Naturally small couplings from RG fixed points

Kamila Kowalska

National Centre for Nuclear Research (NCBJ) Warsaw, Poland

in collaboration with E. M. Sessolo and A. Chikkaballi, S. Pramanick, R. Lino dos Santos

> Mainly based on: JHEP 08 (2022) 262 (arXiv: 2204.00866) JHEP 11 (2023) 224 (arXiv: 2308.06114) arXiv: 2505.02803

LIO International Conference 2025 New Approaches to Naturalness

Lyon, 22.05.2025

Outline

- Fixed points and their properties
- A word on **asymptotic safety** (AS) in quantum gravity
- Two working examples of **AS in particle physics**
 - Naturalness of Dirac neutrino Yukawa couplings
 - A naturally stable GUT dark matter
- Conclusions

What is naturalness

e.g. N. Craig, arXiv: 2205.05728 (Snowmass 2021)

Dirac naturalness

If Λ is a fundamental scale and p is a coefficient of an operator O of a scaling dimension Δ

$$\mathcal{L} \supset p O \longrightarrow p = \mathcal{O}(1) \times \Lambda^{4-\Delta}$$

For example

 $\Lambda = M_{\rm PL}: \ \frac{\mu_H^2}{M_{\rm PL}^2} \ll 1 \quad \begin{array}{ll} \mbox{unnatural} \\ \mbox{(hierarchy problem)} \end{array} \quad \begin{array}{ll} \Lambda = v_H: \ m_t = y_t \, v_H \sim 1 \\ m_{\rm Dirac} = y_\nu \, v_H \ll 1 \end{array} \quad \begin{array}{ll} \mbox{natural} \\ \mbox{unnatural} \end{array}$

(Dirac neutrino)

Technical naturalness (t'Hooft)

Parameters could be small only if a symmetry is restored when $p \rightarrow 0$.

ex. fermion masses and chiral symmetry

What is naturalness

e.g. N. Craig, arXiv: 2205.05728 (Snowmass 2021)

Dirac naturalness

If Λ is a fundamental scale and p is a coefficient of an operator O of a scaling dimension Δ

For example

$$\begin{aligned}
\mathcal{L} \supset p O & \longrightarrow \quad p = \mathcal{O}(1) \times \Lambda^{4-\Delta} \\
\Lambda = M_{\rm PL} : \quad \frac{\mu_H^2}{M_{\rm PL}^2} \ll 1 \quad \text{unnatural} \\
\text{(hierarchy problem)} & \Lambda = v_H : \quad m_t = y_t \, v_H \sim 1 \quad \text{natural} \\
m_{\rm Dirac} = y_\nu \, v_H \ll 1 \quad \text{unnatural} \\
\text{(Dirac neutrino)}
\end{aligned}$$

Technical naturalness (t'Hooft)

Parameters could be small only if a symmetry is restored when $p \rightarrow 0$.

ex. fermion masses and chiral symmetry

THIS TALK: dynamical suppression of dimensionless couplings in presence of RGE fixed points

Fixed points in QFT

asymptotic safety: UV FP can enforce non-perturbative renormalizability (Weinberg '79)

Scaling properties

M.Yamada, Warsaw 08.10.2019

Relevant couplings are free parameters

Scaling properties

M.Yamada, Warsaw 08.10.2019

Irrelevant couplings provide predictions

- interaction strengths (if =/= 0)
- absent couplings (if = 0) (protected by QSS)

Kamila Kowalska

Scaling properties

M.Yamada, Warsaw 08.10.2019

IR attractive fixed point is an **attractor** (naturalness!)

FPs in quantum gravity (AS)

M. Reuter, PRD 57, 971 (1998)

Prototype example: Einstein-Hilbert gravity

$$S_{\rm EH}[\tilde{g}_{\mu\nu}] = \frac{1}{16\pi G_N} \int d^4x \sqrt{\tilde{g}} \left(2\Lambda - R\right)$$

Dimensionless couplings:

$$g = G_N k^2 \qquad \lambda = \Lambda k^{-2}$$

From the FRG (Wetterich equation):

 $k\partial_k g = [2 + \eta_g(g, \lambda)] g$ $k\partial_k \lambda = -2\lambda + g\eta_\lambda(g, \lambda)$

2 fixed points:

Gaussian: $g^* = 0$ $\lambda^* = 0$ Interactive: $g^* \neq 0$ $\lambda^* \neq 0$

FP persists when adding new interactions

[Litim '04, Codello, Percacci, Rahmede '06, Benedetti, Machado, Saueressig '09, Narain, Percacci '09, Manrique, Rechenberger, Saueressig '11, Falls, Litim, Nikolakopoulos '13, Dona', Eichhorn, Percacci '13, Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16, Pawlowski *et al.* '18 ... many more]

