

Modular Symmetries for Flavour Physics

Standard Model

Gauge bosons

$$SU(3)_C \times SU(2)_L \times U(1)_Y$$

$$L_e = \begin{pmatrix} v_{eL} \\ e_L \end{pmatrix}, \quad e_R, \quad \begin{pmatrix} u_L \\ d_L \end{pmatrix}^{r,b,g}, \quad u_R^{r,b,g}, \quad d_R^{r,b,g}$$

Fermions

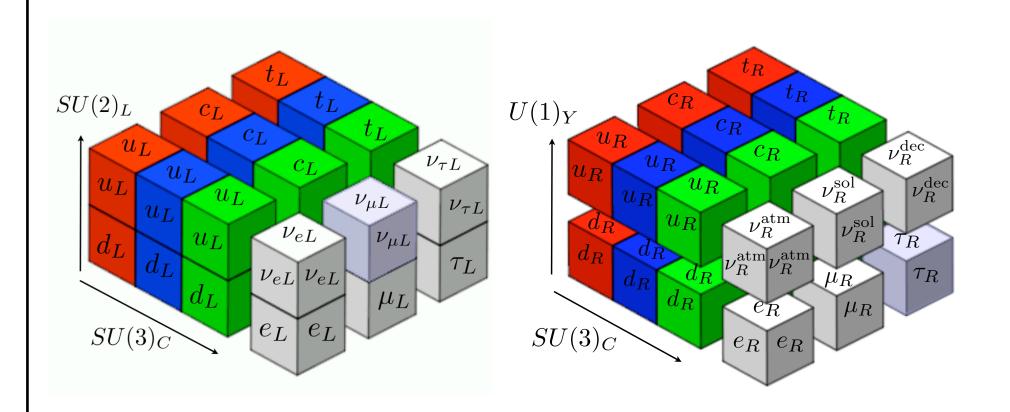
$$L_{\mu} = \begin{pmatrix} v_{\mu L} \\ \mu_L \end{pmatrix}, \quad \mu_R, \quad \begin{pmatrix} c_L \\ s_L \end{pmatrix}^{r,b,g}, \quad c_R^{r,b,g}, \quad s_R^{r,b,g}$$

$$L_{ au} = \begin{pmatrix} v_{ au L} \\ au_L \end{pmatrix}, \quad au_R, \quad \begin{pmatrix} t_L \\ b_L \end{pmatrix}^{r,b,g}, \quad t_R^{r,b,g}, \quad b_R^{r,b,g}$$

Hypercharges

$$Y = -\frac{1}{2}, -1, \frac{1}{6}, \frac{2}{3}, -\frac{1}{3}$$

With RHNs



Higgs

EWSB

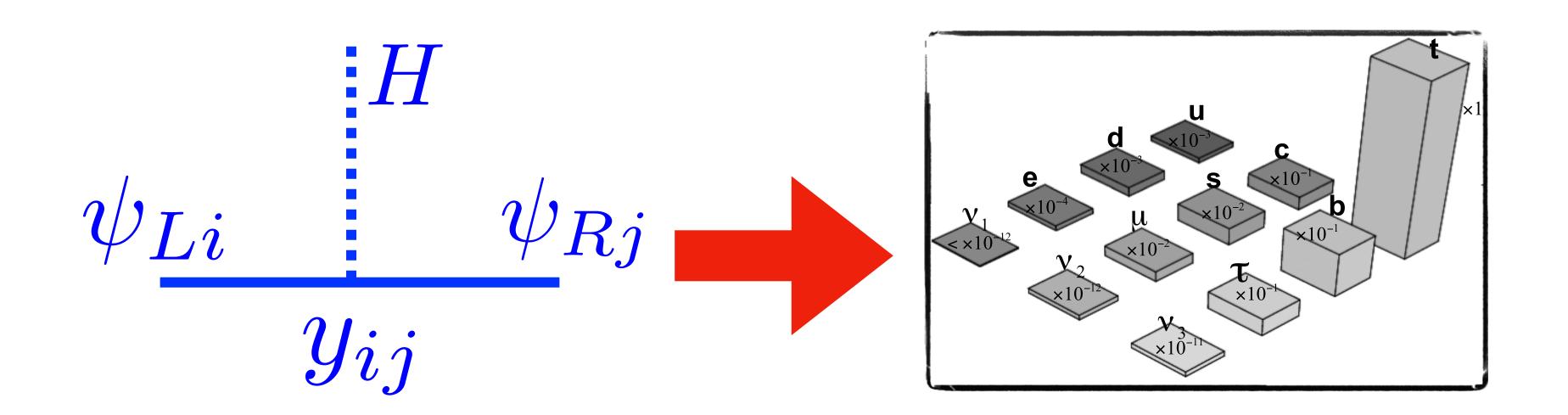
$$H = \begin{pmatrix} h^+ \\ h^0 \end{pmatrix} \qquad \langle h^0 \rangle = v / \sqrt{2}$$

$$S U(2)_L \times U(1)_Y \to U(1)_Q$$

$$\frac{1}{2} \qquad Q = T_{3L} + Y$$

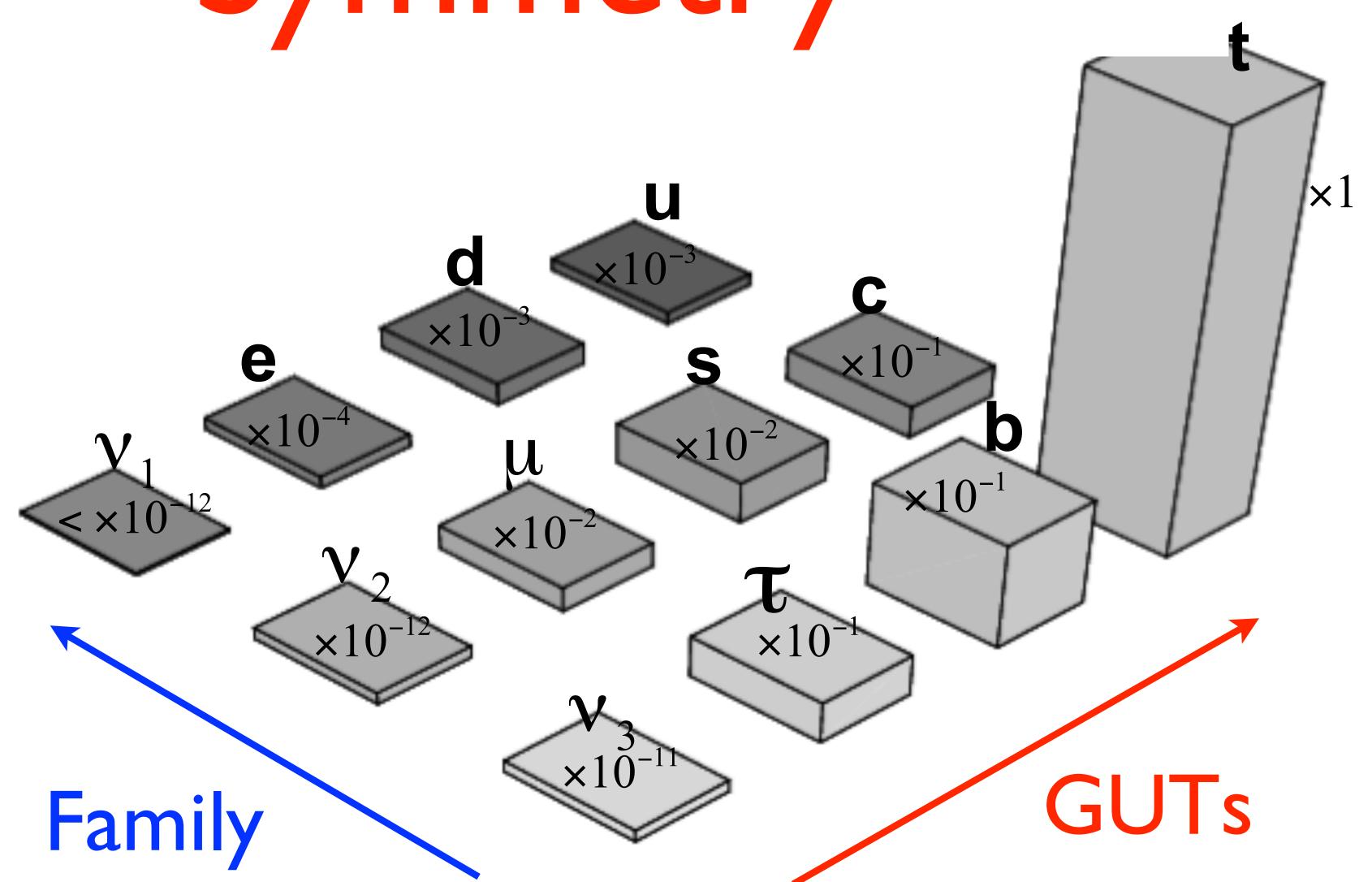
Yukawa couplings

$$y_{ij}H\overline{\psi}_{Li}\psi_{Rj}$$



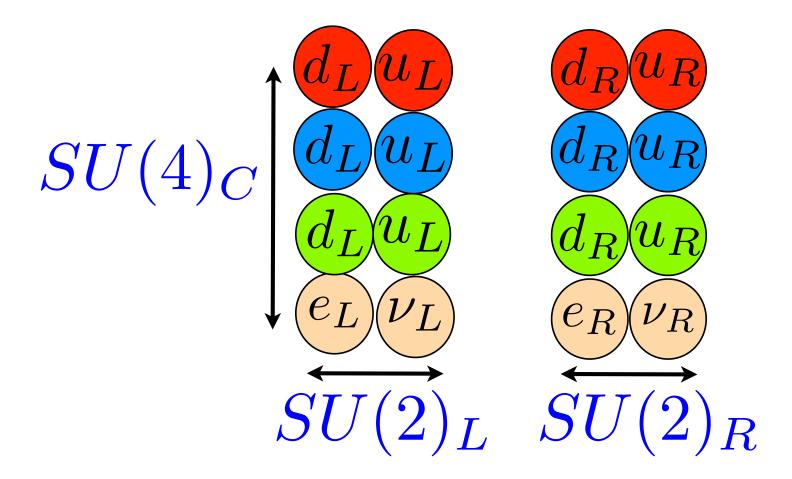
Ideally we would like all Yukawas to be of order unity, so what is going on? Is there a symmetry at work?

Symmetry



GUTS

Pati-Salam, 1974



SU(5), Georgi-Glashow, 1974

$$F = \begin{pmatrix} d_r^c \\ d_b^c \\ e^- \\ -\nu_e \end{pmatrix}_L, \qquad T = \begin{pmatrix} 0 & u_g^c & -u_b^c & u_r & d_r \\ \cdot & 0 & u_r^c & u_b & d_b \\ \cdot & \cdot & 0 & u_g & d_g \\ \cdot & \cdot & \cdot & 0 & e^c \\ \cdot & \cdot & \cdot & \cdot & 0 \end{pmatrix}$$

SO(10), Fritzsch-Minkowski, 1975

$$u$$
 u $|++--+\rangle, |+-+-+\rangle, |-++-+\rangle$

$$dddd + + + - + - \rangle, |+ - + + - \rangle, |- + + + - \rangle$$

$$u^{c}(u^{c})u^{c} = |--+++\rangle, |-+-++\rangle, |+--++\rangle$$

$$\frac{d^{c}}{d^{c}} \frac{d^{c}}{d^{c}} ||--+--\rangle, |-+---\rangle, |+----\rangle$$

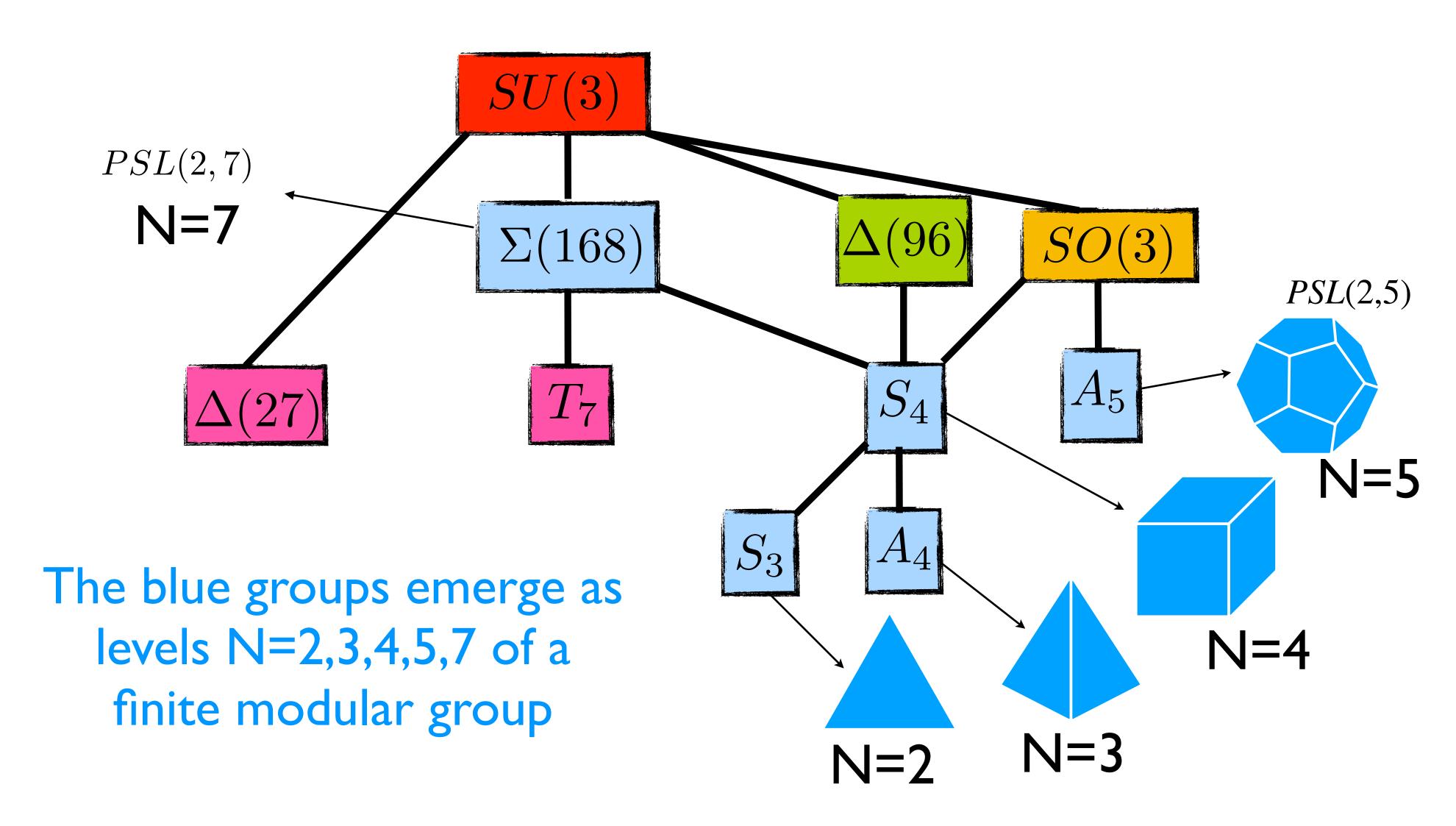
$$(\nu_e)$$
 $|---+\rangle$

$$e$$
 $|--+-\rangle$

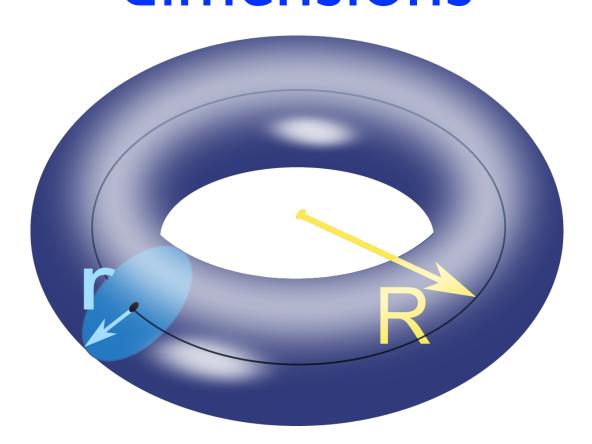
$$e^c$$
 $|+++--\rangle$

$$(\nu^c)$$
 $|+++++|$

Family Symmetry

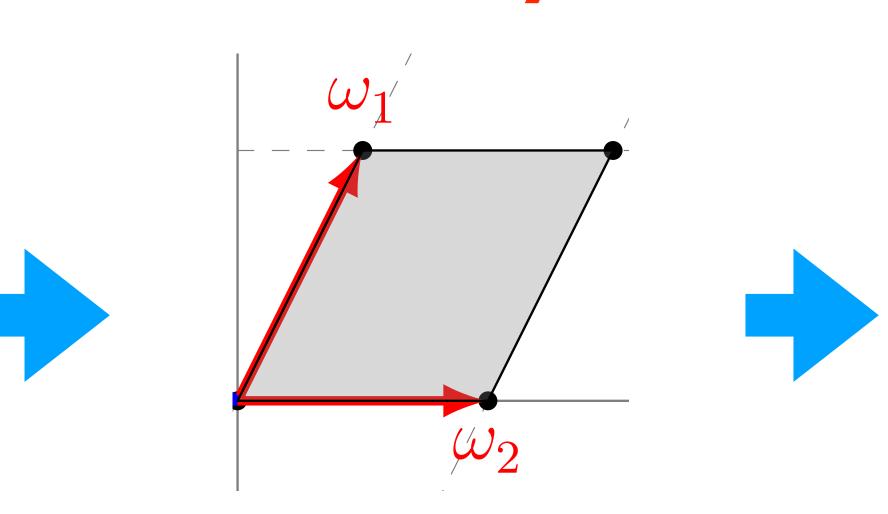


6d with 2 compact dimensions



$$T^2 = \mathbb{C}/\Lambda_{\omega_1,\omega_2}$$

Modular Symmetry



Parallelogram

$$\Lambda_{\omega_1,\omega_2} = \{m\omega_1 + n\omega_2, m, n \in \mathbb{Z}\}$$

Modular symmetry = "geometrical symmetry of the torus"

