"Custodial Naturalness"

Electroweak scale hierarchy from conformal and custodial symmetry

Andreas Trautner

based on: PLB 861(2025) and arXiv:2502.09699

w/ Thede de Boer and Manfred Lindner

LIO 2025 Lyon 22.05.25

Fundação para a Ciência e a Tecnologia

UNIÃO EUROPEIA

C[®]MPETE

PORTUGAL

Fundo Europeu de Desenvolvimento Regional

2020

Supported by grants 2023.06787.CEECIND, 2024.01362.CERN, UIDP/00777/2020, UIDB/00777/2020

Custodial Naturalness, 22.05.25

Outline

- Hierarchy problem
- General idea of "Custodial Naturalness"
- Minimal model
- Numerical analysis, experimental constraints and predictions
- Variations of the minimal model
- Extensions and embeddings
- Conclusions

Disclaimer: For this talk in 4D, scale invariance \sim conformal invariance.

• The Standard Model (SM) does not have a hierarchy problem.

[Bardeen '95]

• Hierarchical scale separation $\mu_{\rm EW} \sim m_h \sim v_{\rm EW} \ll \Lambda_{\rm high} \sim M_{\rm Pl}$

• *The* Standard Model (SM) does not have a hierarchy problem.

[Bardeen '95]

- Hierarchical scale separation $\mu_{\rm EW} \sim m_h \sim v_{\rm EW} \ll \Lambda_{\rm high} \sim M_{\rm Pl}$
 - may not be a problem, if there are no "hard" (read, classical) high scales.

- The Standard Model (SM) does not have a hierarchy problem.
- Hierarchical scale separation $\mu_{\rm EW} \sim m_h \sim v_{\rm EW} \ll \Lambda_{\rm high} \sim M_{\rm Pl}$ may not be a problem, if there are no "hard" (read, classical) high scales.

Well-accepted mechanisms to shield Higgs from high scales:

- Supersymmetry,
- Composite Higgs.

[Bardeen '95]

But: Nature is not close to supersymmetric, nor does the Higgs look like composite. Especially: No top partners observed!

- The Standard Model (SM) does not have a hierarchy problem.
- Hierarchical scale separation $\mu_{\rm EW} \sim m_h \sim v_{\rm EW} \ll \Lambda_{\rm high} \sim M_{\rm Pl}$ may not be a problem, if there are no "hard" (read, classical) high scales.

Well-accepted mechanisms to shield Higgs from high scales:

- Supersymmetry,
- Composite Higgs.

[Bardeen '95]

But: Nature is not close to supersymmetric, nor does the Higgs look like composite. Especially: No top partners observed!

- But the SM is close to scale invariant, *explicitly* broken only by $\mu_{EW}^2|H|^2$.
- $\leftrightarrow\,$ Is there a phenomenologically viable way to dynamically generate the EW scale as a quantum effect?

[Coleman, E. Weinberg '73]

[Coleman, E. Weinberg '73]

[Coleman, E. Weinberg '73]

[Coleman, E. Weinberg '73]

Quantum critical scale generation (1x) is free of a hierarchy problem.

Is this how Nature generates the Higgs mass term?

 \implies This is **experimentally** excluded!

 \implies This is **experimentally** excluded!

Does that mean that quantum criticality has no business with Nature (the SM)? ... probably **also no!**

 \implies This is **experimentally** excluded!

Does that mean that quantum criticality has no business with Nature (the SM)? ... probably **also no!** Because:

 \implies This is **experimentally** excluded!

Does that mean that quantum criticality has no business with Nature (the SM)? ... probably **also no!** Because:

Custodial Naturalness, 22.05.25

 \implies This is **experimentally** excluded!

Does that mean that quantum criticality has no business with Nature (the SM)? ... probably **also no!** Because:

Accept criticality as a feature, not a bug!

see talks by Detering, Steingasser, Garcés

Andreas Trautner

⇒ This is **experimentally** excluded!

Does that mean that quantum criticality has no business with Nature (the SM)? ... probably **also no!** Because:

Phenomenologically viable conformal "solution" to hierarchy problem

- Assume classical scale symmetry $\mu_{\rm EW} = 0$ as a leading order starting point.
- EW scale = Dimensional transmutation in a new critical sector + Higgs portal?

 $\lambda_p \, |\Phi|^2 \, |H|^2 \quad \rightsquigarrow \quad \lambda_p \, v_{\Phi}^2 \, |H|^2 \quad = \quad \mu_{\rm EW}^2 \, |H|^2 \qquad \qquad \text{[Hempfling '96], [Meissner, Nicolai '06], \dots }$

• This usually re-introduces a little hierarchy problem $\mu_{\rm EW}^2 \sim \lambda_p \times \Lambda_{\rm CW}^2$.

Phenomenologically viable conformal "solution" to hierarchy problem

- Assume classical scale symmetry $\mu_{\rm EW} = 0$ as a leading order starting point.
- EW scale = Dimensional transmutation in a new critical sector + Higgs portal?