Trans-Planckian fixed point

M. Reuter, F. Saueressig , PRD 65, 065016 (2002)

Critical surface has finite dimension (non-perturbative renormalizability)

[Denz, Pawlowski, Reichert '16, Falls, Ohta, Percacci '20, Kluth. Litim '20, Knorr '21]

Kamila Kowalska

AS in the matter sector

[Robinson, Wilczek '06, Pietrykowski '07, Toms '08, Rodigast, Schuster '09, Zanusso et al. '09, Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16,Wetterich, Yamada '16, Hamada, Yamada '17, Pawlowski et al. '18, Eichhorn, Versteegen '17, Eichhorn, Held '17-'18 ...]

 $f_q =$

Trans-Planckian corrections of matter RGEs $k > M_{Pl}$

(functional renormalization group)

Wetterich, Reuter, Saueressig, Percacci, Litim, Pawlowski, Eichhorn ...

$$\frac{dg_Y}{dt} = \frac{g_Y^3}{16\pi^2} \frac{41}{6} - fg \, gY$$
$$\frac{dg_2}{dt} = -\frac{g_2^3}{16\pi^2} \frac{19}{6} - fg \, g2$$
$$\frac{dg_3}{dt} = -\frac{g_3^3}{16\pi^2} 7 - fg \, g3$$

universal corrections depend on gravity fixed points

$$\tilde{G}^* \frac{1 - 4\tilde{\Lambda}^*}{4\pi \left(1 - 2\tilde{\Lambda}^*\right)^2}, \qquad f_y = -\tilde{G}^* \frac{96 + \tilde{\Lambda}^* \left(-235 + 103\tilde{\Lambda}^* + 56\tilde{\Lambda}^{*2}\right)}{12\pi \left(3 - 10\tilde{\Lambda}^* + 8\tilde{\Lambda}^{*2}\right)^2}$$

e.g. A. Eichhorn, A. Held, 1707.01107 A. Eichhorn, F. Versteegen, 1709.07252

SM Yukawa couplings

SM gauge couplings

$$\frac{dy_t}{dt} = \frac{y_t}{16\pi^2} \left(\frac{9}{2} y_t^2 + \frac{3}{2} y_b^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{17}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - \mathbf{f}_Y \, \mathbf{y}_t$$
$$\frac{dy_b}{dt} = \frac{y_b}{16\pi^2} \left(\frac{9}{2} y_b^2 + \frac{3}{2} y_t^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{5}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - \mathbf{f}_Y \, \mathbf{y}_b$$

... same for other quarks and leptons

Kamila Kowalska

AS in the matter sector

[Robinson, Wilczek '06, Pietrykowski '07, Toms '08, Rodigast, Schuster '09, Zanusso et al. '09, Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16,Wetterich, Yamada '16, Hamada, Yamada '17, Pawlowski et al. '18, Eichhorn, Versteegen '17, Eichhorn, Held '17-'18 ...]

Trans-Planckian corrections of matter RGEs $k > M_{Pl}$

SM gauge couplings

$$\frac{dg_Y}{dt} = \frac{g_Y^3}{16\pi^2} \frac{41}{6} - fg \ gY = 0$$
$$\frac{dg_2}{dt} = -\frac{g_2^3}{16\pi^2} \frac{19}{6} - fg \ g2 = 0$$
$$\frac{dg_3}{dt} = -\frac{g_3^3}{16\pi^2} 7 - fg \ g3 = 0$$

(functional renormalization group)

Wetterich, Reuter, Saueressig, Percacci, Litim, Pawlowski, Eichhorn ...

universal corrections depend on gravity fixed points

for matter

$$f_{g} = \tilde{G}^{*} \frac{1 - 4\tilde{\Lambda}^{*}}{4\pi \left(1 - 2\tilde{\Lambda}^{*}\right)^{2}}, \qquad f_{y} = -\tilde{G}^{*} \frac{96 + \tilde{\Lambda}^{*} \left(-235 + 103\tilde{\Lambda}^{*} + 56\tilde{\Lambda}^{*2}\right)}{12\pi \left(3 - 10\tilde{\Lambda}^{*} + 8\tilde{\Lambda}^{*2}\right)^{2}}$$

e.g. A. Eichhorn, A. Held, 1707.01107 A. Eichhorn, F. Versteegen, 1709.07252

SM Yukawa couplings

$$\frac{dy_t}{dt} = \frac{y_t}{16\pi^2} \left(\frac{9}{2} y_t^2 + \frac{3}{2} y_b^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{17}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - \mathbf{fy} \ \mathbf{yt} = \mathbf{0}$$

$$\frac{dy_b}{dt} = \frac{y_b}{16\pi^2} \left(\frac{9}{2} y_b^2 + \frac{3}{2} y_t^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{5}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - \mathbf{fy} \ \mathbf{yb} = \mathbf{0}$$

$$\mathbf{get} \ \mathbf{fixed} \ \mathbf{points}$$

... same for other quarks and leptons

Kamila Kowalska

Predictions from AS

FRG calculation is *not required* to get predictions...