Modular Symmetry

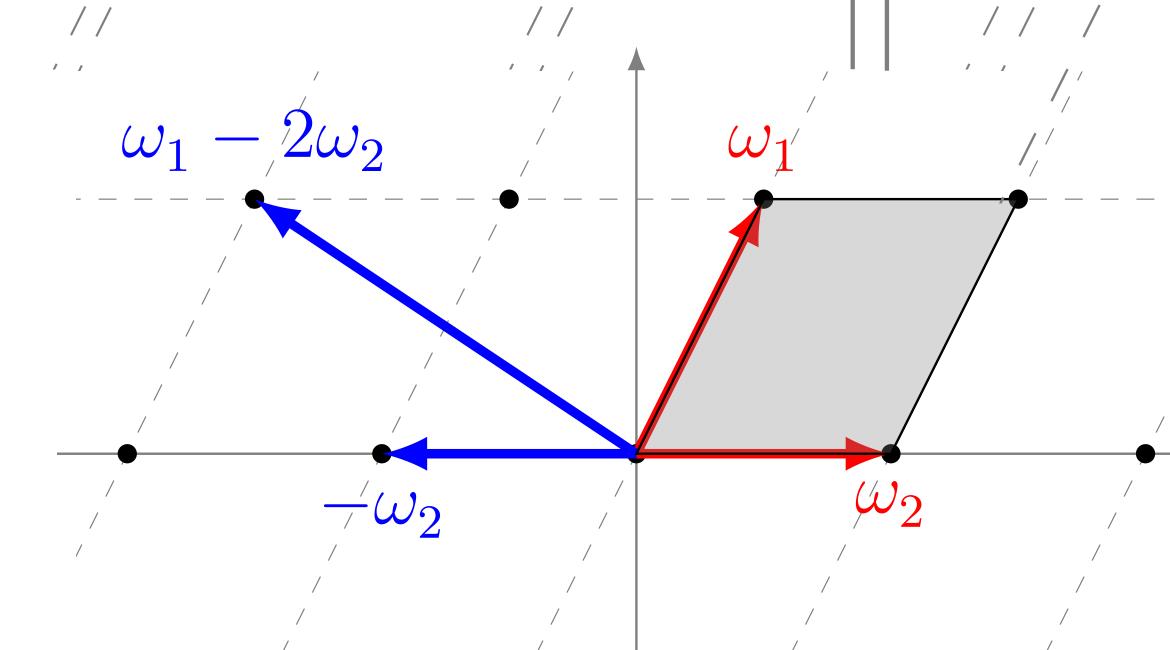
J.Lauer, J.Mas and H.P.Nilles 1989, S.Ferrara, D.Lust, A.D.Shapere and S.Theisen, 1989 G.Altarelli and F.Feruglio, hep-ph/0512103 R.de Adelhart Toord, F.Feruglio and C.Hagedorn, 1112.1340

Certain new choice of lattice basis preserves the parallelogram area

E.g.
$$\{\omega_1, \omega_2\} \longrightarrow \{-\omega_2, \omega_1 - 2\omega_2\}$$

Define modulus field $au \equiv \omega_1/\omega_2$

then equivalent to $\tau \to -1/(\tau-2)$ giving a torus with same area.



In general the modular transformation which preserves the torus area is

$$au o \gamma au = rac{a au + b}{c au + d}$$
 Integers a,b,c,d $\gamma = egin{pmatrix} a & b \\ c & d \end{pmatrix}$ Infinite group $\Gamma \equiv SL(2,\mathbb{Z})$

$$ad - bc = 1$$

Preserves torus area

$$\Gamma \equiv SL(2,\mathbb{Z})$$

Generators

$$S: \ \tau \mapsto -\frac{1}{\tau},$$

$$abla : \tau \mapsto \tau + 1$$

$$S =$$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

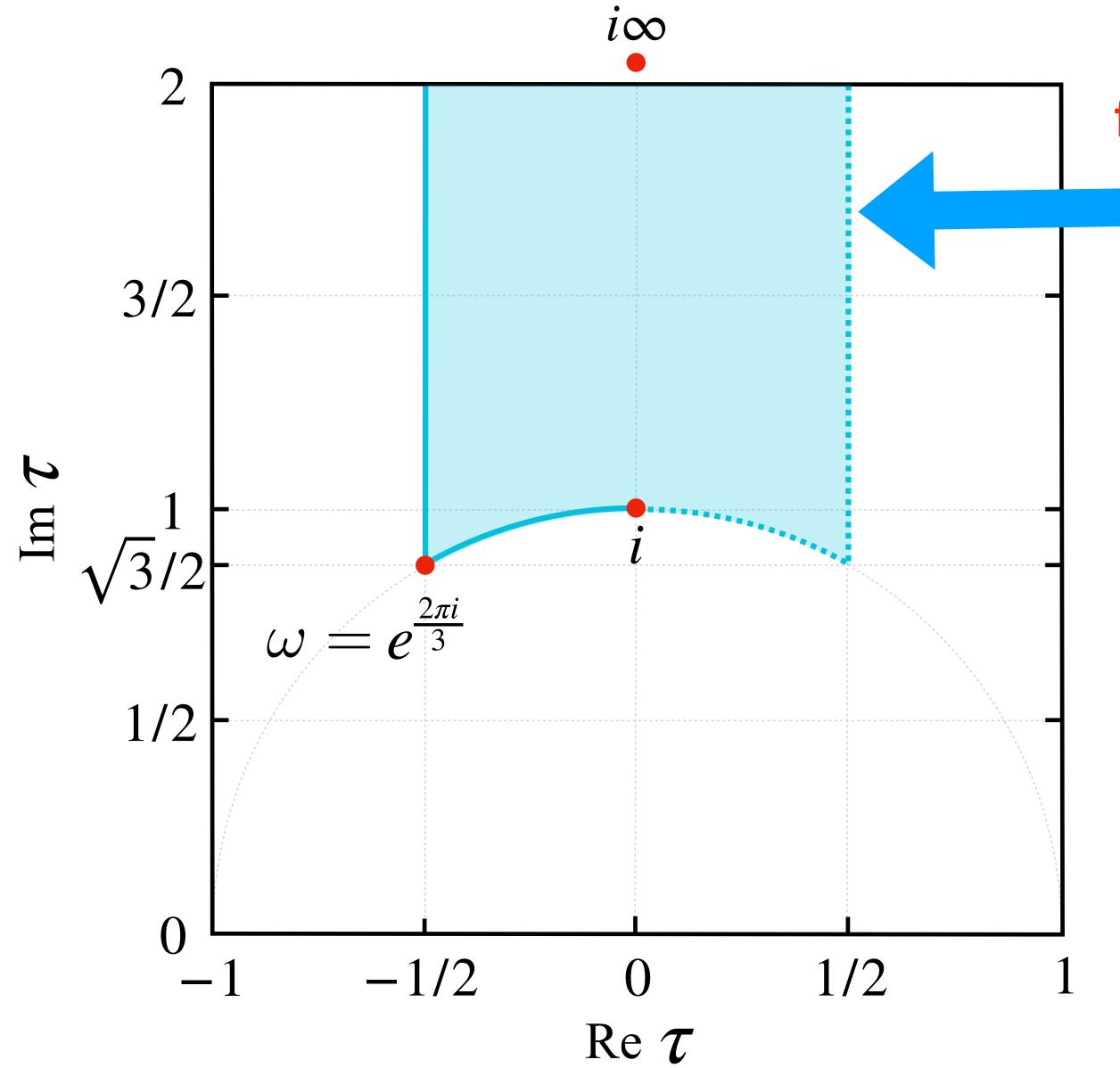
$$T =$$

tors
$$S: \ \tau \mapsto -\frac{1}{\tau}, \qquad T: \ \tau \mapsto \tau + 1 \qquad \qquad S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad \begin{array}{c} S^2 = -\mathbb{1}_2 \\ (ST)^3 = \mathbb{1} \end{array}$$

$$S^2 = -\mathbb{1}_2$$

$$(ST)^3 = 1$$

Fundamental Complex Domain of τ and Fixed Points



Any point can be moved into

fundamental domain by applying
$$S: \ \tau \mapsto -\frac{1}{\tau} \,, \qquad T: \ \tau \mapsto \tau + 1$$

Fixed Points

$$\gamma_0 \tau_0 = \tau_0$$
.

$ au_0$	γ_0
i	S
$e^{2\pi i/3}$	ST, S^2
$i\infty$	T, S^2

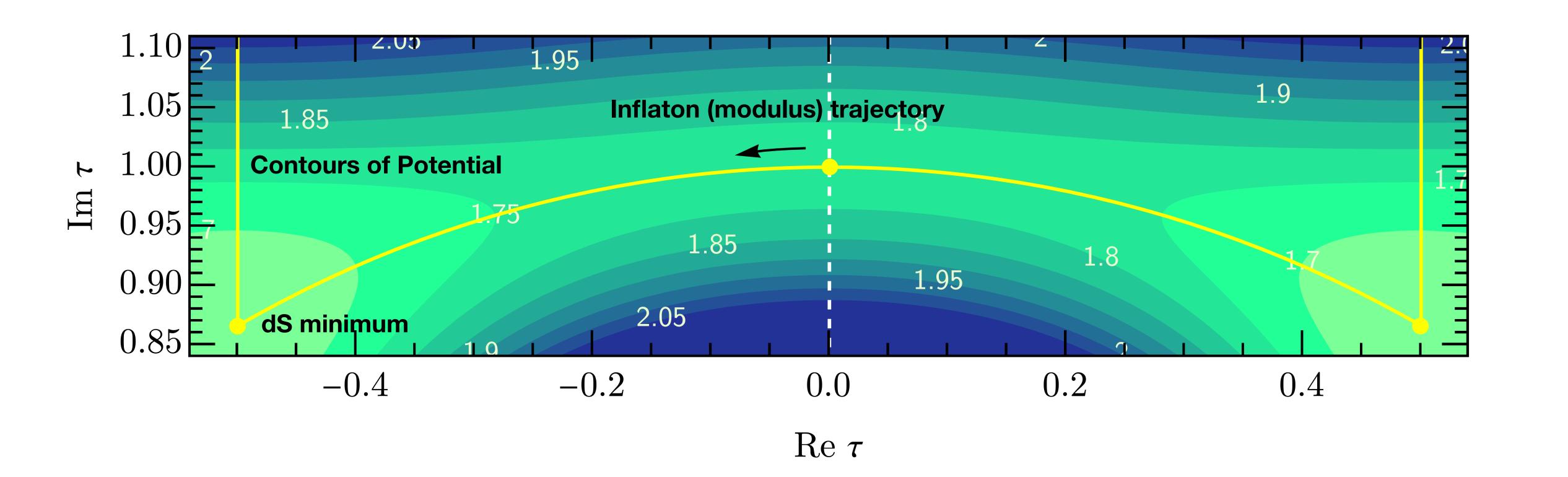
$$S\tau_S = \tau_S \longrightarrow \tau_S = i$$

$$\tau_S = i$$

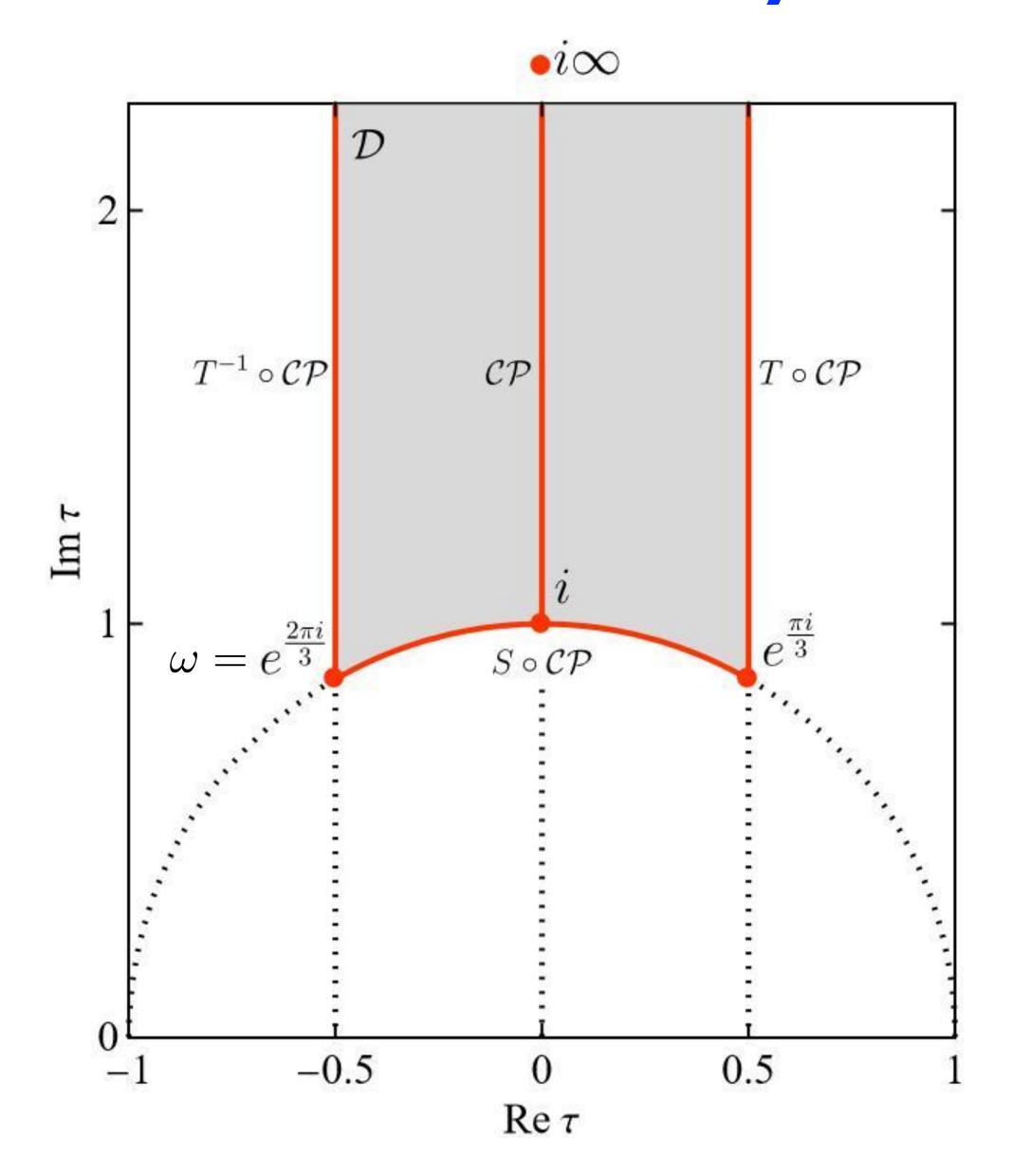
Invariant under
$$S: \tau \mapsto -\frac{1}{\tau}$$