• This usually re-introduces a little hierarchy problem $\mu_{\rm EW}^2 \sim \lambda_p \times \Lambda_{\rm CW}^2$.

New here:

Higgs as pNGB of spontaneously broken **custodial symmetry** avoids this problem.

Phenomenologically viable conformal "solution" to hierarchy problem

- Assume classical scale symmetry $\mu_{\rm EW} = 0$ as a leading order starting point.
- EW scale = Dimensional transmutation in a new critical sector + Higgs portal?

• This usually re-introduces a little hierarchy problem $\mu_{\rm EW}^2 \sim \lambda_p \times \Lambda_{\rm CW}^2$.

New here:

Higgs as pNGB of spontaneously broken **custodial symmetry** avoids this problem.

- ✓ Technically natural suppression of EW scale.
- ✓ Only elementary fields, no compositeness, all perturbative.
- ✓ No top partners, marginal top Yukawa like in SM.

Assumptions:

- 1. Classical scale invariance.
- 2. New scalar degree of freedom, here new complex Φ .
- 3. Mechanism to trigger quantum criticality of Φ . Here: gauge symmetry $U(1)_X$.

 $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X$.

Assumptions:

- 1. Classical scale invariance.
- 2. New scalar degree of freedom, here new complex Φ .
- 3. Mechanism to trigger quantum criticality of Φ . Here: gauge symmetry $U(1)_X$.
- 4. High-scale custodial symmetry (C.S.) of scalar potential, here SO(6), $H + \Phi = 6$

$$\Rightarrow \qquad V(H,\Phi) \;=\; \lambda \left(|H|^2 + |\Phi|^2 \right)^2 \qquad \quad \text{at} \;\; \mu = \Lambda_{\text{high}} = M_{\text{Pl}} \,.$$

Assumptions:

 \Rightarrow

- 1. Classical scale invariance.
- 2. New scalar degree of freedom, here new complex Φ .
- 3. Mechanism to trigger quantum criticality of Φ . Here: gauge symmetry $U(1)_X$.
- 4. High-scale custodial symmetry (C.S.) of scalar potential, here SO(6), $H + \Phi = 6$

$$\sim V(H,\Phi) = \lambda \left(|H|^2 + |\Phi|^2 \right)^2$$
 at $\mu = \Lambda_{\mathrm{high}} = M_{\mathrm{Pl}}$.

Both, scale invariance + SO(6) are broken by quantum effects.

- Dim. transmutation $\rightsquigarrow \langle 6 \rangle$ VEV of $\langle H \rangle \langle \Phi \rangle$ -system \rightsquigarrow SSB of SO(6)
- If SO(6) were classically exact:

 \Rightarrow SO(6) $\xrightarrow{\langle 6 \rangle}$ SO(5): massive dilaton + 4 *would-be* NGBs + massless NGB "h".

Assumptions:

 \Rightarrow

- 1. Classical scale invariance.
- 2. New scalar degree of freedom, here new complex $\Phi.$
- 3. Mechanism to trigger quantum criticality of Φ . Here: gauge symmetry $U(1)_X$.
- 4. High-scale custodial symmetry (C.S.) of scalar potential, here SO(6), $H + \Phi = 6$

$$V(H,\Phi) \;=\; \lambda \left(|H|^2 + |\Phi|^2
ight)^2 \qquad \quad {
m at} \;\; \mu = \Lambda_{
m high} = M_{
m Pl} \,.$$

Both, scale invariance + SO(6) are broken by quantum effects.

- Dim. transmutation $\rightsquigarrow \langle 6 \rangle$ VEV of $\langle H \rangle \langle \Phi \rangle$ -system \rightsquigarrow SSB of SO(6)
- If SO(6) were classically exact:

 \Rightarrow SO(6) $\xrightarrow{\langle 6 \rangle}$ SO(5): massive dilaton + 4 *would-be* NGBs + massless NGB "h".

- Realistically, SO(6) is *explicitly* broken by: y_t , g_Y & g_X , g_{12} , ..., y_{new} , ...
- \Rightarrow SO(6) $\xrightarrow{\langle 6 \rangle}$ SO(5): massive dilaton + 4 *would-be* NGBs + massive pNGB "h".

General Idea – RGE evolution is key!