Wetterich, Shaposhnikov '09, Eichhorn, Held '18, Reichert, Smirnov '19; Alkofer *et al.* '20, KK, Sessolo, Yamamoto '20, KK, Sessolo '21, Chikkaballi, Kotlarski, KK, Rizzo, Sessolo*'22...*

AS leads to testable signatures

eg. b \rightarrow s anomalies: KK, Sessolo, Yamamoto, Eur.Phys.J.C 81 (2021) 4, 272 Chikkaballi, Kotlarski, KK, Rizzo, Sessolo, JHEP 01 (2023) 164 b \rightarrow c anomalies: KK, Sessolo, Yamamoto, Eur.Phys.J.C 81 (2021) 4, 272 g - 2: KK. Sessolo, Phys. Rev. D 103, 115032 (2021) gravitational waves: Chikkaballi, KK, Sessolo, JHEP 11 (2023) 224

Naturally small Dirac neutrino Yukawa

Neutrino masses

either Dirac neutrino ...

$$\mathcal{L}_D = -y_{\nu}^{ij} \nu_{R,i} \left(H^c \right)^{\dagger} L_j + \text{H.c.}$$

$$m_{\nu} = \frac{y_{\nu}v_H}{\sqrt{2}}$$

- 10⁻¹³ Yukawa coupling
- Lepton number is conserved

... or Majorana neutrino

e.g. Type 1 see-saw
$$\mathcal{L}_M = \mathcal{L}_D - \frac{1}{2} M_N^{ij} \nu_{R,i} \nu_{R,j} + \text{H.c.}$$
$$m_\nu = \begin{pmatrix} 0 & m_D^T \\ m_D & M_N \end{pmatrix} \qquad m_\nu = y_\nu^2 v_h^2 / (\sqrt{2}M_N)$$

- O(1) Yukawa coupling
- Lepton number is violated

Neutrino – top system

KK, S.Pramanick, E.Sessolo, JHEP 08 (2022) 262

SM + RHN:

$$\beta_{\nu} \equiv \frac{dy_{\nu}}{dt} = 0 \rightarrow \text{two IRR solutions for neutrino FP:}$$

1.
$$y_{\nu}^{*2} = \frac{32\pi^2}{5}f_y + \frac{3}{10}g_Y^{*2} - \frac{6}{5}y_t^{*2}$$
 (interactive)

2. $y_{\nu}^* = 0$

(Gaussian)

Neutrino – top system

KK, S.Pramanick, E.Sessolo, JHEP 08 (2022) 262

SM + RHN:

$$\begin{aligned} \frac{dg_Y}{dt} &= \frac{g_Y^3}{16\pi^2} \frac{41}{6} - f_g \, g_Y \\ \frac{dy_t}{dt} &= \frac{y_t}{16\pi^2} \left[\frac{9}{2} y_t^2 + y_\nu^2 - \frac{17}{12} g_Y^2 \right] - f_y \, y_t \\ \frac{dy_\nu}{dt} &= \frac{y_\nu}{16\pi^2} \left[3y_t^2 + \frac{5}{2} y_\nu^2 - \frac{3}{4} g_Y^2 \right] - f_y \, y_\nu \end{aligned}$$

FT

$$\beta_{\nu} \equiv \frac{dy_{\nu}}{dt} = 0 \rightarrow \text{two IRR solutions for neutrino FP:}$$

1.
$$y_{\nu}^{*2} = \frac{32\pi^2}{5}f_y + \frac{3}{10}g_Y^{*2} - \frac{6}{5}y_t^{*2}$$
 (interactive)

large fine tuning of fy to get small Yukawa

large Yukawa coupling → Majorana neutrino

$$m_\nu = y_\nu^2 v_h^2 / (\sqrt{2}M_N)$$

AS prediction for the Majorana mass

Kamila Kowalska

 $\gamma_{\nu}(M_N)$

Neutrino – top system

KK, S.Pramanick, E.Sessolo, JHEP 08 (2022) 262

SM + RHN:

$$\begin{aligned} \frac{dg_Y}{dt} &= \frac{g_Y^3}{16\pi^2} \frac{41}{6} - f_g \, g_Y \\ \frac{dy_t}{dt} &= \frac{y_t}{16\pi^2} \left[\frac{9}{2} y_t^2 + y_\nu^2 - \frac{17}{12} g_Y^2 \right] - f_y \, y_t \\ \frac{dy_\nu}{dt} &= \frac{y_\nu}{16\pi^2} \left[3y_t^2 + \frac{5}{2} y_\nu^2 - \frac{3}{4} g_Y^2 \right] - f_y \, y_\nu \end{aligned}$$

$$\beta_{\nu} \equiv \frac{dy_{\nu}}{dt} = 0 \quad \rightarrow \quad \text{two IRR solutions for neutrino FP:}$$