Modular Invariant Hilltop Inflation

$$\mathcal{K}(\tau,\overline{\tau},S,\overline{S}) = K(S,\overline{S}) - 3\log(2\operatorname{Im}\tau) \qquad \mathcal{W}(\tau,S) = \Lambda_W^3 \frac{\Omega(S)H(\tau)}{\eta^6(\tau)} \qquad H(\tau) = (j(\tau) - 1728)^{m/2}j(\tau)^{n/3}\mathcal{P}(j(\tau))$$
 Klein



CP boundary



Red lines are the CP boundary, invariant under the residual symmetry shown

$$au \xrightarrow{\mathcal{CP}} - au^*$$

In a suitable basis, CP restricts all coupling constants to be real, then CP is broken only by τ

From Infinite to Finite Modular Symmetry

$$\Gamma \equiv SL(2,\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a,b,c,d \in \mathbb{Z}, ad - bc = 1 \right\} \quad \text{Infinite} \quad S^2 = -\mathbb{I} \quad (ST)^3 = \mathbb{I}$$

$$\overline{\Gamma} \equiv PSL(2,\mathbb{Z}) \cong SL(2,\mathbb{Z})/\{\mathbb{1}_2,-\mathbb{1}_2\}$$

Principle congruence subgroups

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}), \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$\overline{\Gamma}(N) = \Gamma(N)/\{\mathbb{1}_2, -\mathbb{1}_2\}$$

N. SUTVEY CHUNKY. COM

$$G/N =$$
 all elements in G
that are NOT in N
(sorta)

$$\Gamma'_N \equiv SL(2,\mathbb{Z})/\Gamma(N) \equiv \Gamma/\Gamma(N)$$
 Finite (double $\frac{SL_n(F) \text{ of } SL_n(F) \text{ iff you're an invertible } n imes n \text{ matrix with entries in a field } F \text{ and you get sent to the identity } SL_n(F) \text{ iff you're an invertible } n imes n \text{ matrix with entries in a field } F \text{ and you get sent to the identity } SL_n(F) \text{ iff you're an invertible } n imes n \text{ matrix with entries in a field } F \text{ and you get sent to the identity } SL_n(F) \text{ iff you're an invertible } n imes n \text{ matrix with entries in a field } F \text{ and you get sent to the identity } SL_n(F) \text{ iff you get sent to the identity } SL_n(F) \text{ iff you're an invertible } n imes n \text{ matrix with entries in a field } F \text{ and you get sent to the identity } SL_n(F) \text{ iff you get sent to the identity } SL_n(F) \text{ iff you get sent to the identity } SL_n(F) \text{ iff you get sent to the identity } SL_n(F) \text{ iff you get sent to the identity } SL_n(F) \text{ iff you're an invertible } n imes n \text{ matrix with entries in a field } F \text{ and you get sent to the identity } SL_n(F) \text{ iff you're an invertible } n imes n \text{ matrix with entries in a field } F \text{ and you get sent to the identity } SL_n(F) \text{ iff you're an invertible } n imes n \text{ matrix with entries in a field } F \text{ and you get sent to the identity } SL_n(F) \text{ iff you get sent to the identity } SL_n(F) \text{ iff you're an invertible } n imes n \text{ if you're an invertible } n imes n \text{ if you're an invertible } n imes n \text{ if you're an invertible } n imes n \text{ if you're an invertible } n imes n \text{ if you're an invertible } n imes n imes n \text{ if you're an invertible } n imes n im$

- $Z(G) \subset G$ means: "You live in Z(G) (the center of G) iff you commute with every element of G."
- ullet $[G,G]\subset G$ means: "You live in [G,G] (the commutator subgroup) iff you look like a finite product of things of the fo

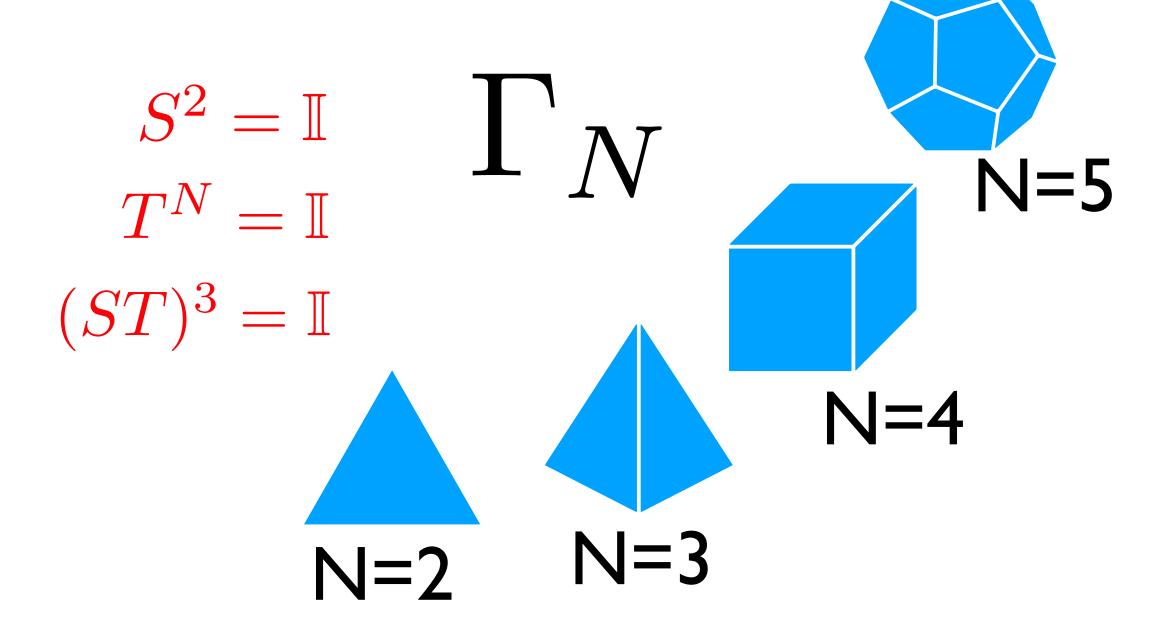
$$\Gamma_N \equiv PSL(2,\mathbb{Z})/\overline{\Gamma}(N) \equiv \overline{\Gamma}/\overline{\Gamma}(N) \equiv PSL(2,N)$$
 Finite $S^2 = \mathbb{I}$ $T^N = \mathbb{I}$

$$S^2 = \mathbb{I}$$

Examples

Level

_					
	N	Γ_N	$ \Gamma_N $	Γ_N'	$ \Gamma_N' $
	2	S_3	6	S_3	6
	3	A_4	12	T'	24
	4	S_4	24	S_4'	48
	5	A_5	60	A_5'	120
	6	$S_3 \times A_4$	72	$S_3 \times T'$	144
<u>-</u>	7	$PSL(2,7) \cong \Sigma(168)$	168	SL(2,7)	336
_					



Yukawa coupling

$$Y(\tau)\phi_1\phi_2\phi_3$$

Weights must add up to zero so the Yukawa carries weight $-k_Y = k_1 + k_2 + k_3$

Fields transform under modular symmetry with weight k

$$\phi_1 \to (c\tau + d)^{k_1} \rho_1(\gamma) \phi_1$$

Yukawa coupling is a modular form

$$Y(\tau) \to Y(\gamma \tau) = (c\tau + d)^{k_Y} \rho_{\mathbf{r}_Y}(\gamma) Y(\tau)$$

 $\rho_{\mathbf{r}_Y} \times \rho_1 \times \rho_2 \times \rho_3 = 1 + \dots$

Level N=3: $\Gamma_3 \sim A_4$

Yukawa couplings involving twisted states whose modular weights do not add up to zero are modular forms

$$Y_{\mathbf{3}}^{(2)} = \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix} = \begin{pmatrix} 1 + 12q + 36q^2 + 12q^3 + 84q^4 + 72q^5 + \dots \\ -6q^{1/3}(1 + 7q + 8q^2 + 18q^3 + 14q^4 + \dots) \\ -18q^{2/3}(1 + 2q + 5q^2 + 4q^3 + 8q^4 + \dots) \end{pmatrix}$$

In the fundamental domain

$$|q| \le e^{-\sqrt{3}\pi} \simeq 0.0043 \ll 1$$

Possibility of hierarchical Yukawa couplings
$$\begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix} = \begin{pmatrix} 1 + \mathcal{O}(q) \\ -6q^{1/3} + \mathcal{O}(q) \\ -18q^{2/3} + \mathcal{O}(q) \end{pmatrix}$$

Lepton Model at level N=3

	\overline{L}	e_3^c	e_2^c	e_1^c	N^c	$H_{u,d}$
A_4	3	1'	1"	1	3	1
k_I	1	1	1	1	1	0

Weinberg
$$\frac{1}{\Lambda}(H_uH_u\ LL)$$
 Neutrino mass matrix operator $\frac{1}{\Lambda}(H_uH_u\ LL)$ Neutrino mass matrix $m_{\nu} = \begin{pmatrix} 2Y_1 & -Y_3 & -Y_2 \\ -Y_3 & 2Y_2 & -Y_1 \\ -Y_2 & -Y_1 & 2Y_3 \end{pmatrix} \frac{v_u^2}{\Lambda}$ Modular weights k : I I 2

$$m_{\nu} = \begin{pmatrix} 2Y_1 & -Y_3 & -Y_2 \\ -Y_3 & 2Y_2 & -Y_1 \\ -Y_2 & -Y_1 & 2Y_3 \end{pmatrix} \frac{v_u^2}{\Lambda}$$

(plus seesaw)

Holomorphic superpotential for charged leptons

$$W_e = \alpha e_1^c (LY_3^{(2)})_1 H_d + \beta e_2^c (LY_3^{(2)})_{1'} H_d + \gamma e_3^c (LY_3^{(2)})_{1''} H_d$$

$$\mathbf{3}\otimes\mathbf{3}=\mathbf{1}\oplus\mathbf{1}'\oplus\mathbf{1}''\oplus\mathbf{3}_S\oplus\mathbf{3}_A$$

$$= \alpha e_1^c (L_1 Y_1 + L_2 Y_3 + L_3 Y_2) H_d + \beta e_2^c (L_3 Y_3 + L_1 Y_2 + L_2 Y_1) H_d + \gamma e_3^c (L_2 Y_2 + L_3 Y_1 + L_1 Y_3) H_d.$$

Charged lepton mass matrix

$$M_e = egin{pmatrix} lpha Y_1(au) & lpha Y_3(au) & lpha Y_2(au) \ eta Y_2(au) & eta Y_3(au) & eta Y_3(au) & eta Y_3(au) \ \gamma Y_3(au) & \gamma Y_2(au) & \gamma Y_1(au) \end{pmatrix} v_d \quad egin{pmatrix} ext{Mass} & ext{Best Fit} & rac{ ext{Re}(au) & ext{Im}(au)}{0.049 & 2.264} \ ext{hierarchies} \ \gamma Y_3(au) & \gamma Y_3(au) & \gamma Y_3(au) \ \gamma Y_3(au) & \gamma Y_3(au) & \gamma Y_3(au) \ \gamma Y_3(au) & \gamma Y_3(au) & \gamma Y_3(au) \ \gamma Y_3(au) & \gamma Y_3(au) & \gamma Y_3(au) \ \gamma Y$$

hierarchies unexplained

 β/α γ/α 210.7673581.720

Introduce a weighton

	\overline{L}	e_3^c	e_2^c	e_1^c	N^c	$H_{u,d}$	ϕ
A_4	3	1'	1"	1	3	1	1
k_I	1	0	-1	-3	1	0	1

$$W_{driv} = \chi(Y_1^{(4)} \frac{\phi^4}{M_{fl}^2} - M^2)$$

$$W_{driv} = \chi(Y_{\mathbf{1}}^{(4)} \frac{\phi^4}{M_{fl}^2} - M^2)$$

$$\tilde{\phi} \equiv \frac{\langle \phi \rangle}{M_{fl}} \sim (M/M_{fl})^{1/2} \quad \begin{array}{c} \text{small} \\ \text{parameter} \end{array}$$

$$W_e = \alpha_e e_1^c \tilde{\phi}^4 (LY_3^{(2)})_1 H_d + \beta_e e_2^c \tilde{\phi}^2 (LY_3^{(2)})_{1'} H_d + \gamma_e e_3^c \tilde{\phi} (LY_3^{(2)})_{1''} H_d$$

$$Y_{e} = \begin{pmatrix} \alpha_{e}\tilde{\phi}^{4}Y_{1} & \alpha_{e}\tilde{\phi}^{4}Y_{3} & \alpha_{e}\tilde{\phi}^{4}Y_{2} \\ \beta_{e}\tilde{\phi}^{2}Y_{2} & \beta_{e}\tilde{\phi}^{2}Y_{1} & \beta_{e}\tilde{\phi}^{2}Y_{3} \\ \gamma_{e}\tilde{\phi}Y_{3} & \gamma_{e}\tilde{\phi}Y_{2} & \gamma_{e}\tilde{\phi}Y_{1} \end{pmatrix} \begin{array}{c} \text{Natural explanation of} \\ \text{charged lepton mass hierarchy} \\ m_{e}: m_{\mu}: m_{\tau} = \alpha_{e}\tilde{\phi}^{4}: \beta_{e}\tilde{\phi}^{2}: \gamma_{e}\tilde{\phi} \end{pmatrix}$$

$$m_e: m_\mu: m_\tau = \alpha_e \tilde{\phi}^4: \beta_e \tilde{\phi}^2: \gamma_e \tilde{\phi}$$

Unlike the FN flavon, the weighton phi does not break the flavour symmetry

Quark Sector with weighton

	Q	9	d_2^c	T	u_3^c	u_2^c	u_1^c	$H_{u,d}$	ϕ
A_4	3	1'	1"	1	1'	1"	1	1	1
k_I	1	0, 2, 4	-2	$\overline{-3}$	5, 3, 1	-1, 2, 4	-3	0	1

$$ilde{\phi} \equiv rac{\langle \phi
angle}{M_{fl}} \sim (M/M_{fl})^{1/2} \qquad {
m small} {
m parameter}$$

small

$$k_{d_{3,2,1}^c} = 0, -2, -3$$

$$k_{u_{3,2,1}^c} = 5, -1, -3$$

$$W_d = \alpha_d d_1^c \tilde{\phi}^4 (QY_3^{(2)})_1 H_d + \beta_d d_2^c \tilde{\phi}^3 (QY_3^{(2)})_{1'} H_d + \gamma_d d_3^c \tilde{\phi} (QY_3^{(2)})_{1''} H_d$$

$$W_{u} = \alpha_{u} u_{1}^{c} \tilde{\phi}^{4} (QY_{\mathbf{3}}^{(2)})_{\mathbf{1}} H_{u} + \beta_{u} u_{2}^{c} \tilde{\phi}^{2} (QY_{\mathbf{3}}^{(2)})_{\mathbf{1}'} H_{u} + \gamma_{u}^{I} u_{3}^{c} (QY_{\mathbf{3},I}^{(6)})_{\mathbf{1}''} H_{u} + \gamma_{u}^{II} u_{3}^{c} (QY_{\mathbf{3},II}^{(6)})_{\mathbf{1}''} H_{u}$$

$$m_d:m_s:m_b\sim \tilde{\phi}^4:\tilde{\phi}^3:\tilde{\phi}$$

$$m_u : m_c : m_t \sim \tilde{\phi}^4 : \tilde{\phi}^2 : 1$$

Natural explanation of quark mass hierarchy Good fits to mass and mixing for certain cases

General analysis with a weighton

$$W = \alpha \, \tilde{\phi}^{I} \left(\psi_{1}^{c} \psi Y_{\mathbf{r}_{1}}^{(k_{1})} H_{u/d} \right)_{\mathbf{1}} + \beta \, \tilde{\phi}^{J} \left(\psi_{2}^{c} \psi Y_{\mathbf{r}_{2}}^{(k_{2})} H_{u/d} \right)_{\mathbf{1}} + \gamma \, \tilde{\phi}^{K} \left(\psi_{3}^{c} \psi Y_{\mathbf{r}_{3}}^{(k_{3})} H_{u/d} \right)_{\mathbf{1}}$$

level N=3

independent of modular weights

$$|q| \le e^{-\sqrt{3}\pi} \simeq 0.0043 \ll 1$$

$m{r_{\psi} \otimes \! r_{\psi^c}}$	power of $\tilde{\phi}$	P_{ψ}	$(m_{\psi_1}, m_{\psi_2}, m_{\psi_3})$	$(heta_{12}^{\psi}, heta_{23}^{\psi}, heta_{13}^{\psi})$
$oldsymbol{3} \otimes oldsymbol{3}$	I = J = K	P_{132}	$(ilde{\phi}^I, ilde{\phi}^I, ilde{\phi}^I)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}})$
	$I \ge J \ge K$	P_{231}	$\left(ilde{\phi}^I, ilde{\phi}^J, ilde{\phi}^K ight)$	$\left(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(I-K)}+ q ^{\frac{2}{3}}\right)$
	$J \ge K \ge I$	P_{312}	$(ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$\left(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(J-I)}+ q ^{\frac{2}{3}}\right)$
${f 3}{\otimes}({f 1}''\oplus{f 1}'\oplus{f 1})$	$K \ge I \ge J$	P_{123}	$(ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{2(K-J)} + q ^{\frac{2}{3}})$
	$J \ge I \ge K$	P_{321}	$(ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$\left (q ^{\frac{2}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{2(I-K)} + q ^{\frac{2}{3}}, q ^{\frac{1}{3}}) \right $
(cont'd)	$I \ge K \ge J$	P_{213}	$(ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(K-J)} + q ^{\frac{2}{3}}, q ^{\frac{1}{3}})$
	$K \ge J \ge I$	P_{132}	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^I)$	$\left(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{2(J-I)}+ q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\right)$

Similar tables for N=4,5

Weightons control mass hierarchy

q-expansion suppresses mixing

(N=3 cont'd...)

