^{\mathbf{C}})^{\dagger} \Delta_{D}'^{\mathbf{C}} \\ & \mathbf{R} \to \mathbf{C} \oplus \bar{\mathbf{C}} \\ & \propto \lambda^{2} (\Delta_{D}^{\mathbf{C}})^{\dagger} \Delta_{D}^{\mathbf{C}} + \lambda'^{2} (\Delta_{D}^{\bar{\mathbf{C}}})^{\dagger} \Delta_{D}^{\bar{\mathbf{C}}} \\ & \propto \lambda^{2} \Delta^{\dagger} U U^{\dagger} \Delta \\ \end{split}$$

No contribution at leading order to Higgs potential!

Anglescu, Bally, Goertz, MH arXiv:2309.05698

Conjugate Fermion Proof

 $\mathbf{R}
ightarrow \mathbf{C} \oplus ar{\mathbf{C}}$

resonance mass scale $m_* = g_* f$

Conjugate Fermion Proof

embedding & quantum numbers

"New Approaches to Naturalness", 2025

Anglescu, Bally, Goertz, MH arXiv:2309.05698

Three ingredients why the cancellation works!

 ${f R} o {f C} \oplus ar{f C} ~~,~~\lambda \,=\, \lambda'~,~~m_E \ll m_*$

resonance mass scale $m_* = g_* f$

Conjugate Fermion Proof

"New Approaches to Naturalness", 2025

Anglescu, Bally, Goertz, MH arXiv:2309.05698

Three ingredients why the cancellation works!

$$\lambda = \lambda'$$
 , $m_E \ll m_*$

resonance mass scale $m_* = g_* f$

Conjugate Fermion Proof

"New Approaches to Naturalness", 2025

Anglescu, Bally, Goertz, MH arXiv:2309.05698

"New Approaches to Naturalness", 2025

Anglescu, Bally, Goertz, MH arXiv:2309.05698

Conjugate Fermion

Explicit Model - Composite Grand Unified Theories

 $V(h) \propto \sin^2\left(\frac{h}{f}\right) \left(c_{20,L}\left(\lambda_{t_R}^2 - \lambda_{\omega_R}^2\right) + c_{20,R}\left(\lambda_{\theta_L}^2 - \lambda_{q_L}^2\right)\right) \sim \mathbf{0}$

Qualitatively in spurion framework:

Scan: f = 1600 GeV $\lambda_L = \lambda_R$ $m_{t}(f) \sim 150 \text{ GeV}$ parameter range [-5 f , 5 f] b_R included

Conjugate Fermion **Numerical Scan**

Coleman-Weinberg potential

$$V(H) = -\frac{2N_c}{8\pi^2} \int dp \, p^3 \log \left[\prod_i \left(p^2 + m_i^2(H)\right)\right] \quad \text{in 3-site}$$
Arkani-Hamed, Cohen, Georgi (2001); Panico, Wulzer (2011)

"New Approaches to Naturalness", 2025

Anglescu, Bally, Goertz, MH arXiv:2309.05698

e model

Top Partners can be heavy \Rightarrow no conflict with LHC limits

Conjugate Fermion Phenomenology Exotics

no perfect fermion unification

• accidental baryon number symmetry \Rightarrow exotics ω carry B = 2/3!

see: Angelescu, Bally, Blasi, Goertz (2021); Hosotani, Yamatsu (2015)

baryon number & electromagnetic charge conservation lead to 6 particle final state! $\omega \bar{\omega} \rightarrow t \bar{t} b \bar{b} \tau^+ \tau^-$

To the best of our knowledge: no dedicated search at LHC

"New Approaches to Naturalness", 2025

Anglescu, Bally, Goertz, MH arXiv:2309.05698

+ no proton decay

baryon number is global symmetry \Rightarrow no proton decay 18

unexplored signature for exotic decay \Rightarrow no existing LHC limits

- Novel mechanism to cancel quadratic contribution to the Higgs potential with unexplored signatures
- <u>Common Problems solved</u>