2.
$$y^*_{
u}=0$$
 (Gaussian)

Irrelevant if fy is small enough!

$$f_y < f_{\nu,tY}^{\mathrm{crit}} \approx 0.0008$$

small Yukawa coupling \rightarrow Dirac neutrino

Relevant FPs provide a UV completion

14

A dynamical mechanism!

Integrated curve in blue :

$$y_{\nu}(t;\kappa) \approx \left(\frac{16\pi^2 f_y}{e^{f_y(\kappa-t)} + 5/2}\right)^{1/2}$$

 κ = "distance" in e-folds

No fine tuning:

Smallness of the neutrino Yukawa due to the "distance" of the Planck scale from infinity

Alternative to the see-saw mechanism

Neutrinos can be Dirac naturally

Naturally small couplings VS stability of dark matter

A model with no DM

A. Chikkaballi, KK, R. Lino dos Santos, E. Sessolo, arXiv: 2505.02803

ex. SU(6)

SU(6)

$$\mathcal{L} \supset y_{11} \mathbf{15}^{(F)} \overline{\mathbf{6}}_{1}^{(F)} \overline{\mathbf{6}}_{1}^{(S)} + y_{12} \mathbf{15}^{(F)} \overline{\mathbf{6}}_{1}^{(F)} \overline{\mathbf{6}}_{2}^{(F)} \overline{\mathbf{6}}_{2}^{(F)} \overline{\mathbf{6}}_{2}^{(F)} \overline{\mathbf{6}}_{1}^{(S)} + y_{22} \mathbf{15}^{(F)} \overline{\mathbf{6}}_{2}^{(F)} \overline{\mathbf{6}}_{2}^{(F)} \overline{\mathbf{6}}_{2}^{(S)} \\ + \tilde{y}_{11} \overline{\mathbf{6}}_{1}^{(F)} \overline{\mathbf{6}}_{1}^{(F)} \mathbf{15}^{(S)} + \tilde{y}_{12} \overline{\mathbf{6}}_{1}^{(F)} \overline{\mathbf{6}}_{2}^{(F)} \mathbf{15}^{(S)} + \tilde{y}_{22} \overline{\mathbf{6}}_{2}^{(F)} \overline{\mathbf{6}}_{2}^{(F)} \mathbf{15}^{(S)} \\ + \tilde{y}_{11} \overline{\mathbf{6}}_{1}^{(F)} \overline{\mathbf{6}}_{1}^{(F)} \mathbf{21}^{(S)} + \tilde{y}_{12} \overline{\mathbf{6}}_{1}^{(F)} \overline{\mathbf{6}}_{2}^{(F)} \mathbf{21}^{(S)} + \tilde{y}_{22} \overline{\mathbf{6}}_{2}^{(F)} \overline{\mathbf{6}}_{2}^{(F)} \mathbf{21}^{(S)} \\ + y_{u} \mathbf{15}^{(F)} \mathbf{15}^{(F)} \mathbf{15}^{(S)} + \text{H.c.} \end{aligned}$$
see also::
$$E. \text{ Ma, Phys. Rev. D 103, 051704 (2021)}$$

SU(6) \rightarrow SU(5) x U(1)_x \rightarrow SU(3) x SU(2) x U(1) x U(1)_x scalar sector:

$$ar{\mathbf{6}}_{\mathbf{1}}^{(S)} \supset ar{\mathbf{5}}_{-1}^{(S)} \supset (\mathbf{1}, ar{\mathbf{2}}, -rac{1}{2}; -1) + (ar{\mathbf{3}}, \mathbf{1}, rac{1}{3}; -1)$$

$$\mathbf{15}^{(S)} \supset \mathbf{5}_{-4}^{(S)} \supset \left(\mathbf{1}, \mathbf{2}, \frac{1}{2}; -4\right) + \left(\mathbf{3}, \mathbf{1}, -\frac{1}{3}; -4\right)$$

$$\mathbf{21}^{(S)} \supset \mathbf{1}_{-10}^{(S)} = (\mathbf{1}, \mathbf{1}, 0; -10)$$