$m{r}_{\psi} \otimes m{r}_{\psi^c}$	power of $ ilde{\phi}$	P_{ψ}	$(m_{\psi_1}, m_{\psi_2}, m_{\psi_3})$	$(heta_{12}^{\psi}, heta_{23}^{\psi}, heta_{13}^{\psi})$
Ψ	$I \ge J \ge K$	P_{231}	$\left(ilde{\phi}^I, ilde{\phi}^J, ilde{\phi}^K ight)$	$ \frac{(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{2(I-K)} + q ^{\frac{2}{3}}) }{(q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{2(I-K)} + q ^{\frac{2}{3}}) } $
	$J \ge K \ge I$	P_{312}	$(ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}} ilde{\phi}^{2(J-I)}+ q ^{rac{2}{3}})$
	$K \ge I \ge J$	P_{123}	$(ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{2(K-J)} + q ^{\frac{2}{3}})$
$oldsymbol{3}\otimes (oldsymbol{1}''\oplus oldsymbol{1}'\oplus oldsymbol{1})$	$J \ge I \ge K$	P_{321}	$(ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{2(I-K)} + q ^{\frac{2}{3}}, q ^{\frac{1}{3}})$
	$I \ge K \ge J$	P_{213}	$(ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{rac{2}{3}}, q ^{rac{1}{3}} ilde{\phi}^{2(K-J)}+ q ^{rac{2}{3}}, q ^{rac{1}{3}})$
	$K \ge J \ge I$	P_{132}	$(\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{2(J-I)} + q ^{\frac{2}{3}}, q ^{\frac{1}{3}})$
	$I \ge J \ge K, q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I$	P_{231}	$(q ^{\frac{1}{3}}\tilde{\phi}^{I}, q ^{\frac{1}{3}}\tilde{\phi}^{J},\tilde{\phi}^{K})$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
	$I \ge J \ge K, \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^{J}, ilde{\phi}^{I}, ilde{\phi}^{K})$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$J \ge K \ge I$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-I)}, q ^{\frac{1}{3}})$
$oldsymbol{3}\otimes (oldsymbol{1}'\oplusoldsymbol{1}\oplusoldsymbol{1})$	$K \ge I \ge J$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$J \ge I \ge K$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^{J}, ilde{\phi}^{I}, ilde{\phi}^{K})$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$ I \ge K \ge J, q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I $	P_{231}	$\left \; \left(q ^{rac{1}{3}} ilde{\phi}^I, q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J ight) ight.$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$ I \ge K \ge J, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K $	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
	$K \ge J \ge I$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-I)}, q ^{\frac{1}{3}})$
	$I \ge J \ge K, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{321}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	
	$ I \ge J \ge K, q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I $	P_{231}	$ (\tilde{\phi}^I, q ^{\frac{1}{3}} \tilde{\phi}^J, \tilde{\phi}^K) $	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{2(I-K)} + q ^{\frac{2}{3}})$
	$J \ge K \ge I$	P_{312}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
$oldsymbol{3}\otimes (oldsymbol{1}''\oplusoldsymbol{1}\oplusoldsymbol{1})$	$K \ge I \ge J$	P_{321}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}})$
	$J \ge I \ge K$	P_{321}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{rac{2}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}})$
	$I \ge K \ge J, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K$	P_{321}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$ (q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(I-J)}, q ^{\frac{1}{3}}) $
	$ I \ge K \ge J, q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I $	P_{231}	$ (\tilde{\phi}^I, q ^{\frac{1}{3}} \tilde{\phi}^K, \tilde{\phi}^J) $	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{2(I-J)} + q ^{\frac{2}{3}})$
	$K \ge J \ge I$	P_{312}	$(q ^{\frac{1}{3}}\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^I)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
	$I \ge J \ge K$	P_{231}	$(q ^{\frac{1}{3}}\tilde{\phi}^I,\tilde{\phi}^J,\tilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
	$J \ge K \ge I$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$ (q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-I)}, q ^{\frac{1}{3}}) $
	$K \ge I \ge J, \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^I$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$ (q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-J)}, q ^{\frac{1}{3}}) $
$oldsymbol{3}\otimes (oldsymbol{1}'\oplusoldsymbol{1}'\oplusoldsymbol{1})$	$K \ge I \ge J, q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P_{123}	$(ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^J)$	$ (q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-J)}) $
	$J \ge I \ge K$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
	$I \geq K \geq J$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}})$
	$K \ge J \ge I, q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^K$	P_{123}	$(ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I)$	$ (q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-I)}) $
	$K \ge J \ge I, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{rac{2}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}})$

Gui-Jun Ding, S.F.K, Lu, Weng, 2505.12916

$m{r_{\psi} \otimes m{r_{\psi^c}}}$	power of $ ilde{\phi}$	P_{ψ}	$(m_{\psi_1},m_{\psi_2},m_{\psi_3})$	$(heta_{12}^{\psi}, heta_{23}^{\psi}, heta_{13}^{\psi})$
	$I \ge J \ge K$	P_{321}	$(q ^{\frac{2}{3}}\tilde{\phi}^I,\tilde{\phi}^J,\tilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-K)}, q ^{\frac{1}{3}})$
	$J \ge K \ge I$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$K \ge I \ge J, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^I$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$oxed{3\otimes (1''\oplus 1''\oplus 1)}$	$K \ge I \ge J, q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P_{312}	$(q ^{\frac{1}{3}}\tilde{\phi}^K, q ^{\frac{1}{3}}\tilde{\phi}^I,\tilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$J \ge I \ge K$	P_{321}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(I-K)}, q ^{\frac{1}{3}})$
	$I \ge K \ge J$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$K \ge J \ge I, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$K \ge J \ge I, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^K$	P_{312}	$(q ^{\frac{1}{3}}\tilde{\phi}^K, q ^{\frac{1}{3}}\tilde{\phi}^J,\tilde{\phi}^I)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
	$I \ge J \ge K, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^{J}, ilde{\phi}^{I}, ilde{\phi}^{K})$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$I \ge J \ge K, q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^I, q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$J \ge K \ge I$	P_{132}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-I)}, q ^{\frac{1}{3}})$
$oxed{3\otimes (1''\oplus 1'\oplus 1')}$	$K \ge I \ge J$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
	$J \ge I \ge K$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
	$I \ge K \ge J, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$I \ge K \ge J, q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I$	P_{123}	$(q ^{\frac{1}{3}}\tilde{\phi}^I, q ^{\frac{1}{3}}\tilde{\phi}^K,\tilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$K \ge J \ge I$	P_{132}	$(q ^{\frac{2}{3}}\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-I)}, q ^{\frac{1}{3}})$
	$I \ge J \ge K$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$J \ge K \ge I$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-I)}, q ^{\frac{1}{3}})$
	$K \ge I \ge J, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^I$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-J)}, q ^{\frac{1}{3}})$
$oxed{3\otimes (1''\oplus 1''\oplus 1')}$	$K \ge I \ge J, q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P_{312}	$(\tilde{\phi}^K, q ^{\frac{1}{3}} \tilde{\phi}^I, \tilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
	$J \ge I \ge K$	P_{123}	$(q ^{\frac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
	$I \ge K \ge J$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-J)}, q ^{\frac{1}{3}})$
	$K \ge J \ge I, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-I)}, q ^{\frac{1}{3}})$
	$K \ge J \ge I, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^K$	P_{312}	$(\tilde{\phi}^K, q ^{\frac{1}{3}} \tilde{\phi}^J, \tilde{\phi}^I)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
$oldsymbol{3}\otimes (oldsymbol{1}\oplusoldsymbol{1}\oplusoldsymbol{1})$	$I \ge J \ge K$	P_{231}	$(q ^{\frac{2}{3}}\tilde{\phi}^I, q ^{\frac{1}{3}}\tilde{\phi}^J,\tilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
$oldsymbol{3}\otimes (1'\oplus1'\oplus1')$	$I \ge J \ge K$	P_{123}	$(q ^{\frac{2}{3}}\tilde{\phi}^I, q ^{\frac{1}{3}}\tilde{\phi}^J,\tilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
$oldsymbol{3}\otimes (oldsymbol{1}''\oplus oldsymbol{1}''\oplus oldsymbol{1}'')$	$I \ge J \ge K$	P_{312}	$(q ^{\frac{2}{3}}\widetilde{\phi}^I, q ^{\frac{1}{3}}\widetilde{\phi}^J,\widetilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
$oxed{3\otimes(\widehat{f 2}\oplus f 1)}$	$I = J \ge K$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
- 0 (0)	$K \ge I = J$	P_{231}	$(q ^{\frac{2}{3}}\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
$oldsymbol{3}\otimes(\widehat{oldsymbol{2}}\oplus oldsymbol{1}')$	$I = J \ge K$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-K)}, q ^{\frac{1}{3}})$
	$K \ge I = J$	P_{231}	$(q ^{\frac{1}{3}}\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$
$oxed{3\otimes(\widehat{f 2}\oplus {f 1}'')}$	$I = J \ge K$	P_{312}	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-K)})$
	$K \ge I = J$	P_{231}	$(\tilde{\phi}^K, \tilde{\phi}^J, \tilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-J)})$
$oxed{3\otimes(\widehat{f 2}'\oplus f 1)}$	$I = J \ge K$	P_{321}	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-K)}, q ^{\frac{1}{3}})$
(- \ -)	$K \ge I = J$	P_{123}	$(\tilde{\phi}^K, \tilde{\phi}^J, \tilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(K-J)})$
$oxed{3\otimes(\widehat{f 2}'\oplus {f 1}')}$	$I = J \ge K$	P_{123}	$(q ^{\frac{2}{3}}\tilde{\phi}^J,\tilde{\phi}^J,\tilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
	$K \ge I = J$	P_{123}	$(q ^{\frac{2}{3}}\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}})$

(N=3 cont'd...)

$m{r}_{\psi}\otimesm{r}_{\psi^c}$	power of $ ilde{\phi}$	P_{ψ}	$(m_{\psi_1}, m_{\psi_2}, m_{\psi_3})$	$(\theta_{12}^{\psi},\theta_{23}^{\psi},\theta_{13}^{\psi})$
${\bf 3}\otimes(\widehat{\bf 2}'\oplus{\bf 1}'')$	$I = J \ge K$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-K)}, q ^{\frac{1}{3}})$
3 ⊗ (2 ⊕ 1)	$K \ge I = J$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
${f 3}\otimes(\widehat{f 2}''\oplus{f 1})$	$I = J \ge K$	P_{321}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-K)}, q ^{\frac{1}{3}})$
3 \otimes (2 \oplus 1)	$K \ge I = J$	P_{321}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{rac{2}{3}}, q ^{rac{1}{3}}, q ^{rac{1}{3}})$
${f 3}\otimes(\widehat{f 2}''\oplus {f 1}')$	$I = J \ge K$	P_{123}	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}, q ^{\frac{2}{3}} + q ^{\frac{1}{3}} \tilde{\phi}^{2(J-K)})$
3 ⊗ (2 ⊕ 1)	$K \ge I = J$	P_{321}	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}})$
${f 3}\otimes(\widehat{f 2}''\oplus{f 1}'')$	$I = J \ge K$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{rac{1}{3}}, q ^{rac{1}{3}}, q ^{rac{2}{3}})$
3 ⊗ (2 ⊕ 1)	$K \ge I = J$	P_{321}	$(q ^{\frac{2}{3}}\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^J)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}})$
	$I \ge J \ge K$	P_{123}	$(ilde{\phi}^I, ilde{\phi}^J, ilde{\phi}^K)$	$ (q ^{\frac{2}{3}}\tilde{\phi}^{I-J}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K}) $
	$J \ge K \ge I$	P_{231}	$(ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$ (q ^{\frac{2}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{J-I}) $
$(1''\oplus1'\oplus1)\otimes3$	$K \ge I \ge J$	P_{312}	$(\tilde{\phi}^K,\tilde{\phi}^I,\tilde{\phi}^J)$	$ (q ^{\frac{2}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J}) $
	$J \ge I \ge K$	P_{213}	$(\tilde{\phi}^J,\tilde{\phi}^I,\tilde{\phi}^K)$	$ (q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K}) $
	$I \ge K \ge J$	P_{132}	$(\tilde{\phi}^I,\tilde{\phi}^K,\tilde{\phi}^J)$	$ (q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J}) $
	$K \ge J \ge I$	P_{321}	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^I)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I})$
	$ I \ge J \ge K, q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I$	P_{123}	$ (q ^{\frac{1}{3}} \tilde{\phi}^I, q ^{\frac{1}{3}} \tilde{\phi}^J, \tilde{\phi}^K) $	$(q ^{-\frac{1}{3}}\tilde{\phi}^{I-J},\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K})$
	$ I \ge J \ge K, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^J $	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K},\tilde{\phi}^{J-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(\tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{K-I}, q ^{\frac{1}{3}} \tilde{\phi}^{J-I})$
$(1'\oplus1\oplus1)\otimes3$	$K \ge I \ge J$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J},\tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K},\tilde{\phi}^{J-K})$
	$ I \ge K \ge J, q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I $	P_{132}	$ \left (q ^{\frac{1}{3}} \tilde{\phi}^I, q ^{\frac{1}{3}} \tilde{\phi}^K, \tilde{\phi}^J) \right $	$(q ^{-\frac{1}{3}}\tilde{\phi}^{I-K},\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J})$
	$ I \ge K \ge J, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K $	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J},\tilde{\phi}^{K-J})$
	$K \ge J \ge I$	P_{321}	$(q ^{\frac{2}{3}}\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^I)$	$(\tilde{\phi}^{K-J}, q ^{\frac{1}{3}} \tilde{\phi}^{J-I}, q ^{\frac{1}{3}} \tilde{\phi}^{K-I})$
	$I \ge J \ge K, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K},\tilde{\phi}^{J-K})$
	$ I \ge J \ge K, q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I$	P_{123}	$(ilde{\phi}^I, q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{I-J},\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(\tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{K-I}, q ^{\frac{1}{3}} \tilde{\phi}^{J-I})$
$(1''\oplus1\oplus1)\otimes3$	$K \ge I \ge J$	P_{312}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J},\tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K},\tilde{\phi}^{J-K})$
	$I \ge K \ge J, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K$	P_{312}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J},\tilde{\phi}^{K-J})$
	$ I \ge K \ge J, q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I $	P_{132}	$(ilde{\phi}^I, q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{I-K},\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J})$
	$K \ge J \ge I$	P_{321}		$(\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I})$
•				

