

eutrinos in Nnaturalness

Neutrons in ADD

Conclusion

# Infrared Neutrino Mass Models and how to test them

#### Manuel Ettengruber

Institut de Physique Théorique

#### in collaboration with: P. Eller, A. Zander, G. Dvali, A. Stuhlfauth



Manuel Ettengruber

Institut de Physique Théorique

- 2 Neutrinos in many species theories
- **3** Neutrinos in Nnaturalness
- 4 Neutrons in ADD
- **5** Conclusion

| ntroduction | Neutrinos in many species theories | Neutrinos in Nnat<br>000000 |
|-------------|------------------------------------|-----------------------------|
|             |                                    |                             |

#### Introduction: Neutrino Mass Models

- Seesaw Mechanisms
  - Seesaw I (right-handed singlet)
  - Seesaw II (scalar triplet)
  - Seesaw III (fermion triplet)
  - Inverse Seesaw (right-handed singlet, left-handed singlet)
- Radiative Neutrino Mass models
- Scotogenic model
- Gravitational Anomaly Mass Generation
- Extra Dimensions
- Many Species Theory
- Nnaturalness

Veutrinos in Nnaturalness

Neutrons in ADD 0000000 Conclusion 000

#### Introduction: Neutrino Mass Models

#### Ultraviolet models (UV)

- Seesaw Mechanisms
- Radiative Neutrino Mass models
- Scotogenic model

### Infrared models (IR)

- Gravitational Anomaly Mass Generation
- Extra Dimensions
- Many Species Theory > Many Mixing Partners
- Nnaturalness

Institut de Physique Théorique

Infrared Neutrino Mass Models and how to test them

Introduction Neutrinos in many species theories Neutrinos in Nnaturalness Neutrons in ADD

#### Introduction: Hierarchy Problem and IR models

 Many additional species one can lower the fundamental scale of gravity M<sub>f</sub> via [Dvali 2007]:

$$M_f = \frac{M_P}{\sqrt{N}}.$$
 (1)

- Large extra dimensions ADD model, N = 10<sup>32</sup> [Arkani-Hamed, Dimopoulos, Dvali 1998].
- Many copies theory ,  $N = 10^{32}$  [*Dvali, Redi 2008*].
- Nnaturalness, N = 10<sup>4</sup>, N = 10<sup>16</sup> [Arkani-Hamed, Cohen, D'Agnolo, Hook, Kim, Pinner 2017].





#### Manuel Ettengruber

Institut de Physique Théorique



• In IR models the SM neutrinos mix with many mixing partners. This can be seen from the Dirac operator

$$(HL)_i \lambda_{ij} \nu_{Rj} , \qquad (2)$$

where the subscripts *i*, *j* run over the additional mixing partners [*Arkani-Hamed*, *Dimopoulos*, *Dvali*, *March-Russel* 1998; *Dvali*, *Redi* 2008, *M.E.* 2022].

The Yukawa coupling λ<sub>i,j</sub> follows the perturbative constraint

$$\lambda_{i,j} \le 1/\sqrt{N} \ . \tag{3}$$

• Together with the species constraint (1) it leads to a neutrino mass of:

$$m_{\nu} \sim \frac{M_f}{M_P} v_{ew}$$
 (4)

- 2 Neutrinos in many species theories
- **3** Neutrinos in Nnaturalness
- 4 Neutrons in ADD
- **5** Conclusion



- In many species theories the existence of many additional SM dark copies is assumed. [*Dvali, Redi 2008*]
- The typical expression for flavor states in such theories looks like [*M.E. 2022*]:

$$|\nu_{e}\rangle = \sqrt{\frac{N-1}{N}} (U_{e1} |m_{1}\rangle + U_{e2} |m_{2}\rangle + U_{e3} |m_{3}\rangle) + \frac{1}{\sqrt{N}} (U_{e1} |m_{1}^{H}\rangle + U_{e2} |m_{2}^{H}\rangle + U_{e3} |m_{3}^{H}\rangle).$$
 (5)

The masses  $m_{1...3}$  are the usual masses of SM neutrinos and the masses  $m_{1...3}^H$  are with them related via  $m_i^H = \mu m_i$ . The massfactor  $\mu$  can range from 1 to 100 depending on the exact geometry in the species space.

Veutrinos in Nnaturalness

Neutrons in Al

Conclusion

#### Neutrino Oscillations in many species Theories



| Introduction | Neutrinos in many species theories | Neutrinos in Nnaturalness | Neutrons in ADD | Conclusion |
|--------------|------------------------------------|---------------------------|-----------------|------------|
| 00000        |                                    | 000000                    | 0000000         | 000        |
| Testing th   | ne Model by Neutrino I             | -<br>xperiments           |                 |            |

- The attempt is to make a combined neutrino fit with several different neutrino oscillation experiments to give a first bound on the parameters N and  $\mu$ . [*M.E., Alan Zander, Philipp Eller 2024*]
- Different type of neutrino experiments (accelerator, reactor, atmospheric,...) can probe different scopes of the masssplitting.
- We have analyzed the datasets of DayaBay, Kamland, Minos, NOvA, Katrin with a likelihood ratio test statistic.

leutrinos in Nnaturalness

Neutrons in ADD

Conclusion

#### First Combined Fit Result



- 2 Neutrinos in many species theories
- **3** Neutrinos in Nnaturalness
- 4 Neutrons in ADD
- **5** Conclusion

Neutrinos in Nnaturalness

Neutrons in ADE

Conclusion

#### Neutrino masses in Nnaturalness

In Nnaturalness the hierarchy problem is solved by a cosmological selection mechanism that chooses the the smallest negative higgs mass parameter out of an interval  $m_H = [-\Lambda_H^2, \Lambda_H^2]$ , where  $\Lambda_H$  stands for the scale of Higgs stabilizing physics. [Arkani-Hamed, Cohen, D'Agnolo, Hook, Kim, Pinner 2017].