 $\bar{\mathbf{6}}_{\mathbf{2}}^{(S)} \supset \mathbf{1}_{5}^{(S)} = (\mathbf{1}, \mathbf{1}, 0; 5)$

Kamila Kowalska

Extended
2HDM
$$H_d = \left(\mathbf{1}, \bar{\mathbf{2}}, -\frac{1}{2}; -1\right), \qquad H_u = \left(\mathbf{1}, \mathbf{2}, \frac{1}{2}; -4\right)$$

vevs break U(1)_x give masses to dark sector

$$s_6 = (\mathbf{1}, \mathbf{1}, 0; 5)$$
, $s_{21} = (\mathbf{1}, \mathbf{1}, 0; -10)$

A model with no DM

A. Chikkaballi, KK, R. Lino dos Santos, E. Sessolo, arXiv: 2505.02803

ex. SU(6)

SU(6) \rightarrow SU(5) x U(1)_x \rightarrow SU(3) x SU(2) x U(1) x U(1)_x

$$\begin{aligned} \mathcal{L}_{\mathrm{IR}} &\supset 2y_u \, u H_u^{c\dagger} Q + y_d \, d_1 H_d Q + y_e \, e H_d L_1 + y_\nu \, L' H_d^{c\dagger} \nu_1 \\ &+ y_D \, d_2 d' s_6 + \, y_L \, L' L_2 s_6 + y_{\nu_1} \, \nu_1 \nu_1 s_{21} + y_{\nu_2} \, \nu_2 \nu_2 s_{21} + y'_d \, d_2 H_d Q + y'_e \, e H_d L_2 + y'_\nu \, L' H_d^{c\dagger} \nu_2 \\ &+ y'_D \, d_1 d' s_6 + y'_L \, L' L_1 s_6 + 2 \tilde{y}_{11} \, \nu_1 H_u^{c\dagger} L_1 + 2 \tilde{y}_{22} \, \nu_2 H_u^{c\dagger} L_2 \\ &+ \tilde{y}_{12} \left(\nu_1 H_u^{c\dagger} L_2 + \nu_2 H_u^{c\dagger} L_1 \right) + \hat{y}_{12} \, \nu_1 \nu_2 s_{21} + \mathrm{H.c.} \end{aligned}$$

5 neutral Majorana fermions:

 N_2, N_3

$$\mathcal{L} \supset y_{11}\mathbf{15}^{(F)}\mathbf{\bar{6}}_{\mathbf{1}}^{(F)}\mathbf{\bar{6}}_{\mathbf{1}}^{(S)} + y_{12}\mathbf{15}^{(F)}\mathbf{\bar{6}}_{\mathbf{1}}^{(F)}\mathbf{\bar{6}}_{\mathbf{2}}^{(S)} + y_{21}\mathbf{15}^{(F)}\mathbf{\bar{6}}_{\mathbf{2}}^{(F)}\mathbf{\bar{6}}_{\mathbf{1}}^{(S)} + y_{22}\mathbf{15}^{(F)}\mathbf{\bar{6}}_{\mathbf{2}}^{(F)}$$

same gauge quantum numbers

$$\begin{split} &16\pi^2\beta^{(1)}(y_{11}) = y_{11} \left(\frac{17}{2}y_{11}^2 + \frac{17}{2}y_{12}^2 + \frac{17}{2}y_{21}^2 + y_{22}^2 + \dots - 16\pi^2 f_y \right) \\ &16\pi^2\beta^{(1)}(y_{12}) = y_{12} \left(\frac{17}{2}y_{11}^2 + \frac{17}{2}y_{12}^2 + y_{21}^2 + \frac{17}{2}y_{22}^2 + \dots - 16\pi^2 f_y \right) \\ &16\pi^2\beta^{(1)}(y_{21}) = y_{21} \left(\frac{17}{2}y_{11}^2 + y_{12}^2 + \frac{17}{2}y_{21}^2 + \frac{17}{2}y_{22}^2 + \dots - 16\pi^2 f_y \right) \\ &16\pi^2\beta^{(1)}(y_{22}) = y_{22} \left(y_{11}^2 + \frac{17}{2}y_{12}^2 + \frac{17}{2}y_{21}^2 + \frac{17}{2}y_{22}^2 + \dots - 16\pi^2 f_y \right) \\ &16\pi^2\beta^{(1)}(y_{22}) = y_{22} \left(y_{11}^2 + \frac{17}{2}y_{12}^2 + \frac{17}{2}y_{21}^2 + \frac{17}{2}y_{22}^2 + \dots - 16\pi^2 f_y \right) \end{split}$$