Gui-Jun Ding, S.F.K, Lu, Weng, 2505.12916

$m{r}_{\psi} \otimes m{r}_{\psi^c}$	power of $\tilde{\phi}$	P_{ψ}	$(m_{\psi_1},m_{\psi_2},m_{\psi_3})$	$(heta_{12}^{\psi}, heta_{23}^{\psi}, heta_{13}^{\psi})$
	$I \ge J \ge K$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^J, ilde{\phi}^K)$	$(\tilde{\phi}^{I-J}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{I-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I},\tilde{\phi}^{J-I})$
	$K \ge I \ge J, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^I$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J},\tilde{\phi}^{I-J})$
$(1'\oplus1'\oplus1)\otimes3$	$K \ge I \ge J, q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P_{312}	$(ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-I},\tilde{\phi}^{I-J}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(\tilde{\phi}^{J-I}, q ^{\frac{1}{3}} \tilde{\phi}^{I-K}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K})$
	$I \ge K \ge J$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J},\tilde{\phi}^{I-J})$
	$K \ge J \ge I, q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^K$	P_{321}	$(ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-J},\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I})$
	$K \ge J \ge I, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I},\tilde{\phi}^{J-I})$
	$I \ge J \ge K$	P_{123}	$(q ^{rac{2}{3}} ilde{\phi}^I, ilde{\phi}^J, ilde{\phi}^K)$	$(\tilde{\phi}^{I-J}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{I-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^{J}, ilde{\phi}^{K}, ilde{\phi}^{I})$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I},\tilde{\phi}^{J-I})$
	$K \ge I \ge J, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^I$	P_{132}	$(q ^{rac{2}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J},\tilde{\phi}^{I-J})$
$(1''\oplus1''\oplus1)\otimes3$	$K \ge I \ge J, q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P_{312}	$\left \; \left(q ^{rac{1}{3}} ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^J ight) \; ight $	$(q ^{-\frac{1}{3}}\tilde{\phi}^{K-I},\tilde{\phi}^{I-J}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(\tilde{\phi}^{J-I}, q ^{\frac{1}{3}} \tilde{\phi}^{I-K}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K})$
	$I \ge K \ge J$	P_{132}	$(q ^{rac{2}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J}, \tilde{\phi}^{I-J})$
	$K \ge J \ge I, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I},\tilde{\phi}^{J-I})$
	$K \ge J \ge I, q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^K$	P_{321}	$(q ^{\frac{1}{3}}\tilde{\phi}^K, q ^{\frac{1}{3}}\tilde{\phi}^J,\tilde{\phi}^I)$	$(q ^{-\frac{1}{3}}\tilde{\phi}^{K-J},\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I})$
	$I \ge J \ge K, \ \tilde{\phi}^I \ge \frac{1}{3} \ \tilde{\phi}^J$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K},\tilde{\phi}^{J-K})$
	$I \ge J \ge K, q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^I$	P_{123}	$\left (q ^{\frac{1}{3}} \widetilde{\phi}^I, q ^{\frac{1}{3}} \widetilde{\phi}^J, \widetilde{\phi}^K) \right $	$(q ^{-\frac{1}{3}}\tilde{\phi}^{I-J},\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{J-I})$
$(1''\oplus1'\oplus1')\otimes3$	$K \ge I \ge J$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J},\tilde{\phi}^{K-J})$
() -	$J \ge I \ge K$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-K},\tilde{\phi}^{J-K})$
	$I \ge K \ge J, \ \tilde{\phi}^I \ge q ^{\frac{1}{3}} \tilde{\phi}^K$	P_{312}	$(q ^{\frac{2}{3}}\tilde{\phi}^K,\tilde{\phi}^I,\tilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-I}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J},\tilde{\phi}^{K-J})$
	$ I \ge K \ge J, q ^{\frac{1}{3}} \tilde{\phi}^K \ge \tilde{\phi}^I $	P_{132}	$(q ^{\frac{1}{3}}\widetilde{\phi}^I, q ^{\frac{1}{3}}\widetilde{\phi}^K,\widetilde{\phi}^J)$	$(q ^{-\frac{1}{3}}\tilde{\phi}^{I-K},\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{I-J})$
	$K \ge J \ge I$	P_{321}	$(q ^{\frac{2}{3}}\tilde{\phi}^K,\tilde{\phi}^J,\tilde{\phi}^I)$	$(\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I})$
	$I \ge J \ge K$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^J, ilde{\phi}^K)$	$(\tilde{\phi}^{I-J}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, q ^{\frac{1}{3}} \tilde{\phi}^{I-K})$
	$J \ge K \ge I$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I},\tilde{\phi}^{J-I})$
	$K \ge I \ge J, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^I$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J},\tilde{\phi}^{I-J})$
$(1''\oplus1''\oplus1')\otimes3$	$K \ge I \ge J, q ^{\frac{1}{3}} \tilde{\phi}^I \ge \tilde{\phi}^K$	P_{312}	$(ilde{\phi}^K, q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-I},\tilde{\phi}^{I-J}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J})$
	$J \ge I \ge K$	P_{213}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^I, ilde{\phi}^K)$	$(\tilde{\phi}^{J-I}, q ^{\frac{1}{3}} \tilde{\phi}^{I-K}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K})$
	$I \ge K \ge J$	P_{132}	$(q ^{rac{1}{3}} ilde{\phi}^I, ilde{\phi}^K, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{I-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J},\tilde{\phi}^{I-J})$
	$K \ge J \ge I, \ \tilde{\phi}^K \ge q ^{\frac{1}{3}} \tilde{\phi}^J$	P_{231}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^K, ilde{\phi}^I)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I},\tilde{\phi}^{J-I})$
	$K \ge J \ge I, \ q ^{\frac{1}{3}} \tilde{\phi}^J \ge \tilde{\phi}^K$	P_{321}	$(\tilde{\phi}^K, q ^{\frac{1}{3}} \tilde{\phi}^J, \tilde{\phi}^I)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-J},\tilde{\phi}^{J-I}, q ^{\frac{1}{3}}\tilde{\phi}^{K-I})$
$(1 \oplus 1 \oplus 1) \otimes 3$	$I \ge J \ge K$	P_{123}	$(q ^{\frac{2}{3}}\tilde{\phi}^I, q ^{\frac{1}{3}}\tilde{\phi}^J,\tilde{\phi}^K)$	$\frac{(\tilde{\phi}^{I-J}, \tilde{\phi}^{J-K}, \tilde{\phi}^{I-K})}{\tilde{\phi}^{I-K} \tilde{\phi}^{I-K}}$
$(1'\oplus1'\oplus1')\otimes3$	$I \ge J \ge K$	P_{123}	$(q ^{\frac{2}{3}}\tilde{\phi}^I, q ^{\frac{1}{3}}\tilde{\phi}^J,\tilde{\phi}^K)$	$(\tilde{\phi}^{I-J}, \tilde{\phi}^{J-K}, \tilde{\phi}^{I-K})$
$(1''\oplus1''\oplus1'')\otimes3$	$I \ge J \ge K$	P_{123}	$(q ^{\frac{2}{3}}\tilde{\phi}^I, q ^{\frac{1}{3}}\tilde{\phi}^J,\tilde{\phi}^K)$	$(\tilde{\phi}^{I-J}, \tilde{\phi}^{J-K}, \tilde{\phi}^{I-K})$
$(\widehat{f 2} \oplus {f 1}) \otimes {f 3}$	$I = J \ge K$	P_{213}	$(q ^{\frac{2}{3}}\tilde{\phi}^J,\tilde{\phi}^J,\tilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, \tilde{\phi}^{J-K})$
	$K \ge I = J$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J},\tilde{\phi}^{K-J})$

(N=3 cont'd...)

$m{r}_{\psi} \otimes m{r}_{\psi^c}$	power of $ ilde{\phi}$	P_{ψ}	$(m_{\psi_1},m_{\psi_2},m_{\psi_3})$	$(heta_{12}^{\psi}, heta_{23}^{\psi}, heta_{13}^{\psi})$
$(\widehat{f 2} \oplus {f 1}') \otimes {f 3}$	$I = J \ge K$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K},\tilde{\phi}^{J-K})$
$(2 \oplus 1) \otimes 3$	$K \ge I = J$	P_{312}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{K-J})$
(ĵ ⊕ 1″) ⊗ 9	$I = J \ge K$	P_{123}	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K})$
$(\widehat{f 2} \oplus {f 1}'') \otimes {f 3}$	$K \ge I = J$	P_{312}	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J})$
$(\widehat{f 2}'\oplus {f 1})\otimes {f 3}$	$I = J \ge K$	P_{213}	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K})$
$(2 \oplus 1) \otimes 3$	$K \ge I = J$	P_{312}	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{\frac{2}{3}}\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J})$
$(\widehat{f 2}'\oplus {f 1}')\otimes {f 3}$	$I = J \ge K$	P_{213}	$(q ^{\frac{2}{3}}\tilde{\phi}^J,\tilde{\phi}^J,\tilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, \tilde{\phi}^{J-K})$
$(\mathbf{Z} \oplus \mathbf{I}) \otimes \mathbf{S}$	$K \ge I = J$	P_{312}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-J}, q ^{\frac{1}{3}},\tilde{\phi}^{K-J})$
$(\widehat{f 2}'\oplus {f 1}'')\otimes {f 3}$	$I = J \ge K$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}} ilde{\phi}^{J-K}, ilde{\phi}^{J-K})$
	$K \ge I = J$	P_{312}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{K-J})$
$(\widehat{f 2}''\oplus {f 1})\otimes {f 3}$	$I = J \ge K$	P_{123}	$(q ^{rac{1}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K},\tilde{\phi}^{J-K})$
$(\mathbf{Z} \oplus \mathbf{I}) \otimes \mathbf{S}$	$K \ge I = J$	P_{321}	$(q ^{rac{1}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-J}, q ^{\frac{1}{3}},\tilde{\phi}^{K-J})$
$(\widehat{f 2}''\oplus {f 1}')\otimes {f 3}$	$I = J \ge K$	P_{123}	$(ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{2}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K}, q ^{\frac{1}{3}}\tilde{\phi}^{J-K})$
(2 +1) × 3	$K \ge I = J$	P_{321}	$(ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(q ^{\frac{1}{3}}\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}}\tilde{\phi}^{K-J})$
$(\widehat{f 2}''\oplus {f 1}'')\otimes {f 3}$	$I = J \ge K$	P_{213}	$(q ^{rac{2}{3}} ilde{\phi}^J, ilde{\phi}^J, ilde{\phi}^K)$	$(q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{J-K}, \tilde{\phi}^{J-K})$
	$K \ge I = J$	P_{321}	$(q ^{rac{2}{3}} ilde{\phi}^K, ilde{\phi}^J, ilde{\phi}^J)$	$(\tilde{\phi}^{K-J}, q ^{\frac{1}{3}}, q ^{\frac{1}{3}} \tilde{\phi}^{K-J})$

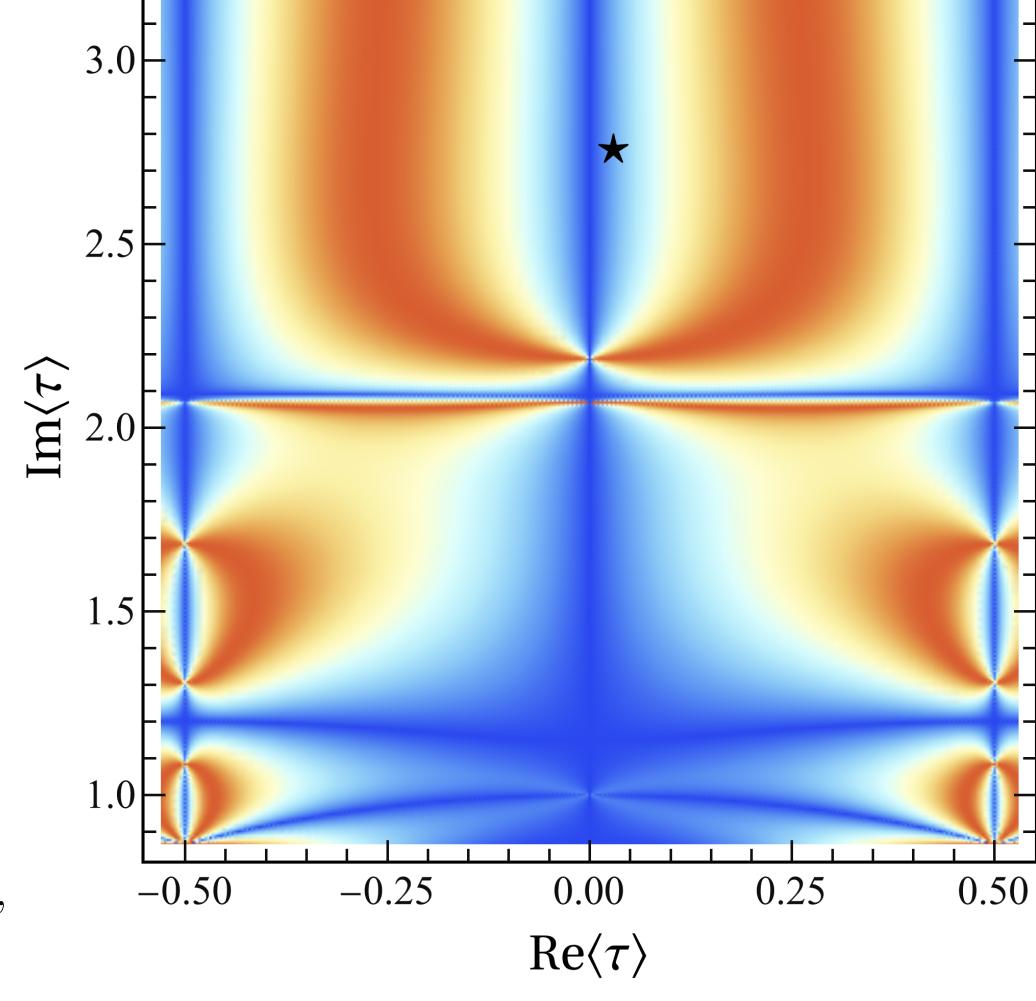
For example...

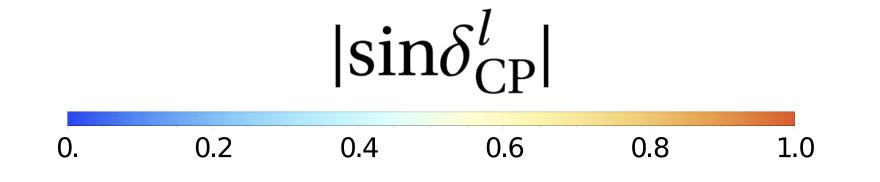
$$L \sim (\mathbf{3}, 2) , \quad e^{c} \sim (\mathbf{1}, -1) , \quad \mu^{c} \sim (\mathbf{1}, 1) , \quad \tau^{c} \sim (\mathbf{1''}, 3) , \quad H_{u,d} \sim (\mathbf{1}, 0) ,$$

$$Q_{L} \sim (\mathbf{3}, k_{Q_{L}}) , \quad u^{c} \sim (\mathbf{1}, -k_{Q_{L}}) , \quad c^{c} \sim (\mathbf{1''}, 5 - k_{Q_{L}}) , \quad t^{c} \sim (\mathbf{1'}, 4 - k_{Q_{L}}) ,$$

$$D_{D}^{c} \equiv \{d^{c}, s^{c}\} \sim (\widehat{\mathbf{2'}}, 2 - k_{Q_{L}}) , \quad b^{c} \sim (\mathbf{1}, 5 - k_{Q_{L}}) , \quad \phi \sim (\mathbf{1}, 1) .$$

18 parameter fit to fermion mass and mixing data, predicts $\delta_{\rm CP}^l=190^o$