 $V_{\text{tree}}(H,\Phi) = \lambda_H |H|^4 + 2\lambda_p |\Phi|^2 |H|^2 + \lambda_\Phi |\Phi|^4$. below $M_{\rm Pl}$:

Andreas Trautner

 $\begin{array}{l} \textbf{General Idea} - \textbf{Masses and EW scale} \\ \textbf{Splitting } \lambda_p - \lambda_{\Phi} \textbf{ requires}^* \textbf{ additional (BSM) source of C.S. breaking!} \\ \beta_{\lambda_p} - \beta_{\lambda_{\Phi}} \simeq \frac{1}{16\pi^2} \lambda_p \left[-\frac{9}{2}g_L^2 - \frac{3}{2}g_Y^2 + 12\lambda_H + 6y_t^2 \right]_{\text{SM}} + \frac{g_{12}g_X^2}{16\pi^2} \left[6g_X + \frac{3}{2}g_{12} \right]_{\text{BSM}} \end{array}$

 \sim Minimal possibility: ${
m U}(1)_{
m X}-{
m U}(1)_{
m Y}$ gauge kinetic mixing $g_{12}.$

Masses of physical real scalars $h_{\Phi} \subset \Phi$ and $h \subset H$:

$$|\Phi\rangle = \frac{v_{\Phi}}{\sqrt{2}}, \langle H\rangle = \frac{v_{h}}{\sqrt{2}}$$

Dilaton:

$$m_{h_{\Phi}}^{2} \approx \beta_{\lambda_{\Phi}} v_{\Phi}^{2} \approx \frac{3 g_{X}^{4}}{8\pi^{2}} v_{\Phi}^{2}$$
pNGB Higgs:

$$m_{h}^{2} \approx 2 \left[\lambda_{\Phi} \left(1 + \frac{g_{12}}{2 g_{X}} \right)^{2} - \lambda_{p} \right] v_{\Phi}^{2}.$$

• EW scale VEV gets to keep the SM relation $v_H^2 \approx \frac{m_h^2}{2\lambda_H}$.

 \Rightarrow The **EW scale is** *custodially* **suppressed** compared to the intermediate scale v_{Φ} of spontaneous scale and custodial symmetry violation.

Minimal Model

Field	#Gens.	$SU(3)_c imes SU(2)_L imes U(1)_Y$	$U(1)_X$	$\rm U(1)_{B-L}$
Q	3	$(3,2,+rac{1}{6})$	$-\frac{2}{3}$	$+\frac{1}{3}$
u_R	3	$(3,1,+ frac{2}{3})$	$+\frac{1}{3}$	$+\frac{1}{3}$
d_R	3	$(3,1,-rac{1}{3})$	$-\frac{5}{3}$	$+\frac{1}{3}$
L	3	$(1,2,- frac{1}{2})$	+2	-1
e_R	3	(1 , 1 ,-1)	+1	-1
$ u_R$	3	(1, 1, 0)	+3	-1
Н	1	$(1,2,+ frac{1}{2})$	+1	0
Φ	1	(1, 1, 0)	+1	$q_{\Phi}^{\rm B-L} = -\frac{1}{3}$

$$Q^{(X)} \equiv 2 Q^{(Y)} + \frac{1}{q_{\Phi}^{B-L}} Q^{(B-L)}$$

- The only free parameter of the charge assignment is $q_{\Phi}^{\rm B-L}$.
- Constrained to $\frac{1}{3} \lesssim |q_{\Phi}^{B-L}| \lesssim \frac{5}{11}$; special value: $q_{\Phi}^{B-L} = -\frac{16}{41}$. Let us fix $q_{\Phi}^{B-L} = -\frac{1}{3}$.

Note: Our model is very similar to "classical conformal extension of minimal B - L model", but $q_{\Phi}^{B-L} \neq -2$. [Iso, Okada, Orikasa '09]

Numerical analysis

- SM parameters $G_{\rm F}$, $m_h \leftrightarrow$ parameters λ , g_X (@ $\Lambda_{\rm high} \sim M_{\rm Pl}$).
- Remaining free parameter: g_{12} . Can fix $g_{12}|_{M_{\text{Pl}}} = 0 \quad \Leftrightarrow \quad \text{C.S. fixes all d.o.f.'s.}$

Minimal model has the same number of parameters as the SM!

 \rightarrow Properties of Z' and h_{Φ} are predictions of the model.

Numerical analysis

- SM parameters $G_{\rm F}$, $m_h \leftrightarrow$ parameters λ , g_X (@ $\Lambda_{\rm high} \sim M_{\rm Pl}$).
- Remaining free parameter: g_{12} . Can fix $g_{12}|_{M_{P1}} = 0 \quad \Leftrightarrow \quad \text{C.S. fixes all d.o.f.'s.}$

Minimal model has the same number of parameters as the SM!

 \rightarrow Properties of Z' and h_{Φ} are predictions of the model.

Parameter scan

- Impose SO(6) symmetric BC's $@M_{\text{Pl}}: \lambda_{H,\Phi,p}|_{M_{\text{Pl}}} = \lambda|_{M_{\text{Pl}}} \text{ and } g_{12}|_{M_{\text{Pl}}} = 0.$
- 2-loop running with PyR@TE. [Sartore, Schienbein '21]
- Iteratively determine intermediate scale Φ_0 , match to SM at $\mu_0 \sim \mathcal{O}(g_X \Phi_0)$.
- Numerically minimize 1-loop V_{eff} (at μ_0), compute v_{Φ} and v_H , $m_{h_{\Phi}}$, m_h , $\lambda_{H,\Phi,p}$, match to 1-loop $V_{\text{eff}}^{\text{SM}}$ (+dilaton hidden scalar, corrections negligible).
- From μ_0 down to m_t 2-loop running.
- Require $v_H^{\text{exp}} = 246.2 \pm 0.1 \text{ GeV}$, as well as g_L , g_Y , g_3 and y_t within SM errors.
- Low scale new couplings g_X , g_{12} and masses $m_{Z'}$, $m_{h_{\Phi}}$ are predictions.