 $y_{22}^{*} = y_{11}^{*} = y_{12}^{*} = y_{21}^{*}$ symmetric FP

$$\theta_{11} = \theta_{12} = \theta_{21} = \theta_{22}$$

the same scaling behavior

$$\mathcal{L} \supset y_{11}\mathbf{15}^{(F)}\mathbf{\bar{6}}_{\mathbf{1}}^{(F)}\mathbf{\bar{6}}_{\mathbf{1}}^{(S)} + y_{12}\mathbf{15}^{(F)}\mathbf{\bar{6}}_{\mathbf{1}}^{(F)}\mathbf{\bar{6}}_{\mathbf{2}}^{(S)} + y_{21}\mathbf{15}^{(F)}\mathbf{\bar{6}}_{\mathbf{2}}^{(F)}\mathbf{\bar{6}}_{\mathbf{1}}^{(S)} + y_{22}\mathbf{15}^{(F)}\mathbf{\bar{6}}_{\mathbf{2}}^{(F)}$$

same gauge quantum numbers

$$\begin{split} &16\pi^2\beta^{(1)}(y_{11}) = y_{11} \left(\frac{17}{2}y_{11}^2 + \frac{17}{2}y_{12}^2 + \frac{17}{2}y_{21}^2 + y_{22}^2 + \dots - 16\pi^2 f_y \right) \\ &16\pi^2\beta^{(1)}(y_{12}) = y_{12} \left(\frac{17}{2}y_{11}^2 + \frac{17}{2}y_{12}^2 + y_{21}^2 + \frac{17}{2}y_{22}^2 + \dots - 16\pi^2 f_y \right) \\ &16\pi^2\beta^{(1)}(y_{21}) = y_{21} \left(\frac{17}{2}y_{11}^2 + y_{12}^2 + \frac{17}{2}y_{21}^2 + \frac{17}{2}y_{22}^2 + \dots - 16\pi^2 f_y \right) \\ &16\pi^2\beta^{(1)}(y_{22}) = y_{22} \left(y_{11}^2 + \frac{17}{2}y_{12}^2 + \frac{17}{2}y_{21}^2 + \frac{17}{2}y_{22}^2 + \dots - 16\pi^2 f_y \right) \\ &16\pi^2\beta^{(1)}(y_{22}) = y_{22} \left(y_{11}^2 + \frac{17}{2}y_{12}^2 + \frac{17}{2}y_{21}^2 + \frac{17}{2}y_{22}^2 + \dots - 16\pi^2 f_y \right) \end{split}$$

 $y_{22}^{*} \neq 0, \ y_{11}^{*} = y_{12}^{*} = y_{21}^{*} = 0$ asymmetric FP

 $\theta_{11} > 0$ relevant

 $\theta_{12}, \theta_{21} < 0$ irrelevant

different scaling behavior from FP selection

trans-Planckian FP

	y_u^*	y_{22}^{*}	\hat{y}_{11}^*	\hat{y}_{22}^{*}	y_{11}^{*}	y_{12}^{*}	y_{21}^{*}	$ ilde{y}_{11}^*$	${ ilde y}_{12}^*$	\tilde{y}_{22}^*	\hat{y}_{12}^{*}
	0.25	0.35	0.38	0.32	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$16\pi^2 \times$	θ_u	θ_{22}	$\hat{ heta}_{11}$	$\hat{ heta}_{22}$	θ_{11}	θ_{12}	θ_{21}	$ ilde{ heta}_{11}$	$ ilde{ heta}_{12}$	$ ilde{ heta}_{22}$	$\hat{ heta}_{12}$
	-4.5	-2.1	-4.6	-3.2	0.62	-0.31	0	-0.26	-0.26	-0.26	-3.4

irrelevant predictions relevant free parameter irrelevant "forbidden"

 $y_{11} \to y_{\nu}, \, y_{12} \to y'_L, \, y_{21} \to y'_{\nu}$

secluded dark sector

$$\frac{1}{2}M_{\nu} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & y'_{L}v_{s_{6}} & 2\tilde{y}_{11}v_{u} & \tilde{y}_{12}v_{u} \\ 0 & 0 & y_{L}v_{s_{6}} & \tilde{y}_{12}v_{u} & 2\tilde{y}_{22}v_{u} \\ y'_{L}v_{s_{6}} & y_{L}v_{s_{6}} & 0 & y_{\nu}v_{d} & y'_{\nu}v_{d} \\ 2\tilde{y}_{11}v_{u} & \tilde{y}_{12}v_{u} & y_{\nu}v_{d} & y_{\nu_{1}}v_{s_{21}} & \hat{y}_{12}v_{s_{21}} \\ \tilde{y}_{12}v_{u} & 2\tilde{y}_{22}v_{u} & y'_{\nu}v_{d} & \hat{y}_{12}v_{s_{21}} & y_{\nu_{2}}v_{s_{21}} \end{pmatrix} \longrightarrow \frac{1}{2}M_{\nu} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & y_{L}v_{s_{6}} & 0 & 0 \\ 0 & y_{L}v_{s_{6}} & 0 & y_{\nu}v_{d} & 0 \\ 0 & 0 & y_{\nu}v_{d} & y_{\nu_{1}}v_{s_{21}} & 0 \\ 0 & 0 & 0 & 0 & y_{\nu_{2}}v_{s_{21}} \end{pmatrix}$$

