Flavor Deconstruction

Gino Isidori [University of Zürich]

- Introduction
- The two flavor puzzles
- Flavor non-universality & flavor deconstruction
- A brief look to current data & future prospects
- Conclusions

European Research Council Established by the European Commission Introduction

New Approaches to Naturalness – Lyon, 21st May 2025

Introduction

The Standard Model (SM) is provides a remarkably successful descriptions of *fundamental forces* (strong, weak, and e.m.) and *matter constituents*, over a wide range of energies.

However, as for any QFT, it is natural to consider the SM as an <u>Effective Field Theory</u>, i.e. the low energy limit of a more complete theory with more degrees of freedom

$$\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}} + \dots$$

We identified the *long-range* properties of this EFT

There are several reasons why we think the SM must be extended at high energies:

Electroweak hierarchy problem

Flavor puzzle U(1) charges Neutrino masses

Dark-matter Dark-energy Inflation

Quantum gravity

problem due to...

→ <u>Instability</u> of the Higgs mass term

 \rightarrow Ad hoc <u>tuning</u> in the model parameters

 \rightarrow Cosmological implementation of the SM

 \rightarrow General problem of any QFT

...indicating

non-trivial properties of the SM Lagrangian if interpreted as EFT

<u>Useful hints for its</u> <u>UV completion</u>

New Approaches to Naturalness – Lyon, 21st May 2025

There are several reasons why we think the SM must be extended at high energies:

Electroweak hierarchy problem

Flavor puzzle U(1) charges Neutrino masses

Dark-matter Dark-energy Inflation

Quantum gravity

New Approaches to Naturalness – Lyon, 21st May 2025

The two flavor puzzles

New Approaches to Naturalness – Lyon, 21st May 2025

The two flavor puzzles

There are two (long-standing) open issues in flavor physics:

I. The observed pattern of SM Yukawa couplings does not look accidental

 \rightarrow Is there a deeper explanation for this peculiar structures?

The SM flavor puzzle

II. If the SM is only an effective theory, valid below an ultraviolet cut-off, why we do not see any deviation from the SM predictions in the (suppressed) flavor changing processes?

 \rightarrow Which is the flavor structure of physics beyond the SM?

The NP flavor puzzle

New Approaches to Naturalness – Lyon, 21st May 2025

The two flavor puzzles

There are two (long-standing) open issues in flavor physics:

I. The observed pattern of SM Yukawa couplings does not look accidental

What we observe in the Yukawa couplings is an <u>approximate U(2)ⁿ</u> <u>symmetry</u> acting on the <u>light families</u>

New Approaches to Naturalness – Lyon, 21st May 2025

The two flavor puzzles

There are two (long-standing) open issues in flavor physics:

I. The observed pattern of SM Yukawa couplings does not look accidental

 \rightarrow Is there a deeper explanation for this peculiar structures?

The SM flavor puzzle

II. *If the SM is only an effective theory*, valid below an ultraviolet cut-off, why we do not see any deviation from the SM predictions in the (suppressed) flavor changing processes?

 \rightarrow Which is the flavor structure of physics beyond the SM?

The NP flavor puzzle

New Approaches to Naturalness – Lyon, 21st May 2025

• <u>A brief look to the SM as an effective theory:</u>

 \circ

New Approaches to Naturalness – Lyon, 21st May 2025

F 13

• <u>A brief look to the SM as an effective theory:</u>

$$\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}} + \sum_{d,i} \frac{c_i^{[d]}}{\Lambda^{d-4}} O_i^{d \ge 5}$$

What is the cut-off scale Λ of the SMEFT?

A useful (*but somewhat vague*) indication follows from the Electroweak hierarchy problem (\leftrightarrow instability of the Higgs mass under quantum corrections):

(some) New Physics (coupled at least to H & t) in the TeV domain

Μ

g

New Approaches to Naturalness – Lyon, 21st May 2025

• <u>A brief look to the SM as an effective theory:</u>

What is the cut-off scale Λ of the SMEFT? A closer look to this question reveals more "layers"

• New dynamics weakly or strongly coupled ?