Experimental tests and constraints

• ATLAS & CMS $Z' \rightarrow l^+l^-$ searches constrain $m_{Z'} \gtrsim 4 \text{ TeV}$. (di-jets are weaker)

• EW precision: Additional custodial breaking shifts m_Z ,

 $\Delta m_Z \propto -m_Z \langle H \rangle^2 / (2 \langle \Phi \rangle^2)$.

Dilaton-higgs mixing:

 $\mathcal{O}_{h_{\Phi}} pprox \sin heta imes \mathcal{O}_{h o h_{\Phi}}^{\mathrm{SM}}$.

For $m_{h_{\Phi}} \sim 75 \,\text{GeV}$, $\sin \theta \lesssim 10^{-1}$ is a-OK. (typical values for us are BP: $\sin \theta \sim 10^{-2.5}$)

• Neglect dilaton-gauge-gauge coupling from trace anomaly, suppressed by $\frac{v_h}{v_{\Phi}}$.

Parameter space $(q_{\Phi} = -\frac{1}{3})$

Parameters at $\mu = M_{\rm Pl}$. All points shown reproduce the correct EW scale. New scale $\langle \Phi \rangle = v_{\Phi}/\sqrt{2}$ is prediction. (m_h, M_t not imposed as constraint).

Custodial Naturalness, 22.05.25

Reproductions and predictions $(q_{\Phi} = -\frac{1}{3})$

All points shown reproduce the correct EW scale. M_t : top pole mass.

Fine tuning and Future collider projections $(q_{\Phi} = -\frac{1}{3})$

Fine tuning:

$$\Delta := \max_{g_i} \left| rac{\partial \ln rac{\langle H
angle}{\langle \Phi
angle}}{\partial \ln g_i}
ight| \,.$$

Barbieri-Giudice measure. [Barbieri, Giudice '88]

The choice of $\langle H \rangle / \langle \Phi \rangle$ automatically subtracts the shared sensitivity of VEVs to variation of g_i . [Anderson, Castano '95]

Red stars: $g_{12}|_{M_{\rm Pl}} = 0.$

Black star: benchmark point.

Projections are for hypercharge universal Z' from [R.K. Ellis et al. '20]

Prime target: Z' at FC, Dilaton production(+displaced dec.) at Higgs factories.

Extensions of minimal model

Minimal model portals: $|\Phi|^2 |H|^2$ and $X^{\mu\nu}Y_{\mu\nu}$.

In extensions also neutrino portal and new Yukawa portals y_{new} .

Additional fermions can:

- Provide ingredients for neutrino mass generation,
- Be part of the dark matter,
- "Cure" SM vacuum instability.

(already known from B - L model.)

[Iso, Okada, Orikasa '09] [Foot, Kobakhidze, McDonald, Volkas '07]

[S. Okada '18]

[(Das), Oda, Okada, Takahashi '15('16)]

"Custodial Naturalness" is reasonably stable under variation of boundary conditions, charge assignments, addition of extra particles. [de Boer, Lindner, AT 2502.09699]

*Interesting twist to requirement of sufficient amount of Custodial Sym. breaking:

• There is a possibility to realize large enough splitting of $\lambda_p - \lambda_{\Phi}$ without new sources of CS breaking; this requires $\Lambda_{high} \approx 10^{11} GeV$.

"Minimal Hidden Sector Custodial Naturalness", SO(5)

[de Boer, Lindner, AT 25XX.YYYYY]

New field	#Gens.	$SU(3)_c \times SU(2)_L \times U(1)_Y$	\mathbb{Z}_2
ϕ	1	(1, 1, 0)	+1
S	1	$({f 1},{f 1},0)$	-1
$[u_R$	3	(1, 1, 0)	+1]

 $H + \phi = 5$ -plet, S = singlet of high-scale SO(5) custodial symmetry.

$$V = \lambda \left(|H|^2 + rac{1}{2}\phi^2
ight)^2 + rac{\lambda_{SH}}{2} \left(|H|^2 + rac{1}{2}\phi^2
ight) S^2 + rac{\lambda_S}{4!} S^4 \qquad {
m at} \qquad \mu = \Lambda_{
m high} \, .$$

- Minimal model in terms of field content, but (at least) one more parameter (λ_{SH} , λ_{S}).
- Goldstone counting still works out $\rightsquigarrow h$ is pNGB of SO(5) CS.
- No more new Z', only hidden-sector scalars \rightarrow very invisible at colliders. S
- S is automatic singlet scalar DM candidate , prod. via "strongly coupled" freeze-in.