two-component DM

DM is stable (actually, metastable)

trans-Planckian FP

	y_u^*	y_{22}^{*}	\hat{y}_{11}^{*}	\hat{y}_{22}^{*}	y_{11}^{*}	y_{12}^*	y_{21}^{*}	$ ilde{y}_{11}^*$	\tilde{y}_{12}^*	\tilde{y}_{22}^*	\hat{y}_{12}^*
	0.25	0.35	0.38	0.32	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$16\pi^2 \times$	θ_u	θ_{22}	$\hat{ heta}_{11}$	$\hat{ heta}_{22}$	θ_{11}	θ_{12}	θ_{21}	$ ilde{ heta}_{11}$	$ ilde{ heta}_{12}$	$ ilde{ heta}_{22}$	$\hat{ heta}_{12}$
	-4.5	-2.1	-4.6	-3.2	0.62	-0.31	0	-0.26	-0.26	-0.26	-3.4

irrelevant predictions relevant free parameter irrelevant "forbidden"

Chikkaballi, Kowalska, Lino dos Santos, Sessolo, arXiv: 2505.02803

Chikkaballi, Kowalska, Lino dos Santos, Sessolo, arXiv: 2505.02803

predictions to a large extent independent on QG

Turn on the small couplings

dynamical mechanism at work

"forbidden" couplings now appear

dynamical suppression

- Neutrino mass via (light) see-saw (\tilde{y}_{11})
- Controllable decays in dark sector $(\tilde{y}_{22}) \rightarrow DM$ can be 1-component

Predictions for DM

Yukawa and gauge couplings predixted (fixed) by AS

The only free (relevant) parameters are in the scalar potential

$$v_{s_6} = \langle s_6 \rangle \qquad v_{s_{21}} = \langle s_{21} \rangle$$

Kamila Kowalska

Conclusions

- AS based on quantum gravity offers a **predictive UV completion**
- Naturalness of small couplings enforced via IR attractive Gaussian FPs of RG flow
- AS can be used to make the neutrino (or other) Yukawa coupling **arbitrarily small dynamically**
- AS can be used to **regulate the decays** of DM and **make it stable**

Backup slides

Is neutrino special?

KK, S.Pramanick, E.Sessolo JHEP 08 (2022) 262

... and there's an *f*crit for each fermion ...

$$\frac{dy_X}{dt} = \frac{y_X}{16\pi^2} \left[\alpha_X y_X^2 + \alpha_Z y_Z^2 - \alpha_Y g_Y^2 \right] - f_y y_X$$
$$\frac{dy_Z}{dt} = \frac{y_Z}{16\pi^2} \left[\alpha'_X y_X^2 + \alpha'_Z y_Z^2 - \alpha'_Y g_Y^2 \right] - f_y y_Z$$

$$f_{Z,XY}^{\text{crit}} = \frac{g_Y^{*2}}{16\pi^2} \frac{\alpha_X' \alpha_Y - \alpha_Y' \alpha_X}{\alpha_X - \alpha_X'}$$

... but top mass is good only if... $-1 \times 10^{-4} \lesssim f_y \lesssim 1 \times 10^{-3}$

Z	$\alpha'_{X=t}$	α'_Y	$f_{Z,tY}^{\mathrm{crit}}$	
u,c	3	$\frac{17}{12}$	-20.0×10^{-4}	TOP BAD
b	$\frac{3}{2}$	$\frac{5}{12}$	$1.17 imes 10^{-4}$	TOP OKAY
d,s	3	$\frac{5}{12}$	22.3×10^{-4}	TOP GOOD
$ u_i$	3	$\frac{3}{4}$	8.22×10^{-4}	TOP GOOD
e, μ, au	3	$\frac{15}{4}$	-119×10^{-4}	TOP BAD

Is neutrino special?