100 modes $(\mathbb{T}^2)^3/(\mathbb{Z}_4 \times \mathbb{Z}_2)$

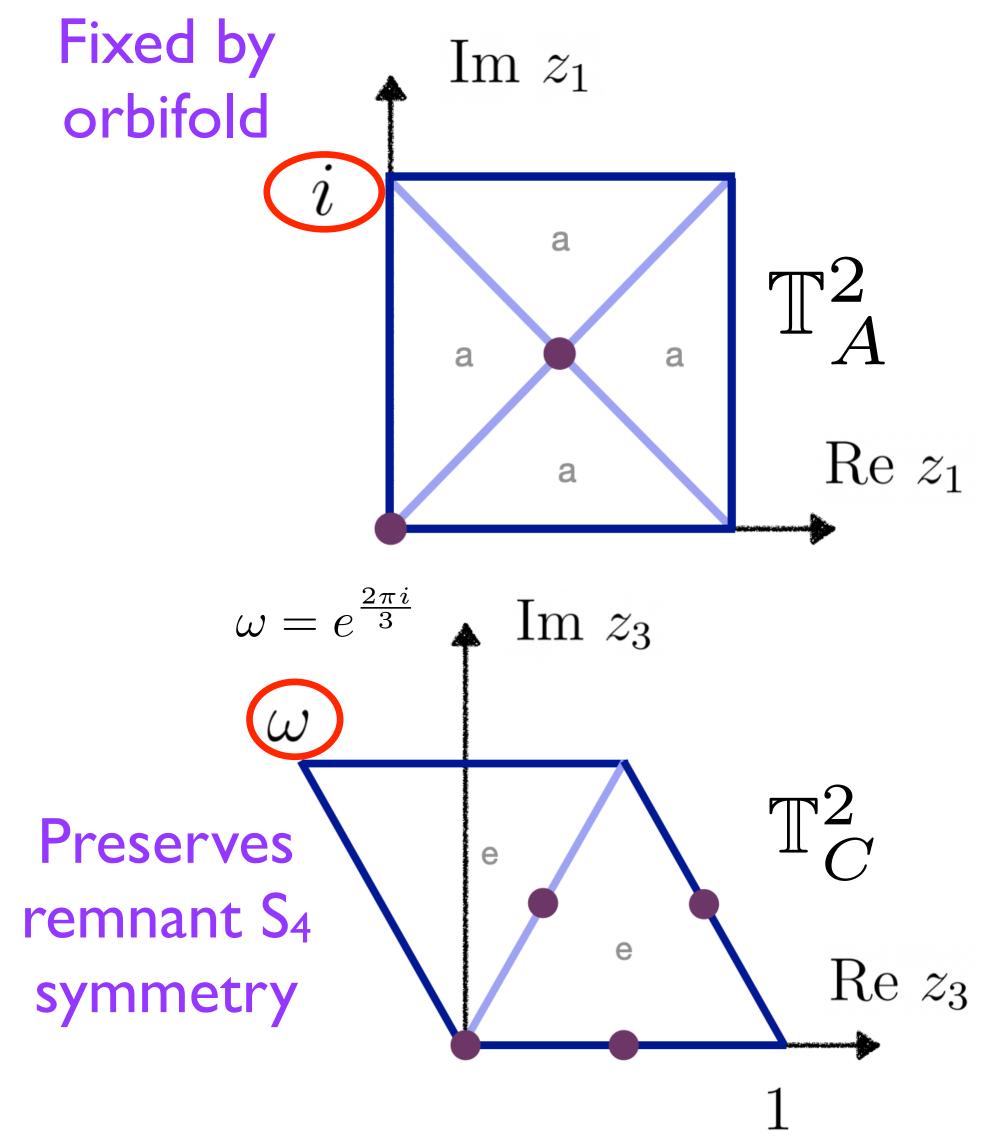
$$(\mathbb{T}^2)^3/(\mathbb{Z}_4\times\mathbb{Z}_2)$$

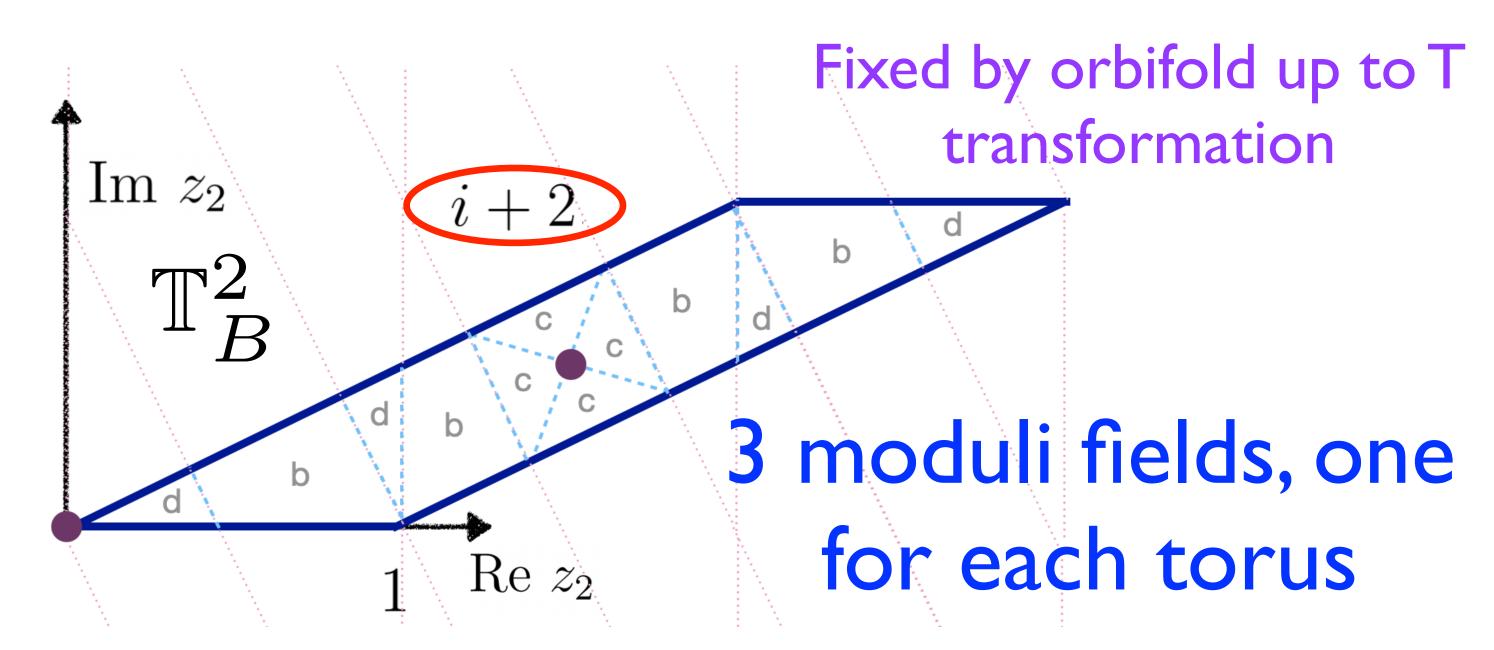
De Anda, S.F.K. 2312.09010, 2304.05958

M. Fischer, M. Ratz, J. Torrado and

P. K. S. Vaudrevange 1209.3906

3 factorable tori, SUSY preserving



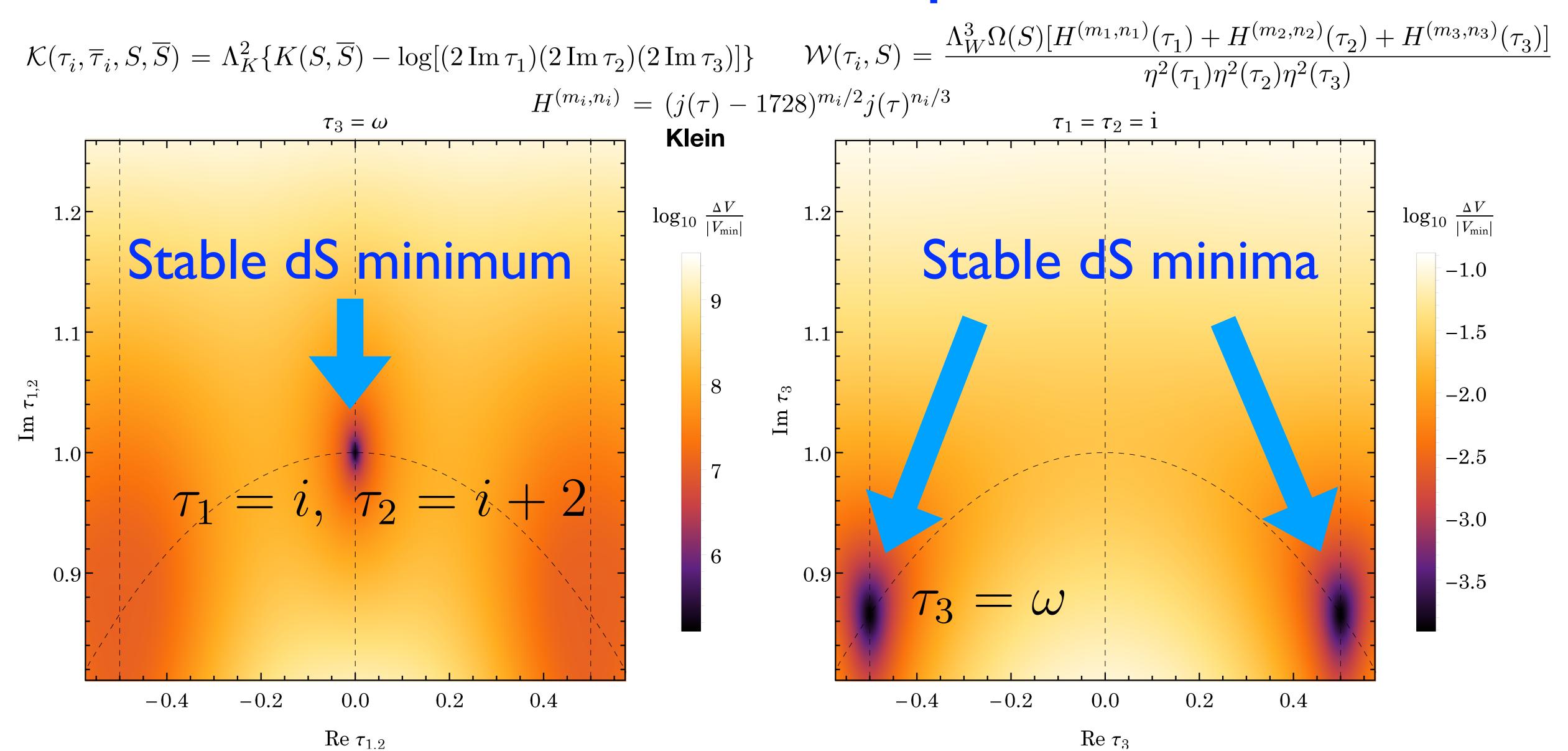


Lattice vectors for each torus are $(1, \tau_i)$

$$\tau_1 = i, \ \tau_2 = i + 2, \ \tau_3 = \omega$$

which define 3 fixed moduli

Modulus Stabilisation in the multiple modulus framework



SU(5) orbifold GUT in 10d

$$(\mathbb{T}^2)^3/(\mathbb{Z}_4\times\mathbb{Z}_2)$$

Field	SU(5)	S_4^A	S_4^B	S_4^C	k_A	k_B	k_C	Loc
F	5	1	1	3	0	0	0	\mathbb{T}^2_C
T_1	10	1	1	1	0	0	1	\mathbb{T}^2_C
T_2	10	1	1	1	0	0	1/2	\mathbb{T}^2_C
T_3	10	1	1	1	0	0	0	\mathbb{T}^2_C
N_a^c	1	1	1	1	0	-4	0	\mathbb{T}^2_B
N_s^c	1	1	1	1	-2	0	0	\mathbb{T}_A^2
H_u	5	1	1	1	0	0	0	Bulk
H_d	$\overline{5}$	1	1	1	0	0	1/2	Bulk
H_{45}	45	1	1	1	0	0	1/2	Bulk
$H_{\overline{45}}$	$\overline{45}$	1	1	1	0	0	0	Bulk
Φ_{BC}	1	1	3	3	0	0	0	Bulk
Φ_{AC}	1	3	1	3	0	0	0	Bulk
ξ_F	1	1	1	1	0	0	-5/2	\mathbb{T}^2_C
ξ_T	1	1	1	1	0	0	-1/2	\mathbb{T}^2_C

10d Lagrangian

$$\mathcal{L}_{10d}^{(0)} = \left(\frac{y_{33}^u}{\Lambda^5} T_3 T_3 + \frac{y_{23}^u}{\Lambda^7} \xi_T T_2 T_3\right) H_u \delta^6(z)$$

$$+ \left(\frac{y_{22}^u}{\Lambda^9} \xi_T^2 T_2 T_2 + \frac{y_{13}^u}{\Lambda^9} \xi_T^2 T_1 T_3 + \frac{y_{12}^u}{\Lambda^{11}} (\xi_T^3 + \xi_F^3) T_1 T_2\right) H_u \delta^6(z)$$

$$+ \left(\frac{Y_a}{\Lambda^9} F N_a^c \Phi_{BC} + \frac{Y_s}{\Lambda^9} F N_s^c \Phi_{AC}\right) H_u \delta^6(z)$$

$$+ \left(\frac{Y_{5\tau}}{\Lambda^7} \xi_F F T_3 + \frac{Y_{5\tau}'}{\Lambda^9} \xi_F \xi_T F T_2 + \frac{Y_{5\tau}''}{\Lambda^{11}} \xi_F \xi_T^2 F T_1\right) H_{5d} \delta^6(z)$$

$$+ \left(\frac{Y_{5\mu}}{\Lambda^9} \xi_F^2 F T_2 + \frac{Y_{5\mu}'}{\Lambda^{11}} \xi_F^2 \xi_T F T_1 + \frac{Y_{5e}}{\Lambda^{11}} \xi_F^3 F T_1\right) H_{5d} \delta^6(z)$$

$$+ (H_{5d}^{(0)} \to H_{45d}^{(0)} \text{ terms})$$

$$+ \frac{M_a}{2} N_a^c N_a^c \delta^2(z_1) \delta^2(z_3) + \frac{M_s}{2} N_s^c N_s^c \delta^2(z_2) \delta^2(z_3),$$

\Weightons

4d Lagrangian

$$\begin{split} \mathcal{L}_{4d}^{(0)} &= \left(y_{33}^u T_3^{(0)} T_3^{(0)} + y_{23}^u \tilde{\xi}_T T_2^{(0)} T_3^{(0)} + y_{22}^u \tilde{\xi}_T^2 T_2^{(0)} T_2^{(0)} + y_{13}^u \tilde{\xi}_T^2 T_1^{(0)} T_3^{(0)} + y_{12}^u \tilde{\xi}_{T,F}^3 T_1^{(0)} T_2^{(0)} \right) H_u^{(0)} \\ &+ \left(Y_a \tilde{\Phi}_{BC} F^{(0)} N_a^{c(0)} + Y_s \tilde{\Phi}_{AC} F^{(0)} N_s^{c(0)} \right) H_u^{(0)} \\ &+ \left(Y_{5\tau} \tilde{\xi}_F F^{(0)} T_3^{(0)} + Y_{5\tau}^{'} \tilde{\xi}_F \tilde{\xi}_T F^{(0)} T_2^{(0)} + Y_{5\tau}^{''} \tilde{\xi}_F \tilde{\xi}_T^2 F^{(0)} T_1^{(0)} \right. \\ &+ Y_{5\mu} \tilde{\xi}_F^2 F^{(0)} T_2^{(0)} + Y_{5\mu}^{'} \tilde{\xi}_F^2 \tilde{\xi}_T F^{(0)} T_1^{(0)} + Y_{5e} \tilde{\xi}_F^3 F^{(0)} T_1^{(0)} \right) H_{5d}^{(0)} \\ &+ \left(H_{5d}^{(0)} \to H_{45d}^{(0)} \text{ terms} \right) \\ &+ \frac{1}{2} M_a N_a^{c(0)} N_a^{c(0)} + \frac{1}{2} M_s N_s^{c(0)} N_s^{c(0)}. \end{split}$$