"Most minimal" SO(5) model [preliminary] Singlet scalar DM S.

Most constrained scenario, relies on SM contribution to Custodial Symmetry breaking \Rightarrow scale of custodial restoration μ is a prediction.

Custodial Naturalness, 22.05.25

Gravitational wave signals?

- We have ignored finite-T effects so far. This is yet to be done.
- CW transition is known to be first order → Gravitational wave signals. see e.g. [Litim, Wetterich, Tetradis '97], [Dasgupta, Dev, Ghoshal, Mazumdar '22],[Huang, Xie '22]

• In fact, the "minimal conformal B - L model" is prototype for strong supercooling \rightarrow strong GW signal from bubble collisions. see e.g. [Ellis,Lewicki,Vaskonen'20]

Quantitative predictions for our specific case have yet to be worked out!

Conclusions

- Classical scale invariance + extended custodial symmetry, here SO(6)
- \Rightarrow New mechanism to explain large scale separation and little hierarchy problem.
- Minimal model: Φ + U(1)_X gauge: same number of parameters as the SM.
- Predicts light scalar dilaton $m_{\Phi} \sim 75 \text{ GeV} + Z'$ at 4 100 TeV.
- Top mass at lower end of currently allowed 1σ region.
- Predictions reasonably stable under extensions, e.g. m_{ν} or particle DM.
- Perfect model to motivate new colliders + Higgs factory + GR waves.
- Many extensions and details to explore, e.g. extension to flavor, ...

Thank You!

Image credit: wikimedia commons

Backup slides

Details of the potential and matching

Effective potential for background fields H_b and Φ_b @1-loop \overline{MS} :

 $(-1)^{2s} i \equiv \begin{pmatrix} + \\ - \end{pmatrix}$ for bosons(fermions), $n_i \equiv \# d.o.f$ $C_i = \frac{5}{6} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ for vector bosons(scalars/fermions).

$$V_{\text{eff}} = V_{\text{tree}} + \sum_{i} \frac{n_i (-1)^{2s_i}}{64\pi^2} m_{i,\text{eff}}^4 \left[\ln\left(\frac{m_{i,\text{eff}}^2}{\mu^2}\right) - C_i \right]$$

Two different analytical expansions: First

$$V_{\text{EFT}}(H_b) := V_{\text{eff}}\left(H_b, \tilde{\Phi}(H_b)\right), \quad \text{with} \quad \left. \frac{\partial V_{\text{eff}}}{\partial \Phi_b} \right|_{\Phi_b = \tilde{\Phi}(H_b)} = 0.$$

Using $\Phi_0 := \Phi(H_b/\Phi_b = 0)$, we expand V_{EFT} in $H_b \ll \Phi_0$, \sim RG-scale independent expression

$$V_{\rm EFT} \approx 2 \left[\lambda_p - \left(1 + \frac{g_{12}}{2 g_X} \right)^2 \lambda_\Phi \right] \Phi_0^2 H_b^2 + \frac{\lambda_p \lambda_H}{16 \pi^2} [\ldots] \; . \label{eq:VEFT}$$

This expression illustrates the origin of the Higgs mass and EW scale suppression.

$$\begin{split} \text{Alternatively, take } \mu &= \mu_0 := \sqrt{2}g_X \Phi_0 \mathrm{e}^{-1/6} \sim \langle \Phi \rangle \text{ and "t Hooft-like" expansion } \frac{\lambda_p}{\lambda_H} \sim \frac{H_b^2}{\Phi_0^2} \sim \epsilon^2 \to 0 \text{ ,} \\ V_{\mathrm{EFT}} &= -\frac{6\,g_X^4}{64\pi^2} \Phi_0^4 + 2\,\lambda_p \Phi_0^2 H_b^2 + \lambda_H H_b^4 + \sum_{i=\mathrm{SM}} \frac{n_i (-1)^{2s_i}}{64\pi^2} m_{i,\mathrm{eff}}^4 \left[\ln\left(\frac{m_{i,\mathrm{eff}}^2}{\mu_0^2}\right) - C_i \right]. \end{split}$$

This expression facilitates matching to the SM at scale μ_0 .