KK, S.Pramanick, E.Sessolo JHEP 08 (2022) 262

... running CKM makes fcrit smaller

No CKM:

Running CKM:

$$16\pi^{2}\theta_{d,s} \approx 16\pi^{2}f_{y} - 3y_{t}^{*2} + \frac{5}{12}g_{Y}^{*2} \quad \Rightarrow \quad 16\pi^{2}\theta_{d,s} \approx 16\pi^{2}f_{y} - \frac{3}{2}\left(1 + |V_{tb}|^{2}\right)y_{t}^{*2} + \frac{5}{12}g_{Y}^{*2}$$

$$FP = 0$$
R. Alkofer *et al.* (2003.08401)

... but top mass is good only if... $-1 \times 10^{-4} \lesssim f_y \lesssim 1 \times 10^{-3}$

Z	$\alpha'_{X=t}$	α'_Y	$f_{Z,tY}^{\mathrm{crit}}$	
u,c	3	$\frac{17}{12}$	-20.0×10^{-4}	TOP BAD
b	$\frac{3}{2}$	$\frac{5}{12}$	$1.17 imes 10^{-4}$	TOP OKAY
d,s	3	$\frac{5}{12}$	22.3×10^{-4}	TOP OKAY
$ u_i$	3	$\frac{3}{4}$	8.22×10^{-4}	TOP GOOD
e, μ, au	3	$\frac{15}{4}$	-119×10^{-4}	TOP BAD

... perhaps the neutrino is special after all

Does it work in the full SM?

KK, S.Pramanick, E.Sessolo, JHEP 08 (2022) 262 **PMNS** parametrization

 $X \in [0.64 - 0.71]$ $Y \in [0.26 - 0.34]$ $Z \in [0.05 - 0.26]$ $W \in [0.21 - 0.48]$ PMNS fit

Normal ordering works! (no solution found with IO)

The mechanism is more generic...

In pairs of Yukawa interactions one can use the "large" YL to drive down the "small" Ys...

$$\mathcal{L} \supset Y_S \chi_R \Phi \chi_L + Y_L \psi_R \Phi \psi_L + \text{H.c.}$$

10Recall that... g_D $\frac{dy_X}{dt} = \frac{y_X}{16\pi^2} \left[\alpha_X y_X^2 + \alpha_Z y_Z^2 - \alpha_Y g_Y^2 \right] - f_y y_X$ 0.1 $\frac{dy_Z}{dt} = \frac{y_Z}{16\pi^2} \left[\alpha'_X y_X^2 + \alpha'_Z y_Z^2 - \alpha'_Y g_Y^2 \right] - f_y y_Z$ 0.001 10^{-5} ... thus we want ... 10^{-7} $f_{Z,XY}^{\text{crit}} = \frac{g_Y^{*2}}{16\pi^2} \frac{\alpha'_X \alpha_Y - \alpha'_Y \alpha_X}{\alpha_Y - \alpha'_Y} > f_y \text{ (from UV)}$ 10^{-9} 200 400 600 800 1000Log[k/GeV]

... it happens often (but not always) if $Q_{\psi} \gg Q_{\chi}$ (gauge charge)

Can use it to justify freeze-in, feebly interacting models, etc...

Connections to FRG

A. Chikkaballi, KK, E. Sessolo, 2308.06114

Kamila Kowalska

National Centre for Nuclear Research, Warsaw

 $g_X (10^{5,7,9} \, \text{GeV})$

0.29, 0.29, 0.30

0.40, 0.41, 0.44

0.12, 0.12, 0.12

0.09, 0.09, 0.09

Δ

Predictions for NP - assumptions

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo EPJC '23, arXiv: 2304.08959

1-loop matter RGEs
Planck scale set at 10¹⁹ GeV
Gravity parameters *f* are constant
Gravity decouples instantaneously

But in FRG:

eg. EH truncation, α =0, β =1 g.f A. Eichhorn, F. Versteegen, JHEP 01 (2018) 030

$$f_g(t) = \tilde{G}(t) \frac{1 - 4\tilde{\Lambda}(t)}{4\pi \left(1 - 2\tilde{\Lambda}(t)\right)^2}$$

Let's drop the assumptions...

How robust are low-scale predictions?

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo Eur. Phys. J. C, 83 (2023) 644

assumptions:

- 1-loop matter RGEs
- Planck scale set at 10¹⁹ GeV
- Gravity parameters *f* are constant
- Gravity decouples instantaneously

The gauge coupling ratios do not depend on f_g

(due to the universality of QG)

Invariant under the RGE flow

PREDICTIONS VERY STABLE $\delta g \lesssim 0.1\%$

How robust are low-scale predictions?

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo Eur. Phys. J. C, 83 (2023) 644

assumptions:

- 1-loop matter RGEs
- Planck scale set at 10¹⁹ GeV
- Gravity parameters *f* are constant
- Gravity decouples instantaneously

The Yukawa ratios depend on the other FPs

 $y_2^* \ll y_1^*$ predictions unstable

$$y_2^* \approx y_1^* \quad \delta y \lesssim 20\%$$

+ fousing, realistic UV running