Yukawa couplings are modular forms at 3 fixed points

$$Y_{a} = Y_{\mathbf{3}}^{(4)}(i+2) = y_{a}(0,1,-1)^{T},$$

$$Y_{s} = Y_{\mathbf{3}}^{(2)}(i) = y_{s}(1,1+\sqrt{6},1-\sqrt{6})^{T},$$

$$Y_{\tau} = Y_{\mathbf{3}}^{(2)}(\omega) = y_{\tau}(0,1,0)^{T},$$

$$Y_{\mu} = Y_{\mathbf{3}}^{(4)}(\omega) = y_{\mu}(0,0,1)^{T},$$

$$\omega = e^{\frac{2\pi i}{3}}$$

$$Y_{e} = Y_{\mathbf{3}I}^{(6)}(\omega) = y_{e}(1,0,0)^{T}.$$

G.J.Ding, S.F.K., X.G.Liu and J.N.Lu, 1910.03460

	au	$Y_{3}^{(2)}$	$(\tau), Y_{3,\mathbf{I}}^{(6)}(\tau)$	$Y_{3}^{(4)}(\tau), Y_{3'}^{(6)}(\tau)$	
τ_1	i		$-\sqrt{6}, 1-\sqrt{6}$	$(1, -\frac{1}{2}, -\frac{1}{2})$	
	i+1	$(1, -\frac{\omega}{3}(1+i))$	$\sqrt{2}), -\frac{\omega^2}{3}(1+i\sqrt{2}))$	$(0,1,-\omega)$	
$ au_2$	i+2	$(1,\frac{1}{3}(-1+a))$	$(i\sqrt{2}), \frac{1}{3}(-1+i\sqrt{2}))$	(0,1,-1)	
	i+3	$(1,\omega(1+\sqrt{6}),\omega(1-\sqrt{6}))$		$(1, -\frac{\omega}{2}, -\frac{\omega^2}{2})$	
	au	$Y_{3}^{(2)}(au)$	$Y_{3}^{(4)}(\tau), Y_{3'}^{(4)}(\tau)$	$Y_{3,\mathbf{II}}^{(6)}(au),Y_{3'}^{(6)}(au)$	
τ_3	ω	(0, 1, 0)	(0, 0, 1)	(1,0,0)	
	$\omega + 1$	$(1,1,-\frac{1}{2})$	$(1,-\frac{1}{2},1)$	(1, -2, -2)	
	$\omega + 2$	$\left[(1, -\frac{\omega^2}{2}, \omega) \right]$	$(1,\omega^2,-\frac{\omega}{2})$	$\boxed{(1, -2\omega^2, -2\omega)}$	
	$\omega + 3$	$(1,\omega,-\frac{\omega^2}{2})$	$(1,-\frac{\omega}{2},\omega^2)$	$(1, -2\omega, -2\omega^2)$	

$$M_{u} = \begin{pmatrix} 0 & y_{12}^{u} \tilde{\xi}_{T,F}^{3} e^{i\phi_{u1}} & y_{13}^{u} \tilde{\xi}_{T}^{2} \\ y_{12}^{u} \tilde{\xi}_{T,F}^{3} e^{i\phi_{u1}} & y_{22}^{u} \tilde{\xi}_{T}^{2} & y_{23}^{u} \tilde{\xi}_{T} e^{i\phi_{u2}} \\ y_{13}^{u} \tilde{\xi}_{T}^{2} & y_{23}^{u} \tilde{\xi}_{T} e^{i\phi_{u2}} & y_{33}^{u} \end{pmatrix} v_{u} \qquad m_{u} \sim \tilde{\xi}_{T,F}^{4} v_{u}, m_{c} \sim \tilde{\xi}_{T}^{2} v_{u}, m_{t} \sim v_{u}$$

$$m_u \sim \tilde{\xi}_{T,F}^4 v_u, m_c \sim \tilde{\xi}_T^2 v_u, m_t \sim v_u$$

$$M_{d} = \begin{pmatrix} y_{d11}\tilde{\xi}_{F}^{3} & y_{d12}\tilde{\xi}_{F}^{2}\tilde{\xi}_{T} & y_{d13}\tilde{\xi}_{F}\tilde{\xi}_{T}^{2} \\ 0 & y_{d22}\tilde{\xi}_{F}^{2} & y_{d23}\tilde{\xi}_{F}\tilde{\xi}_{T}e^{i\phi_{d2}} \\ 0 & 0 & y_{d33}\tilde{\xi}_{F} \end{pmatrix} v_{d},$$

LR convention CKM mixing from M_d

$$M_e = \begin{pmatrix} y_{e11} \tilde{\xi}_F^3 & 0 & 0 \\ y_{e21} \tilde{\xi}_F^2 \tilde{\xi}_T & y_{e22} \tilde{\xi}_F^2 & 0 \\ y_{e31} \tilde{\xi}_F \tilde{\xi}_T^2 & y_{e32} \tilde{\xi}_F \tilde{\xi}_T e^{i\phi_{d1}} & y_{e33} \tilde{\xi}_F \end{pmatrix} v_d, \qquad \begin{array}{c} \text{No PMNS} \\ \text{mixing from Me} \\ \end{array}$$

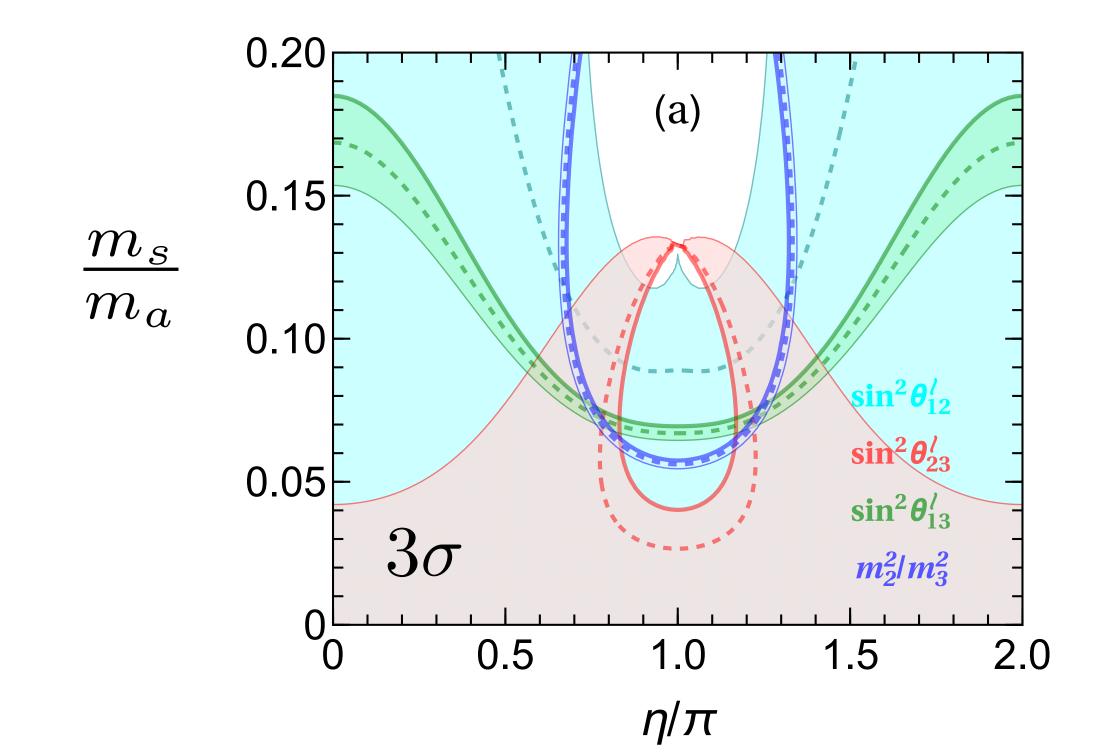
 $m_d \sim m_e \sim \xi_F^3 v_d$ $m_s \sim m_\mu \sim \tilde{\xi}_F^2 v_d$ $m_b \sim m_\tau \sim \xi_F v_d$

$$\begin{array}{ll} \text{Dirac} \\ \text{neutrino} \\ \text{matrix} \end{array} M_D = \left(\begin{array}{ccc} 0 & y_s \tilde{\Phi}_{AC} \\ y_a \tilde{\Phi}_{BC} & y_s \tilde{\Phi}_{AC} (1 - \sqrt{6}) \\ -y_a \tilde{\Phi}_{BC} & y_s \tilde{\Phi}_{AC} (1 + \sqrt{6}) \end{array} \right) v_u, \quad M_N = \left(\begin{array}{ccc} M_a & 0 \\ 0 & M_s \end{array} \right) \\ \text{Majorana} \\ \text{neutrino} \\ \text{mechanism} \\ \text{matrix} \end{array} \right)$$

Seesaw mechanism gives 3 parameter neutrino mass matrix

$$m_{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} + m_s e^{i\eta} \begin{pmatrix} 1 & 1 - \sqrt{6} & 1 + \sqrt{6} \\ 1 - \sqrt{6} & 7 - 2\sqrt{6} & -5 \\ 1 + \sqrt{6} & -5 & 7 + 2\sqrt{6} \end{pmatrix}$$
 "Littlest Seesaw"

G.J.Ding, S.F.K, X.G.Liu and J.N.Lu,1910.03460
G.J.Ding, S.F.K. and C.Y.Yao, 2103.16311



De Anda, SFK 2304.05958

	without SK atmospheric data	
	NuFit $\pm 1\sigma$	Model
$\theta_{12}/^{\circ}$	$33.41^{+0.75}_{-0.72}$	34.34
$ heta_{23}/^\circ$	$49.1_{-1.3}^{+1.0}$	48.31
$ heta_{13}/^\circ$	$8.54^{+0.11}_{-0.12}$	8.54
$\delta/^\circ$	197^{+42}_{-25}	284
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.41^{+0.21}_{-0.20}$	7.42
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.511^{+0.028}_{-0.021}$	2.510
$\frac{m_a}{10^{-3} \text{ eV}}$		31.47

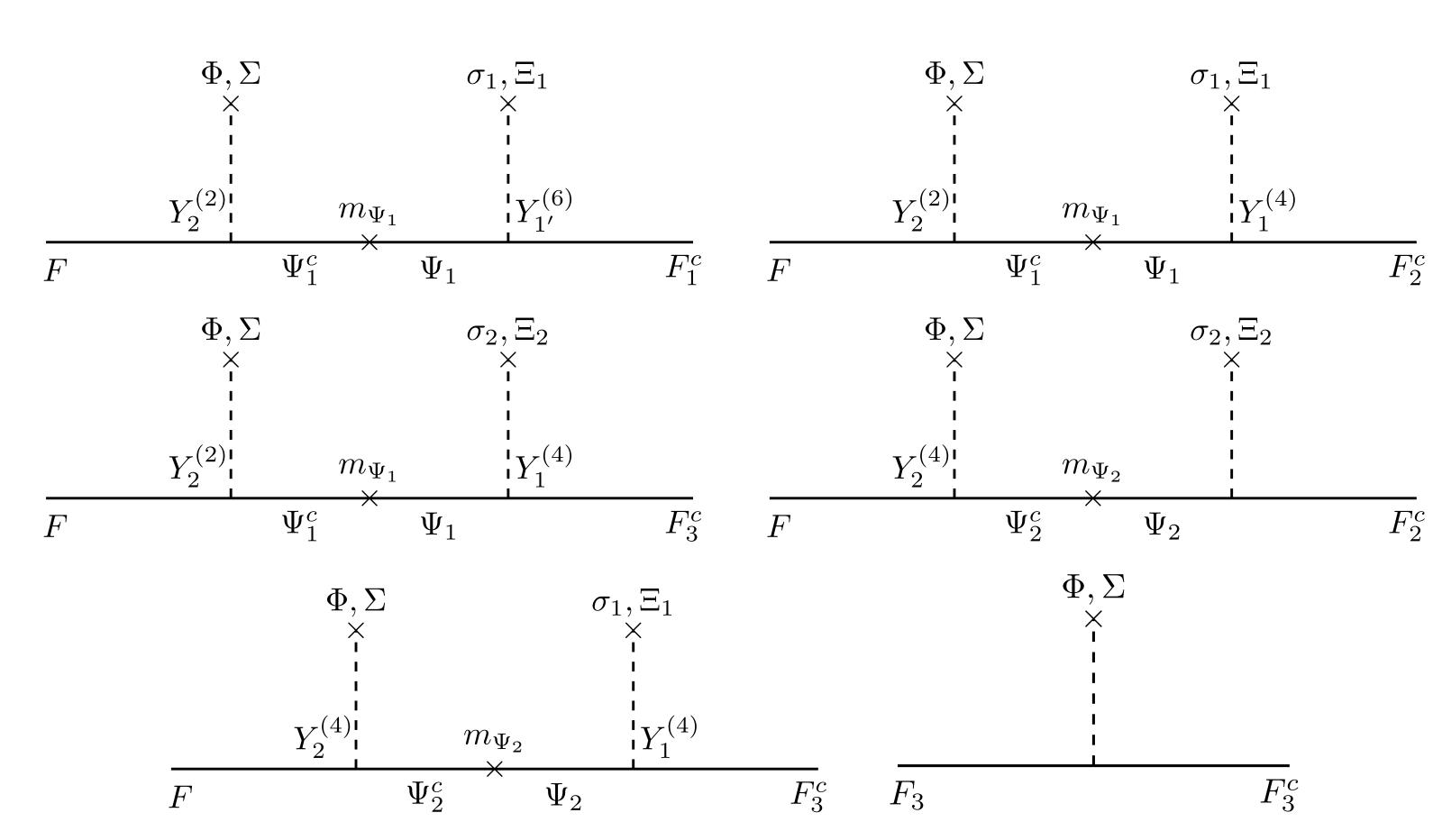
6 measured observables

3 input parameters

Modular seesaw mechanism for light families

No Pati-Salam N=2

Weightons	$SU(4)_C$	$SU\left(2\right) _{L}$	$SU(2)_R$	S_3	k
$F = (F_1, F_2)$	4	2	1	2	0
F_3	4	2	1	1'	-1
F_1^c	$\overline{f 4}$	1	$\overline{f 2}$	1	1
F_2^c	$\overline{f 4}$	1	$\overline{f 2}$	1'	-1
F_3^c	$\overline{f 4}$	1	$\overline{f 2}$	1'	1
Ψ_1	4	1	2	1'	-2
Ψ_2	4	1	2	1'	-4
Ψ_1^c	$\overline{f 4}$	1	$\overline{2}$	1'	2
Ψ_2^c	$\overline{4}$	1	$\overline{2}$	1'	4
$S^c = (S_1^c, S_2^c)$	1	1	1	2	1
S_3^c	1	1	1	1'	1
Φ	1	2	2	1	0
χ_R	$\overline{f 4}$	1	2	1	2
\sum	15	2	2	1	0
σ_1	1	1	1	1	7
σ_2	1	1	1	1	5
Ξ_1	15	1	1	1	7
Ξ_2	15	1	1	1	5



Seesaw like diagrams for light families

Third family renormalisable

Mass matrices have a seesaw-like structure

$$\widetilde{M}_{u} = M_{c}^{(u)} - M_{a}^{(u)} M_{U}^{-1} M_{b}^{(u)},$$

$$\widetilde{M}_{e} = M_{c}^{(e)} - M_{a}^{(e)} M_{E}^{-1} M_{b}^{(e)},$$

Renormalisable Seesaw-like
Third family Light families

$$\begin{split} \widetilde{M}_{d} &= M_{c}^{(d)} - M_{a}^{(d)} M_{D}^{-1} M_{b}^{(d)} \,, \\ \widetilde{M}_{\nu} &= M_{c}^{(\nu)} - M_{a}^{(\nu)} M_{N}^{-1} M_{b}^{(\nu)} \,. \\ M_{U} &= M_{D} = M_{E} = M_{N} = \begin{pmatrix} m_{\Psi_{1}} & 0 \\ 0 & m_{\Psi_{2}} \end{pmatrix} \\ \text{Vector-like masses} \end{split}$$

Neutrino masses arise from a double seesaw

$$\frac{1}{2} \begin{pmatrix} \nu & \nu^c & S^c \end{pmatrix} \begin{pmatrix} 0_{3\times3} & \widetilde{M}_{\nu} & 0_{3\times3} \\ \widetilde{M}_{\nu}^T & 0_{3\times3} & M_R \\ 0_{3\times3} & M_R^T & M_S \end{pmatrix} \begin{pmatrix} \nu \\ \nu^c \\ S^c \end{pmatrix} \qquad M_{\nu} = \widetilde{M}_{\nu} M_R^{-1} M_S M_R^{-1} \widetilde{M}_{\nu}^T$$

Best Fit

A.E.Carcamo Hernandez, I.de Medeiros Varzielas, S.F.K., K.N.Vishnudath, 2503.14610