Andreas Trautner

Custodial Naturalness, 22.05.25

Details of the potential and matching II

For all practical purpose the usual CW relation holds:

$$\Phi_0^2 \approx \exp\left\{-\frac{16\pi^2\lambda_\Phi}{3g_X^4} - \ln(2g_X^2) + \frac{1}{3} + \ldots\right\}\mu^2 \; .$$

Analytically we can use $H_b \ll \tilde{\Phi}(0) := \Phi_0$ and the leading order expression for Φ_0 reads

$$\frac{1}{16\pi^2} \ln\left(\frac{\Phi_0^2}{\mu^2}\right) = -\frac{\lambda_{\Phi} + \frac{1}{16\pi^2} \left\{q_{\Phi}^4 g_X^4 \left[3\ln\left(2q_{\Phi}^2 g_X^2\right) - 1\right] + 4\lambda_p^2 \left(\ln 2\lambda_p - 1\right)\right\}}{3q_{\Phi}^4 g_X^4 + 4\lambda_p^2}$$

Alternatively, we can use the ϵ expansion, and Φ_0 at $\mathcal{O}(\epsilon^0)$ reads

$$\frac{1}{16\pi^2} \ln\left(\frac{\Phi_0^2}{\mu^2}\right) = -\frac{\lambda_{\Phi} + \frac{1}{16\pi^2} \left\{q_{\Phi}^4 g_X^4 \left[3\ln\left(2q_{\Phi}^2 g_X^2\right) - 1\right]\right\}}{3 q_{\Phi}^4 g_X^4} \,.$$

This is an example for the difference between the two expansion schemes. Note that our quantitative analysis is not based on any of these expansions but uses a fully numerical minimization of the effective potential to compute $\langle \Phi \rangle$ and $\langle H \rangle$.

Integrating out scalar in non-conformal model

Consider a simple two complex scalar system with a potential given by

$$V = -m_{H}^{2}|H|^{2} - m_{\Phi}^{2}|\Phi|^{2} + \frac{\lambda_{H}}{2}|H|^{4} + \lambda_{p}|H|^{2}|\Phi|^{2} + \frac{\lambda_{\Phi}}{2}|\Phi|^{4}.$$

For $m_{\Phi}^2 > 0$ and $-m_H^2 + m_{\Phi}^2 \frac{\lambda_p}{\lambda_{\Phi}} > 0$, this potential has a minimum at $\langle \Phi \rangle := \frac{v_{\Phi}}{\sqrt{2}} = \sqrt{\frac{m_{\Phi}^2}{\lambda_{\Phi}}}, \langle H \rangle = 0$. Integrating out the heavy field Φ at tree level, we find the low energy potential

$$\begin{split} V_{\mathsf{EFT}} &= \left(-m_H^2 + \lambda_p \frac{v_\Phi^2}{2} \right) |H|^2 + \frac{1}{2} \left(\lambda_H + \frac{\lambda_p^2}{\lambda_\Phi} \right) |H|^4 \\ &= \left(-m_H^2 + \lambda_p \frac{m_\Phi^2}{\lambda_\Phi} \right) |H|^2 + \frac{1}{2} \left(\lambda_H + \frac{\lambda_p^2}{\lambda_\Phi} \right) |H|^4. \end{split}$$

The light field is massless at tree level if $\lambda_{\Phi} m_{H}^{2} = \lambda_{p} m_{\Phi}^{2}$. A special point fulfilling this condition is $m_{H}^{2} = m_{\Phi}^{2} := m^{2}$ and $\lambda_{p} = \lambda_{\Phi} := \lambda$. At this point the original potential is given by

$$V = -m^2 \left(|H|^2 + |\Phi|^2 \right) + \frac{\lambda}{2} \left(|H|^2 + |\Phi|^2 \right)^2 + \frac{\lambda_H - \lambda}{2} |H|^4$$

This potential is symmetric up to the quartic term of H which can violate the symmetry badly without affecting the light mass term at tree level.

Andreas Trautner

Custodial Naturalness, 22.05.25

Benchmark point 1 (BP)

$\mu [{ m GeV}]$	g_X	g_{12}	λ_H	λ_p	λ_{Φ}	y_t	${m_h}_\Phi \; [{\rm GeV}]$	$m_{Z'} \; [{\rm GeV}]$	$m_h \; [{\rm GeV}]$	$v_H \; [{\rm GeV}]$
$1.2 \cdot 10^{19}$	0.0713	0.	$\lambda_H =$	$\lambda_p = \lambda_\Phi = 3$	$3.3030 \cdot 10^{-5}$	0.377	-	-	-	-
4353	0.0668	0.0093	0.084	$-1.6 \cdot 10^{-6}$	$-2.5 \cdot 10^{-11}$	0.795	67.0	5143	132.0	263.0
172	-	-	0.13	-	-	0.930	-	-	125.3	246.1

Table: Input parameters of an example benchmark point (BP) at the high scale (top) and corresponding predictions at the matching scale μ_0 (middle) and M_t (bottom). At μ_0 the bold parameters also correspond to the parameters of the one-loop SM effective potential. The numerical result for the VEV of Φ is $\langle \Phi \rangle = v_{\Phi}/\sqrt{2} = 54407 \,\text{GeV}$.