"New Approaches to Naturalness", 2025

Anglescu, Bally, Goertz, MH arXiv:2309.05698

Conclusion **Hope for Naturalness at the LHC!**

~10% tuning for f = 1600 GeV

heavy top partners + unexplored signature of exotic decay

Baryon Number Conservation

Backup Slides

 $(UV,IR) \stackrel{\circ}{=} (SU(5),G_{SM})$

- Higgs: 5th component of 5D gauge field in warped
- t_R IR-localised $\Rightarrow m_E$ small $m_E \sim \frac{M_{\rm UV}}{R} \times \begin{cases} 1 & (c > 0.5) \\ (R'/R)^{c-1/2} (1-c) & (c < 0.5) \end{cases}$
- fermion & mirror fermion in same bulk field \Rightarrow same localisation $\Rightarrow \lambda = \lambda'$

Anglescu, Bally, Goertz, MH arXiv:2309.05698

Holographic Completion

Proton Decay in usual GUT

 $24 \rightarrow (8,1)_0 \oplus (1,3)_0 \oplus (1,1)_0 \oplus (3,2)_{-5/6} \oplus (\bar{3},2)_{5/6}$

Same for scalar triplet \rightarrow Doublet-Triplet Splitting Problem

David Tong, lecture notes

proton lifetime > 10³⁴ years \Rightarrow very heavy LQ masses

 $5 \rightarrow (3,1)_{-1/3} \oplus (1,2)_{1/2}$

Conserved Baryon Number

- q_L and u_R in separate H multiplets \Rightarrow interaction via X/Y not possible $\Rightarrow p \rightarrow \pi_0 + e^+$ not possible
- hidden baryon symmetry: B conserved at each vertex ⇒ proton stable to all orders in perturbation theory
- consistently assigning baryon number to SM fields \Rightarrow B = 2/3 for exotics!
- symmetry is anomalous, but can be gauged Agashe, Servant (2004); Agashe, Servant (2005)

See for details i.e. Angelescu, Bally, Blasi, Goertz (2021)

Embedding Elementary Fields explicitly, for SU(6)

- $egin{array}{ccc} \mathbf{15} & \mathbf{10} = (\mathbf{3},\mathbf{2})_{rac{1}{6}} \oplus egin{array}{ccc} \end{array}$
 - $\mathbf{5} = d_R(\mathbf{3},\mathbf{1})_-$

for full SM + neutrino masses: add $6 \rightarrow 5 \oplus 1$ and $1 \rightarrow 1$ representations

- exotic with baryon number B = 2/3
- $\omega \to Y_{-1/3} + b_{-1/3}$ $\omega \to X_{-4/3} + t_{2/3}$
- $X_{-4/3} \to \tau_{-1} + b_{-1/3}$ $(Y_{-1/3} \rightarrow \nu_0 + b_{-1/3})$ $Y_{-1/3} \rightarrow \tau_{-1} + t_{2/3}$
- decay to $\nu_0 + b_{-1/3}$ suppressed wrt $\tau_{-1} + t_{2/3}$ due to embeddings of fields

Top Partner / LQ Searches

also consulted Prof. Dr. Lucia Masetti & Prof. Dr. Stefan Tapprogge

Higgs-Gluon Coupling **Contribution from Exotics**

loop corrections to Higgs-gluon coupling

$$\delta g_{Hgg} \propto$$

from new heavy fermions with $M_i > m_H$:

$$\delta g_{Hgg}^{\mathrm{ex}} \sim \frac{\partial \log(\det M_{\mathrm{ex}})}{\partial v} = 0$$

not trivial! reason: opposite-chirality partners do not talk directly to Higgs

Contribution from top and bottom partners suppressed by v^2/f^2

Ellis, Gaillard, Nanopoulos (1976)

Azatov, Galloway (2012)