ſ	Innut		
	Input Parameters	Best fit value for NH of light neutrinos	
		-0.03224 + i 1.86682	
	$m_{\Psi_1}, m_{\Psi_2} \; (\mathrm{GeV})$	0.00 1012 1012	
13 r	` ,	= 13.02100 , 3.0000	ierarchy
	$v_{\Sigma_1}, v_{\Sigma_2} \text{ (GeV)}$	8.37732, 10.01214	of scales
scales	and $v_{\sigma_1}, v_{\sigma_2} \; (\mathrm{GeV})$	$6.12 \times 10^{12}, 4.64 \times 10^{12}$	
VE	$v_{\Xi_1}, v_{\Xi_2} \text{ (GeV)}$		nd VEVs
	$v_R \; ({ m GeV})$	1.23×10^{11}	Villania
	$M_1, M_2 \; (\mathrm{GeV})$	$1.0 \times 10^{12}, 6.20 \times 10^8$	Yukawa
20 con	$nplex x_1, x_2, x_3$	$3.53382 \ e^{i \ 2.23402}, \ 2.93598 \ e^{i \ 3.85910}, \ 0.20033 \ e^{i \ 2.15046}$	couplings
Yuka		$0.27120 \ e$, $0.40397 \ e$, $0.98750 \ e$	
TUKa	w_1, w_2, w_3, w_4, w_5	$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
coup	ings z_1,z_2,z_3,z_4,z_5	$ 2.37549 \ e^{i \ 0.67600}, \ 0.25164 \ e^{i \ 1.45687}, \ 2.46850 \ e^{i \ 4.02943}, \ 0.32353 \ e^{i \ 0.15040}, \ 3.54392 \ e^{i \ 6.12943}, \ 0.32353 \ e^{i \ 0.15040}, \ 0.54392 \ e^{i \ 6.12943}, \ 0.54392 \ e^{i \ 6.1294}, \ 0.54392 \ e^{i \ 6.12943}, \ 0.54392 \ e^{i$	unity
	$\gamma_1,\gamma_2,\gamma_3,\gamma_4$	$0.20302 \ e^{i \ 3.09154}, \ 1.99746 \ e^{i \ 6.05522}, \ 3.42165 \ e^{i \ 0.22612}, \ 1.96501 \ e^{i \ 5.93289}$	urncy
	$-\mathcal{W} = y_1 Y_2^{(2)} (\tau) F \Phi \Psi_1^c + g$	$y_2 Y_2^{(4)}(\tau) F \Phi \Psi_2^c + y_3 F_3 \Phi F_3^c$	
	$+z_{1}Y_{1'}^{(6)}\Psi_{1}\sigma_{1}F_{1}^{c}+z_{2}Y_{1}^{(4)}(\tau)\Psi_{1}\sigma_{1}F_{2}^{c}+z_{3}Y_{1}^{(4)}(\tau)\Psi_{1}\sigma_{2}F_{3}^{c}+z_{4}\Psi_{2}\sigma_{2}F_{2}^{c}+z_{5}Y_{1}^{(4)}(\tau)\Psi_{2}\sigma_{1}F_{3}^{c}$		
	$+w_1Y_{\mathbf{1'}}^{(6)}\Psi_1\Xi_1F_1^c+$	$w_2 Y_1^{(4)}(\tau) \Psi_1 \Xi_1 F_2^c + w_3 Y_1^{(4)}(\tau) \Psi_1 \Xi_2 F_3^c + w_4 \Psi_2 \Xi_2 F_2^c + w_5 Y_1^{(4)}(\tau) \Psi_2 \Xi_1 F_3^c$	
	$+x_1 Y_2^{(2)}(\tau) F \Sigma \Psi_1^c + x_2 Y_2^{(4)}(\tau) F \Sigma \Psi_2^c + x_3 F_3 \Sigma F_3^c + m_{\Psi_1} \Psi_1 \Psi_1^c + m_{\Psi_2} \Psi_2 \Psi_2^c$		
	$+\gamma_{1}Y_{2}^{(4)}\left(\tau\right)F_{1}^{c}\chi_{R}S^{c}+\gamma_{2}Y_{2}^{(2)}\left(\tau\right)F_{2}^{c}\chi_{R}S^{c}+\gamma_{3}Y_{2}^{(4)}\left(\tau\right)F_{3}^{c}\chi_{R}S^{c}$		
	$+\gamma_4 Y_1^{(4)} \left(\tau\right) F_3^c \chi_R S_3^c$	$S_{3}^{c} + M_{1}Y_{2}^{(2)}(\tau) (S^{c}S^{c})_{2} + M_{2}Y_{2}^{(2)}(\tau) (S^{c}S_{3}^{c}) + \text{h.c.}$	

A.E.Carcamo Hernandez, I.de Medeiros Varzielas, S.F.K., K.N.Vishnudath, 2503.14610

 $0.55497,\ 0.68557,\ 0.14883$

 $323.53560^{\circ}, 194.46228^{\circ}, 297.46063^{\circ}$

Best Fit

 $s_{12}^{\nu}, s_{23}^{\nu}, s_{13}^{\nu}$

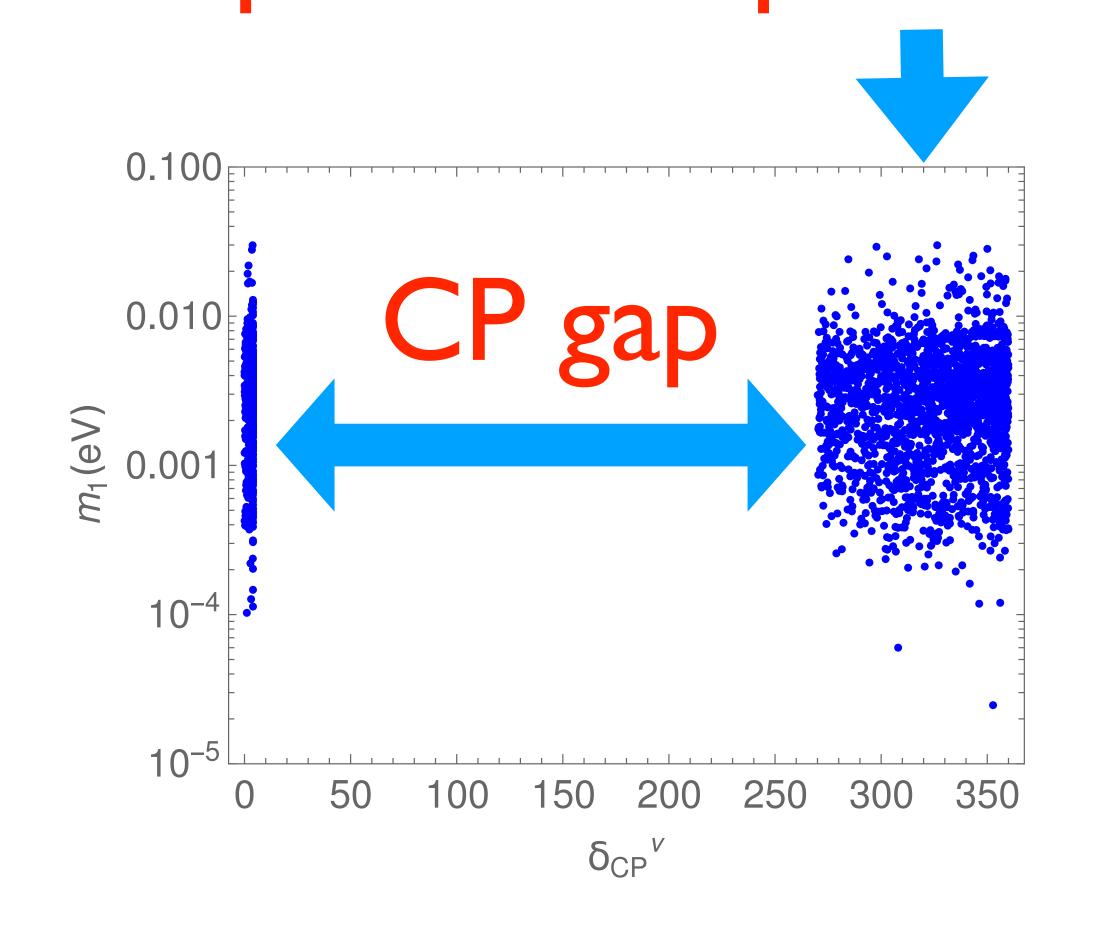
 $\delta^{
u}_{CP}, \alpha^{M}, eta^{M}$

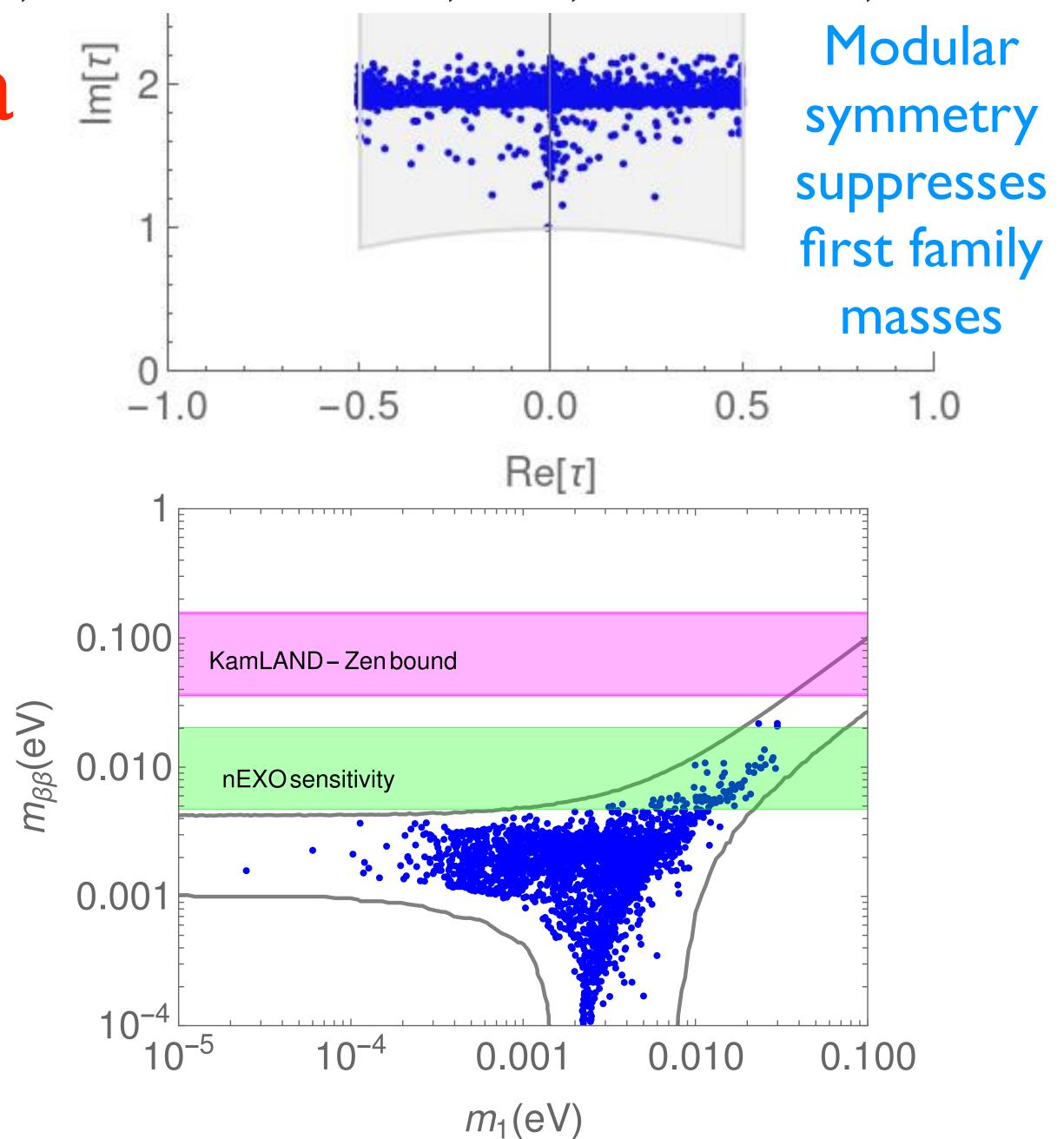
Destill			
	Low energy mass matrices, masses and mixing parameters		
	$\left(-0.00018e^{i(-2.57621)} -0.01312e^{i2.50106} 0.00174e^{i1.43459}\right)$		
\widetilde{M}_u (GeV)	$0.00428e^{i0.66665} -0.19406e^{i2.37489} -0.06547e^{i(-2.04282)}$		
	$\left\langle 0.00000e^{i0.00000} 0.00000e^{i0.00000} -108.38236e^{i2.24928} \right\rangle$		
	$ \left(0.00016e^{i(-0.36728)} 0.00339e^{i0.98476} -0.00459e^{i(-2.87477)}\right) $		
\widetilde{M}_d (GeV)	$-0.00409e^{i2.87558} -0.00659e^{i1.86300} 0.15841e^{i0.40887}$		
	$\left(\begin{array}{ccc} 0.00000e^{i0.00000} & 0.00000e^{i0.00000} & -2.51228e^{i2.21622} \end{array}\right)$		
$m_u, m_c, m_t \; ({ m GeV})$	0.00054,0.2670,172.69001		
$m_d, m_s, m_b \; ({ m GeV})$	$0.00120,\ 0.0240,\ 4.180$		
$s_{12}^q, s_{23}^q, s_{13}^q, \delta_{CP}^q$	$0.2250,\ 0.04182,\ 0.00370,\ 65.6750^{\circ}$		
	$ \left(\begin{array}{ccc} 0.00011e^{i0.67714} & -0.00335e^{i1.79184} & 0.02874e^{i(-0.74991)} \right) $		
\widetilde{M}_e (GeV)	$-0.00261e^{i(-2.36319)} -0.10577e^{i(-2.70883)} -0.64387e^{i2.36816}$		
	$\left\langle 0.00000e^{i0.000000} \qquad 0.00000e^{i0.000000} \qquad 0.59512e^{i(-1.17142)} \right\rangle$		
	$\int 0.00013e^{i0.26925} 0.00065e^{i(-1.25936)} 0.00314e^{i0.96134}$		
$M_{ u} \; ({ m eV})$	$0.00065e^{i(-1.25936)} -0.02407e^{i2.14357} 0.01431e^{i(-0.64736)}$		
	$\left(\begin{array}{ccc} 0.00314e^{i0.96134} & 0.01431e^{i(-0.64736)} & 0.00000e^{i0.000000} \end{array}\right)$		
$m_e, m_\mu, m_\tau \; ({ m GeV})$	0.00048,0.10155,1.77686		
$m_{\nu_1}(eV), \Delta m_{sol}^2, \Delta m_{atm}^2(eV^2)$	$0.00276, 7.49 \times 10^{-5}, 0.00251$		

Modular symmetry suppresses first family masses

$$(\widetilde{M}_{u})_{11} \approx -\frac{9e^{-6\pi\tau_{I}+2i\pi\tau_{R}}\left(e^{4\pi\tau_{I}}-16e^{2\pi(\tau_{I}+i\tau_{R})}+576e^{4i\pi\tau_{R}}\right)\left(v_{\Sigma1}x_{1}+v_{1}y_{1}\right)\left(v_{\Xi1}w_{1}+v_{\Sigma1}z_{1}\right)}{128M_{1}}$$

Numerical scans show a restricted range for leptonic CP phase





Unconstrained Kahler potential

$$\mathcal{K} = \left(-i\tau + i\bar{\tau}\right)^{-k_{\psi}} \left(\psi^{\dagger}\psi\right)_{\mathbf{1}} + \sum_{n,\mathbf{r_1},\mathbf{r_2}} c^{(n,\mathbf{r_1},\mathbf{r_2})} (-i\tau + i\bar{\tau})^{-k_{\psi}+n} \left(\psi^{\dagger}Y_{\mathbf{r_1}}^{(n)\dagger}Y_{\mathbf{r_2}}^{(n)}\psi\right)_{\mathbf{1}}$$

minimal Kähler potential

non-canonical terms

unsuppressed since τ is dimensionless

Canonical normalisation can lead to sizeable corrections

One solution is to introduce a flavour symmetry as well as modular symmetry, leading to so called "Eclectic Flavour Symmetry"

It may help to be Goofy

Conclusions

- □ Flavour problem of Standard Model remains
- Symmetry may guide us GUTs and Flavour Symmetry
- Modular Family Symmetry motivated by String theory
- \Box Modulus field τ is the only "flavon" (minimal)
- Yukawa matrices in terms of the modulus field
- Introduce "weighton" to explain fermion mass hierarchies
- □ 10d model gives 3 moduli fields stabilised at fixed points
- □ SU(5) Orbifold GUT in 10d leads to predictive model
- □ First two families may be light due to modular seesaw
- Challenge to models from unconstrained Kahler potential