One-loop RGE's

Neglect all Yukawas besides y_t and take general U(1)_X charges $q_{H,\Phi}$.

$$\begin{split} \beta_{\lambda_{H}} &= \frac{1}{16\pi^{2}} \bigg[+ \frac{3}{2} \left(\left(\frac{g_{Y}^{2}}{2} + \frac{g_{L}^{2}}{2} \right) + 2 \left(q_{H}g_{X} + \frac{g_{12}}{2} \right)^{2} \right)^{2} + \frac{6}{8} g_{L}^{4} - 6y_{t}^{4} \\ &\quad + 24\lambda_{H}^{2} + 4\lambda_{p}^{2} + \lambda_{H} \left(12y_{t}^{2} - 3g_{Y}^{2} - 12 \left(q_{H}g_{X} + \frac{g_{12}}{2} \right)^{2} - 9g_{L}^{2} \right) \bigg] , \\ \beta_{\lambda_{\Phi}} &= \frac{1}{16\pi^{2}} \left(+ 6q_{\Phi}^{4}g_{X}^{4} + 20\lambda_{\Phi}^{2} + 8\lambda_{p}^{2} - 12\lambda_{\Phi}q_{\Phi}^{2}g_{X}^{2} \right) , \\ \beta_{\lambda_{p}} &= \frac{1}{16\pi^{2}} \bigg[+ 6q_{\Phi}^{2}g_{X}^{2} \left(q_{H}g_{X} + \frac{g_{12}}{2} \right)^{2} + 8\lambda_{p}^{2} \\ &\quad + \lambda_{p} \left(8\lambda_{\Phi} + 12\lambda_{H} - \frac{3}{2}g_{Y}^{2} - 6q_{\Phi}^{2}g_{X}^{2} - 6 \left(q_{H}g_{X} + \frac{g_{12}}{2} \right)^{2} - \frac{9}{2}g_{L}^{2} + 6y_{t}^{2} \bigg) \bigg] , \\ \beta_{g_{12}} &= \frac{1}{16\pi^{2}} \left[-\frac{14}{3}g_{X}g_{Y}^{2} - \frac{14}{3}g_{X}g_{12}^{2} + \frac{41}{3}g_{Y}^{2}g_{12} + \frac{179}{3}g_{X}^{2}g_{12} + \frac{41}{6}g_{12}^{3} \right] . \end{split}$$

The dominant splitting of $\lambda_{\Phi} - \lambda_{p}$ via running (for benchmark charges) is given by

$$\beta_{\lambda\Phi} - \beta_{\lambda_p} = -\frac{6 g_{12} g_X^2}{16\pi^2} \left(g_X + \frac{g_{12}}{4} \right) - \frac{\lambda_p}{16\pi^2} \left[6y_t^2 - \frac{9}{2}g_L^2 - \frac{3}{2}g_Y^2 + 12(\lambda_H - \lambda_p) \right] + \dots ,$$

We do the numerical running with the full two-loop beta functions computed with PyR@TE.

Andreas Trautner

Custodial Naturalness, 22.05.25

Higgs-dilaton mixing

A crude analytic expression for the Higgs-dilaton mixing angle is

$$\tan\theta \approx \frac{2\left[\lambda_p - \left(1 + \frac{g_{12}}{2g_X}\right)^2 \left(\lambda_\Phi - \frac{3g_X^4}{16\pi^2}\right)\right] v_H v_\Phi}{m_h^2 - m_{h_\Phi}^2}$$

Note: We use a fully numerical evaluation of all masses and mixings for our analysis which also confirms the analytic approximations.

Gauge-kinetic mixing

Gauge kinetic mixing parameter in B - L basis, $\tilde{g} := \varepsilon g_Y / \sqrt{1 - \varepsilon^2}$ with $\varepsilon F^{\mu\nu} F'_{\mu\nu}$. The U(1) part of the gauge covariant derivative acting on generic field ϕ is given by

$$\left[\partial_{\mu} + i\left(Q^{(\mathrm{Y})}, Q^{(\mathrm{B}-\mathrm{L})}\right)\begin{pmatrix}g_{\mathrm{Y}} & \tilde{g}\\0 & g_{\mathrm{B}-\mathrm{L}}\end{pmatrix}\begin{pmatrix}A^{(\mathrm{Y})}_{\mu}\\A^{(\mathrm{X})}_{\mu}\end{pmatrix}\right]\phi.$$

 $A^{(Y)}_{\mu}$ and $A^{(X)}_{\mu}$ are the U(1) gauge fields. Rewriting this in terms of U(1)_X charge $Q^{(X)}$:

$$\left[\partial_{\mu} + i\left(Q^{(\mathbf{Y})}, Q^{(\mathbf{X})}\right)\begin{pmatrix}g_{Y} & \tilde{g} - 2q_{\Phi}g_{\mathrm{B-L}}\\0 & q_{\Phi}g_{\mathrm{B-L}}\end{pmatrix}\begin{pmatrix}A^{(\mathbf{Y})}_{\mu}\\A^{(\mathbf{X})}_{\mu}\end{pmatrix}\right]\phi.$$

Hence, we define $g_{12} := \tilde{g} - 2q_{\Phi}g_{B-L}$ and the gauge coupling $g_X := q_{\Phi}g_{B-L}$. Running as function of scale:

Andreas Trautner

•	ext-te	$\equiv q_{\Phi}^{\rm B-L} \neq -$	$\frac{1}{3}$						
	Field	#Gens.	$SU(3)_c\!\times\!SU(2)_L\!\times\!U(1)_Y$	$\mathrm{U}(1)_{\mathrm{X}}$	$U(1)_{B-L}$				
(M2) Minimal set of additional fermions with Φ Yukawa couplings									
	ψ_L	1	(1, 1, 0)	$-(\frac{1}{q_{\Phi}}+1)$	$-(1+q_{\Phi})$				
	ψ_R	1	$({f 1},{f 1},0)$	$-(\frac{1}{q_{\Phi}}+1)$	$-(1+q_{\Phi})$				
(M3) Minimal additional set of fermions that allow for DM									
	ψ_L	1	(1 , 1 ,0)	$\frac{p}{q_{\Phi}}$	p				
	ψ_R	1	(1 , 1 ,0)	$\frac{p}{q_{\Phi}} + 1$	$p + q_{\Phi}$				
	ψ'_L	1	(1 , 1 ,0)	$\frac{p}{q_{\Phi}} + 1$	$p + q_{\Phi}$				
	ψ'_R	1	(1 , 1 ,0)	$\frac{p}{q_{\Phi}}$	p				

Designed such as to allow new Φ -Yukawa couplings

$$\mathcal{L}_{
m Yuk} \supset y_\psi \, \overline{\psi}_L \Phi^\dagger
u_R^lpha \,$$
 (M2) or $y_\psi \, \overline{\psi}_L \Phi^\dagger \psi_R + y_{\psi'} \, \overline{\psi'}_L \Phi \psi'_R \,$ (M3)

Mechanism for ν -mass generation (M2), **or** multi-component fermion Dark Matter (M3). Additional contribution to custodial symmetry breaking:

$$\beta_{\lambda_p} - \beta_{\lambda_{\Phi}} \bigg|_{y_{\psi}} \simeq \frac{\sum_k 2y_{\psi_k}^4}{16\pi^2}.$$
Custodial Naturalness, 22.05.25

Andreas Trautner

Requires $m_{Z'} \approx 2m_{\psi} \approx 2m_{\psi'}$.

Custodial Naturalness, 22.05.25

Neutrino mass generation (M2)

Minimal extension with new Φ -Yukawa interactions, $\mathcal{L}_{Yuk} \supset y_{\psi} \overline{\psi}_L \Phi^{\dagger} \nu_R^{\alpha}$ (M2). After SSB, Dirac mass terms:

$$\mathcal{L}_{\text{mass}} \supset \left(\overline{\nu}_{L}^{\alpha} \quad \overline{\psi}_{L} \right) \begin{pmatrix} y_{\nu}^{\alpha\beta} \frac{\upsilon_{H}}{\sqrt{2}} & 0 \\ y_{\psi}^{\beta} \frac{\upsilon_{\Phi}}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \nu_{R}^{\beta} \\ \psi_{R} \end{pmatrix} + \text{h.c.} \equiv \left(\overline{\nu}_{L}^{\alpha} \quad \overline{\psi}_{L} \right) M_{N} \begin{pmatrix} \nu_{R}^{\beta} \\ \psi_{R} \end{pmatrix} + \text{h.c.}$$
(1)

Majorana masses not generated due to unbroken (accidental) lepton number. Fermion masses² are eigenvalues of ($\alpha, \alpha' = 1, 2, 3$, sum over β implicit)

$$M_N M_N^{\dagger} = \begin{pmatrix} y_{\nu}^{\alpha\beta} (y_{\nu}^{\dagger})^{\beta\alpha'} \frac{v_H^2}{2} & y_{\nu}^{\alpha\beta} (y_{\psi}^{*})^{\beta} \frac{v_H v_{\Phi}}{2} \\ y_{\psi}^{\beta} (y_{\nu}^{\dagger})^{\beta\alpha'} \frac{v_H v_{\Phi}}{2} & y_{\psi}^{\beta} (y_{\psi}^{*})^{\beta} \frac{v_{\Phi}^2}{2} \end{pmatrix}$$

The mass matrix has rank 3, implying the lightest active neutrino is predicted to be massless. There is a heavy sterile (w.r.t. SM gauge int's.) state with mass $\approx \sqrt{y_{\psi}^{\beta}y_{\psi}^{\beta}} \frac{v_{\Phi}}{\sqrt{2}}$ and field content

$$\Psi \sim \begin{pmatrix} \cos(\alpha_{\psi})\psi_L + \sin(\alpha_{\psi})\nu_L \\ \nu'_R \end{pmatrix}$$

Mixing angle $\sin(\alpha_{\psi}) \approx y_{\nu} v_H / (y_{\psi} v_{\Phi})$ is automatically suppressed $(v_H \ll v_{\Phi})$ and ν'_R is a linear combination of ν_R 's not involving ψ_R .

Andreas Trautner