 $\sim \mathcal{O}(2\%)$

Multi-Site Models

- "The Discrete Composite Higgs Model", Panico&Wulzer (2011)
- 5D models predictive but unnecessarily complex for collider studies (all KK modes included)
- Use dimensional deconstruction to discretise 5th dimension into number of sites ~ KK modes
- Higgs potential calculable in 3-site model (although second layer of resonances already out of reach for colliders)

Scan:

$$f = 1600 \text{ GeV}$$

 $\lambda_L = \lambda_R, m_t(f) \sim 150 \text{ GeV}$
parameter range [-5 f , 5 f]
 b_R included
 $v_{SM} \in (246 \pm 40)\text{GeV}$
 $m_h \in (125 \pm 15)\text{GeV}$

Explicit 3-site model Top and Exotic

	(0	$y_R \cos(\xi)$	$y_R\sin(\xi)$	0	0	0	
	$y_L\sin(\xi)$	m20	0	0	d20	0	
	$-y_L\cos(\xi)$	0	m20	0	0	d20	
$M_{\rm top} =$	0	0	0	m15	0	0	(
	0	d20	0	0	m_{2010s}	0	
	0	0	d20	0	0	m_{2010}	d1
	\ 0	0	0	d15	0	$d10_{2015}$	m

$$M_{\text{exotic}} = \begin{pmatrix} m_{\omega} & 0 & -y_R \sin(\xi) & -y_R \cos(\xi) & 0 & 0 \\ 0 & m_{\theta} & 0 & 0 & 0 & 0 \\ 0 & y_L \cos(\xi) & \text{m20} & 0 & 0 & \text{d20} \\ 0 & -y_L \sin(\xi) & 0 & \text{m20} & 0 & 0 \\ 0 & 0 & 0 & 0 & \text{m15} & 0 \\ 0 & 0 & \text{d20} & 0 & 0 & m_{2010s} \\ 0 & 0 & 0 & 0 & \text{d15} & 0 & \text{d20} \\ \end{pmatrix}$$

simplicity

Explicit 3-site model

$$q_L/t_R \qquad U_1$$
 $\Delta_{L/R}$

$$M_{\text{bottom}} = \begin{pmatrix} 0 & 0 & y_{\text{bR}} \cos(\xi) & y_{\text{bR}}(-\sin(\xi)) & 0 \\ 0 & \text{m6} & 0 & 0 & 0 \\ 0 & 0 & \text{m15} & 0 & 0 \\ 0 & 0 & 0 & \text{m15} & 0 \\ -y_L & 0 & 0 & 0 & \text{m20} \\ 0 & \text{d6} & 0 & 0 & 0 & \text{m20} \\ 0 & 0 & \text{d15} & 0 & 0 & \text{d15} \\ 0 & 0 & 0 & 0 & \text{d20} \end{pmatrix}$$

More Explicit Proof (I)

 $(\Delta_D^{\bar{\mathbf{C}}})^{\dagger} \Delta_D^{\bar{\mathbf{C}}} = (\Delta_D^{\prime \mathbf{C}})^{\dagger} \Delta_D^{\prime \mathbf{C}}$

1) Partial Compositeness Lagrangian $\mathcal{L}_{PC} = \lambda \, \bar{\psi} \Delta \, \mathcal{O}^{\mathbf{R}} + \lambda' \, \bar{\psi}' \Delta' \, \mathcal{O}^{\mathbf{R}} + \text{h.c.}$ with spurions $\Delta = \begin{pmatrix} \delta & 0 \\ 0 & 0 \end{pmatrix}, \quad \Delta' = \begin{pmatrix} 0 & 0 \\ 0 & \delta \end{pmatrix}$