New Approaches to Naturalness – Lyon, 21st May 2025

UV Theory

What is the cut-off scale Λ of the SMEFT? A closer look to this question reveals more "layers"

No flavor symmetry _____ 2499 free couplings in the SMEFT @ d=6
 Exact U(3)⁵ _____ 47 Jenkins, Manohar, Trott '14
 Exact U(2)⁵ _____ 120 Faroughi, GI, Wilsh, Yamamoto, '20

Eg:

• <u>A brief look to the SM as an effective theory:</u>

- $U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\mu}} = (individual) \text{ Lepton Flavor } [exact symmetry]$
 - $m_u \approx m_d \approx 0 \rightarrow \text{Isospin symmetry } [approximate symmetry]$

• <u>A brief look to the SM as an effective theory:</u>

New Approaches to Naturalness – Lyon, 21st May 2025

New Approaches to Naturalness – Lyon, 21st May 2025

The two flavor puzzles

 $\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}} + \sum_{d,i} \frac{c_i^{\iota_{u_j}}}{\Lambda^{d-4}} O_i^{d \ge 5}$

In principle, in the SM-EFT we could expect many violations of the accidental symmetries from the heavy dynamics (\rightarrow *new flavor violating effects*). However, no clear deviations observed so far

<u>Stringent bounds</u> on the scale of possible new <u>flavor non-universal interactions:</u>

The NP flavor puzzle

These high scales can be a "mirage"

The only unambiguous message from data is that there are no large breaking of the approximate U(2)ⁿ flavor symmetry at near-by energy scales.

However $U(2)^n$ is <u>not</u> an accidental symmetry of the SM \rightarrow *indication of specific UV dynamics?*

For a long time, the vast majority of model-building attempts to extend the SM was based on the *implicit* hypotheses of *flavor-universal* New Physics

- Concentrate on the Higgs hierarchy problem
- Postpone the flavor problem to higher scales

The "MFV paradigm"

The Yukawa couplings are the only sources of flavor symmetry breaking accessible at low energies

> 3 families = "identical copies" up to high energies

For a long time, the vast majority of model-building attempts to extend the SM was based on the *implicit* hypotheses of *flavor-universal* New Physics

New Approaches to Naturalness – Lyon, 21st May 2025

General considerations about flavor (non) universality

A more efficient paradigm to address <u>both</u> flavor puzzles (I+II), & *possibly* the Higgs hierarchy, is a *multi-scale* UV with *flavor non-universal* interactions

To better appreciate the change of perspective, consider the following analogy:

In the low-energy limit of the SM (= $QED \times QCD$) we observe perfect universality of LH and RH gauge couplings. However, we know this is a low-energy artifact:

In a similar fashion, the <u>flavor</u> universality of <u>all SM gauge interactions</u> could be a low-energy artifact...

A more efficient paradigm to address <u>both</u> flavor puzzles (I+II), & *possibly* the Higgs hierarchy, is a *multi-scale* UV with *flavor non-universal* interactions

A more efficient paradigm to address <u>both</u> flavor puzzles (I+II), & *possibly* the Higgs hierarchy, is a *multi-scale* UV with *flavor non-universal* interactions

Effective organizing principle for the flavor structure of the SMEFT

New Approaches to Naturalness – Lyon, 21st May 2025

<u>SM-EFT bounds in the U(2)⁵ symmetric limit</u>

New Approaches to Naturalness – Lyon, 21st May 2025

- <u>SM-EFT bounds in the U(2)⁵ symmetric limit</u>

New Approaches to Naturalness – Lyon, 21st May 2025

- <u>SM-EFT bounds in the U(2)⁵ symmetric limit</u>

New Approaches to Naturalness – Lyon, 21st May 2025

• <u>SM-EFT bounds in the U(2)⁵ symmetric limit</u>

G. Isidori – Flavor Deconstruction

New Approaches to Naturalness – Lyon, 21st May 2025

- <u>SM-EFT bounds in the U(2)⁵ symmetric limit</u>

New Approaches to Naturalness – Lyon, 21st May 2025

- <u>SM-EFT bounds in the U(2)⁵ symmetric limit</u>

Flavor Deconstruction

Going beyond the EFT approach, a consistent way to construct a multi-scale theory with flavor non-universal interactions is via the "*flavor deconstruction*" of the SM gauge symmetries:

General model-building features:

✓ The symmetry breaking pattern is very general: any scalar rep. (provided $R_{[1]}, R_{[2]} \neq 1$) breaks to the diagonal subgroup → flavor universality emerges "naturally" at low energies
Michel & Radio

Michel & Radicati '68 Craig, Garcia-Garcia, Sutherland '17

 Flavor hierarchies obtained without the need of peculiar choices for the "flavor charges" [e.g. U(1) charges as in Froggatt & Nielsen]

Flavor Deconstruction

Going beyond the EFT approach, a consistent way to construct a multi-scale theory with flavor non-universal interactions is via the "*flavor deconstruction*" of the SM gauge symmetries: Bordone *et al.* '17, Allwicher *et al.* '20