 $\Delta_{11} = \Delta_{22}' \equiv \delta \quad \mbox{since fields conjugate} \\ \mbox{of each other} \end{cases}$

split composite operator into representations under H

$$\mathcal{O}^{\mathbf{R}} = U\left(\mathcal{O}^{\mathbf{C}}, \mathcal{O}^{\bar{\mathbf{C}}}\right)^{T}$$

$$\mathcal{L}_{\rm PC} = \begin{pmatrix} \lambda \bar{\psi} & \lambda' \bar{\psi}' \end{pmatrix} \begin{pmatrix} \delta & 0 \\ 0 & \delta \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix}$$

2) The second step consists in deriving certain properties of the Goldstone matrix in the **R** representation of G. Since **R** is a pseudoreal representation, group theory tells us that for any G transformation in the **R** representation, $g = \exp(ix_A T_{\mathbf{R}}^A)$, with A spanning the full set of G generators, there exists an antisymmetric matrix $S = -S^T$, which can be chosen to be unitary, such that $SgS^{-1} = g^*$. By inspecting transformations along the unbroken generators $T_{\mathbf{R}}^a$ and writing them in block matrix form,

$$\exp\left(i\,x_a T^a_{\mathbf{R}}\right) = \exp\left[i\,x_a \begin{pmatrix} T^a_{\mathbf{C}} & 0\\ 0 & -(T^a_{\mathbf{C}})^* \end{pmatrix}\right],\qquad(A6)$$

we deduce, without loss of generality, that that a suitable form for S is

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \tag{A7}$$

 $SUS^{-1} = U^*$ Goldstone matrix is G transformation $\Rightarrow U_{22} = U_{11}^*, \quad U_{21} = -U_{12}^*.$

 $\begin{pmatrix} \mathcal{O}^{\mathbf{C}} \\ \mathcal{O}^{\mathbf{\bar{C}}} \end{pmatrix} + \text{h.c.}$

More Explicit Proof (II)

3) Compute dressed spurions

$$\begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}^{\dagger} \begin{pmatrix} \delta & 0 \\ 0 & \delta \end{pmatrix}^{\dagger}$$

4) Determine contribution to potential

$$V^{\mathbf{C}} \propto \lambda^{2} \operatorname{Tr} \left[(\Delta_{D}^{\mathbf{C}})^{\dagger} \Delta_{D}^{\mathbf{C}} \right] + \lambda^{2} \operatorname{Tr} \left[(\Delta_{D}^{\prime \mathbf{C}})^{\dagger} \Delta_{D}^{\prime \mathbf{C}} \right] \propto \lambda^{2} \operatorname{Tr} \left[\Delta^{\dagger} U U^{\dagger} \Delta \right] = \lambda^{2} N$$

 $\operatorname{Tr}[M] = \operatorname{Tr}\left[M^{T}\right] \longrightarrow \stackrel{(4.13)}{=} \operatorname{Tr}\left[\delta^{T} U_{21}(U_{21}^{\dagger})\delta^{*}\right].$

 $\begin{pmatrix} 0 \\ \delta \end{pmatrix} = \begin{pmatrix} U_{11}^{\dagger} \delta & U_{21}^{\dagger} \delta \\ U_{12}^{\dagger} \delta & U_{22}^{\dagger} \delta \end{pmatrix} \equiv \begin{pmatrix} \Delta_D^{\mathbf{C}} & \Delta_D'^{\mathbf{C}} \\ \Delta_D^{\mathbf{C}} & \Delta_D'^{\mathbf{C}} \end{pmatrix}$

b) use $\delta^* = \delta = \delta^+ = \delta^T$ to find $\operatorname{Tr} \left[\delta^T U_{21}(U_{21}^+) \delta^* \right] = \operatorname{Tr} \left[\delta^+ U_{21}(U_{21}^+) \delta \right]$ $= \operatorname{Tr} \left[(U_{21}^+ \delta)^+ (U_{21}^+ \delta) \right]$ $= \operatorname{Tr} \left[(\Delta_D'^{\mathbf{C}})^+ \Delta_D'^{\mathbf{C}} \right],$