Flavor Deconstruction

Going beyond the EFT approach, a consistent way to construct a multi-scale theory with flavor non-universal interactions is via the "*flavor deconstruction*" of the SM gauge symmetries: Bordone *et al.* '17, Allwicher *et al.* '20

Flavor Deconstruction

Going beyond the EFT approach, a consistent way to construct a multi-scale theory with flavor non-universal interactions is via the "*flavor deconstruction*" of the SM gauge symmetries:

New Approaches to Naturalness – Lyon, 21st May 2025

- Flavor Deconstruction & partial compositeness

The FD hypothesis alone does not address the EW hierarchy problem. However, it provides some basic ingredients (*"light" new states coupled to Higgs and 3rd gen.*) which can help to address it \rightarrow interesting specific advantage when merged to Higgs compositness Fuentes-Martni & Stangl '20

Fuentes-Martin et al. '22

New Approaches to Naturalness – Lyon, 21st May 2025

- Flavor Deconstruction & partial compositeness

The FD hypothesis alone does not address the EW hierarchy problem. However, it provides some basic ingredients (*"light" new states coupled to Higgs and 3rd gen.*) which can help to address it \rightarrow interesting specific advantage when merged to Higgs compositness Fuentes-Martni & Stangl '20

Fuentes-Martin et al. '22

Toy example [Covone, GI, Pesut '24]:

Minimal Composite Higgs:

Sp(4)

$$\downarrow H \sim (2,2)$$
SU(2)_L×SU(2)_R^[3]

Flavor Deconstruction of Hypercharge:

 3^{rd} family Yukawa couplings via partial compositeness: Light Yukawas suppressed \rightarrow higher-dim ops. generated by heavy (elementary) dynamics (e.g. VL fermions) above the compositeness scale:

New Approaches to Naturalness – Lyon, 21st May 2025

Flavor Deconstruction & partial compositeness

An interesting feature emerges when computing explicitly the radiativelyinduced Higgs potential:

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2 \left(\frac{h}{2F}\right) + c_2 \sin^4 \left(\frac{h}{2F}\right)$$

$$\frac{c_1}{F^4}\Big|_{\text{phys.}} = \frac{m_h^2}{F^2} \lesssim 0.06$$

$$\frac{c_2}{F^4}\Big|_{\text{phys.}} = \frac{2m_h^2}{v^2} \approx \frac{1}{2}$$

Unavoidable tuning [given current bounds on F]

- Model-independent O(1) fermion ٩ contribution (y_t)
- Possible cancellation from gauge ٩ sector if $g_R^{[3]} \gtrsim 1$ & $g_R \langle \Sigma_R \rangle < M_0$

requires light top partners (as in ordinary CH)

 v^2

The cancellation occurs in the "natural" parameter space dictated by the flavor-deconstruction hypothesis

Flavor Deconstruction & partial compositeness

An interesting feature emerges when computing explicitly the radiativelyinduced Higgs potential:

$$V(h) = \Delta V_f(h) + \Delta V_A(h) \approx c_0 - c_1 \sin^2 \left(\frac{h}{2F}\right) + c_2 \sin^4 \left(\frac{h}{2F}\right)$$

$$\frac{c_1}{F^4}\Big|_{\text{phys.}} = \frac{m_h^2}{F^2} \lesssim 0.06$$

$$\frac{c_2}{F^4}\Big|_{\text{phys.}} = \frac{2m_h^2}{v^2} \approx \frac{1}{2}$$
[given current bounds on F]

requires light top partners

Benchmark scenario

- > Large 3rd gen. RH gauge coupling: $g_{R,3} = O(1)$
- \succ Light Top partner $M_T \approx 2~{\rm TeV}~$ and $~M_\rho \approx 10~{\rm TeV}~$

 \blacktriangleright Compositeness scale $F \approx 750 \, {
m GeV}$ and $v_{\Sigma} pprox 3 \, {
m TeV}$

All constraints are satisfied and $\delta_{\rm EW} \lesssim 10^{-3}$ $\longrightarrow 3\%$ tuning in the potential $\rightarrow O(1\%)$ corrections to Higgs couplings

A brief look to current data & future prospects

• <u>Premise: 3rd family quark-lepton unification</u>

All possible flavor-deconstructed versions of the SM gauge group with I) semi-simple embedding in the UV + 1I) FD affecting 3rd family @ TeV scale have been classified [Davighi & GI '23] (*not many options*) \rightarrow general expectation: quark-lepton unification a la Pati-Salam for the 3rd gen:

 $SU(4)^{[3]} \times SU(3)^{[12]} \times G_{EW}$ \downarrow $SU(3) \times SU(2)_{L} \times U(1)_{Y}$

 Q^{α} Fermions Q^{β} in SU(4): Q^{γ}

Main Pati-Salam idea: Lepton number as "the 4th color"

Explain charge quantization

$$SU(4) \sim \begin{bmatrix} SU(3)_{C} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & LQ \\ LQ & \end{bmatrix} + \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & -1 \end{bmatrix} \xrightarrow{B-L} generator$$

• <u>Premise: 3rd family quark-lepton unification</u>

All possible flavor-deconstructed versions of the SM gauge group with I) semi-simple embedding in the UV + 1I) FD affecting 3^{rd} family @ TeV scale have been classified [Davighi & GI '23] (*not many options*) \rightarrow general expectation: quark-lepton unification a la Pati-Salam for the 3^{rd} gen:

• <u>Premise: 3rd family quark-lepton unification</u>

All possible flavor-deconstructed versions of the SM gauge group with I) semi-simple embedding in the UV + 1I) FD affecting 3^{rd} family @ TeV scale have been classified [Davighi & GI '23] (*not many options*) \rightarrow general expectation: quark-lepton unification a la Pati-Salam for the 3^{rd} gen:

A brief look to current data & future prospects

The idea of flavor non-universal interactions – with a 1st layer of new physics already at the TeV scale – has several interesting implications for various low-energy measurements (*with different degree of model-dependence*)

E.g.: I) Lepton universality violations in $b \rightarrow c\tau v$ decays

A brief look to current data & future prospects

The idea of flavor non-universal interactions – with a 1st layer of new physics already at the TeV scale – has several interesting implications for various low-energy measurements (*with different degree of model-dependence*)

E.g.: I) Lepton universality violations in $b \rightarrow c\tau v$ decays

 \rightarrow The vector LQ of 3rd gen. quark-lepton unification is an <u>ideal candidate</u> to describe current data

New Approaches to Naturalness – Lyon, 21st May 2025

A brief look to current data & future prospects

The idea of flavor non-universal interactions – with a 1st layer of new physics already at the TeV scale – has several interesting implications for various low-energy measurements (*with different degree of model-dependence*)

E.g.: II) Deviations from SM in $b \rightarrow svv$ rates [3^{rd} gen. v in the final state]

Unambiguous prediction of O(50%) enhancement of B($B \rightarrow Kvv$) in the model with vector LQ – given excess in R(D).

Fuentes-Martin, GI, Konig, Selimovic, '20

A brief look to current data & future prospects

The idea of flavor non-universal interactions – with a 1st layer of new physics already at the TeV scale – has several interesting implications for various low-energy measurements (*with different degree of model-dependence*)

E.g.: II) Deviations from SM in $b \rightarrow svv$ rates... & $s \rightarrow dvv$ rates

A brief look to current data & future prospects

The idea of flavor non-universal interactions – with a 1st layer of new physics already at the TeV scale – has several interesting implications for various low-energy measurements (*with different degree of model-dependence*)

E.g.: III) Potential large enhancement of $b \rightarrow s\tau\tau$ rates

 $b \rightarrow s\tau\tau$ are affected by the LQ already at the tree-level (contrary $b \rightarrow svv$)

- <u>huge effect</u> compared to SM in b \rightarrow stt (consitent with data)
- <u>O(10%) effect</u> in b→sll via RGE effects (*could explain current tenisons...*)

New Approaches to Naturalness – Lyon, 21st May 2025

A brief look to current data & future prospects

The idea of flavor non-universal interactions – with a 1st layer of new physics already at the TeV scale – has several interesting implications for various low-energy measurements & collider observables

E.g.: IV) $pp \rightarrow \tau \overline{\tau} (+b\text{-jets})$

New Approaches to Naturalness – Lyon, 21st May 2025

Aurelio Juste [Moriond EW'23]

Need to clarify interference issue for future interpretations

A brief look to current data & future prospects

Leptoquark search in $pp \rightarrow \tau \overline{\tau}$ (+b-jets)

Conclusions

- Flavor physics represents one the most intriguing aspects of the SM and, at the same time, a great opportunity to investigate the nature of physics beyond the SM.
- The idea of a *multi-scale construction at the origin of the flavor hierarchies* has several appealing aspects. Key observation: non-universal gauge interactions at the TeV scale, involving mainly the 3rd family, offer a renewed perspective toward the EW hierarchy problem (and the absence of direct signals of NP so far).
- The model-building efforts along this direction, initially triggered by the B anomalies, are still very motivated.
- If these ideas corrects, <u>new non-standard effects should emerge soon</u> both at low and at high energies → very interesting opportunities for <u>near-future</u> exp. in flavor physics (key role for Belle-II & LHCb-II)