Manuel Ettengruber

Institut de Physique Théorique

| Introduction | Neutrinos in many species theories | Neutrinos in Nnaturalness | Neutrons in ADD | Conclusion |
|--------------|------------------------------------|---------------------------|-----------------|------------|
| 00000        |                                    | 000000                    | 0000000         | 000        |
| Neutrino r   | masses in Nnaturalness             |                           |                 |            |

• The resulting VEV for the additional higgsed sectors is

$$v_i = \Lambda_H \sqrt{\frac{2i}{\lambda N} + \frac{r}{\lambda N}}$$
, (6)

and r ranges from 0 to 1 and quantifies the ammount of tuning.

- The neutrino mass could be either induced by the Dirac operator (2).
- Or through reheaton, S, exchange could a Weinberg operator be induced of the form

$$\frac{1}{m_S}(\bar{L}^c i\sigma_2 H)_i \lambda_{ij}(H i\sigma_2 L)_j.$$
(7)



• The resulting expression of a neutrino of our sector is [*M.E.* 2025]

$$|\nu_1\rangle = |\nu_1\rangle_m + \frac{1}{N}\sum_{i=2}^{N-1}\frac{\sqrt{2i+r}\sqrt{r}}{2i}|\nu_i\rangle_m + \frac{1}{N}|\nu_N\rangle_m \qquad (8)$$

• The scaling of the  $\Delta m_{i1}^2$  is

$$\Delta m_{i1}^2 \propto 2i$$
 Dirac Case, (9)

$$\Delta m_{i1}^2 \propto (i^2 - ir)$$
 Majorana Case . (10)









- 2 Neutrinos in many species theories
- **3** Neutrinos in Nnaturalness
- 4 Neutrons in ADD
- **5** Conclusion

Manuel Ettengruber

Institut de Physique Théorique

eutrinos in Nnaturalness

Neutrons in ADD

Conclusion

#### The ADD model

- Additionally to neutrinos also neutrons can be used to test such theories [*Dvali*, *M.E.*, *Stuhlfauth* 2023]
- Additional compactified extra dimensions

$$\mathcal{M} = \mathcal{M}_4 \times K_n \qquad (11)$$

 SM particles live on M<sub>4</sub>, particles uncharged under SM (e.g. graviton) live in M.



Neutrinos in Nnaturalness

Neutrons in ADD

Conclusion 000

#### Kaluza-Klein Tower

Particles that can propagate into the compactified extra dimensions form a Kaluza Klein mass tower

$$m_{\vec{k}} = \sqrt{\frac{k_1^2}{R_1^2} + \dots + \frac{k_N^2}{R_N^2}}.$$
 (12)

Neutron mixing with a bulk particle  $\boldsymbol{\Psi}$  can lead to the following effective Lagrangian

$$\mathcal{L} = \bar{n}\partial n - m_n \bar{n}n + \sum_k \left(\bar{\Psi}_k \partial \Psi_k - m_k \bar{\Psi}_k \Psi_k\right) + \alpha \sum_k \bar{n} \Psi_k + h.c.,$$
(13)

with

$$\alpha \equiv \frac{\Lambda_{\rm QCD}^3}{M_*^{2+N/2}\sqrt{V_N}} \lesssim 10^{-24} {\rm GeV} \,. \tag{14}$$

#### Manuel Ettengruber

Institut de Physique Théorique

| 00000 | 00000                      | 000000 | 000000 | 000 |
|-------|----------------------------|--------|--------|-----|
| N     | Minimum miller 1/1/ states |        |        |     |

#### Neutron Mixing with KK states

Resulting mass matrix

$$M = \begin{pmatrix} m_n & \alpha & \alpha & \alpha \\ \alpha & 0 & 0 & 0 \\ \alpha & 0 & m_{\vec{k}} & 0 \\ \alpha & 0 & 0 & m_{\vec{k'}} \end{pmatrix}.$$
 (15)

• Resulting neutron superposition and oscillation probability are

$$n = \frac{1}{\mathcal{N}} \left( n' + \sum_{\vec{k}} \frac{\alpha}{\Delta m_{\vec{k}}} \Psi_{\vec{k}}' \right)$$
(16)

$$P_{\mathrm{surv}}(t) = rac{1}{\mathcal{N}^4} \Big| 1 + \sum_{\vec{k}} rac{lpha^2}{\Delta m_{\vec{k}}^2} \exp\left(\phi_{\vec{k}}
ight) \Big|^2.$$

Manuel Ettengruber



| Introduction<br>00000 | Neutrinos in many species theories | Neutrinos in Nnaturalness | Neutrons in ADD<br>0000●00 | Conclusion<br>000 |
|-----------------------|------------------------------------|---------------------------|----------------------------|-------------------|
| Resulting             | bounds                             |                           |                            |                   |

# The strongest bound on this model comes from the bounded neutron lifetime

$$\tau_n > 10^{30} \,\mathrm{y} \to \lambda_n = \frac{2Z\Lambda_{QCD}^6}{\Delta m M_*^{4+N} V_N} \le \frac{1}{\tau_n} \,. \tag{17}$$

For different ADD scenarios, we get different bounds

| TABLE I.   | Bound  | on $M_*$ | for one | dominant | R | with | $M_f =$ |
|------------|--------|----------|---------|----------|---|------|---------|
| 10 TeV and | R = 30 | μm.      |         |          |   |      |         |

| Ν | <i>M</i> <sub>*</sub> [GeV] |
|---|-----------------------------|
| 3 | $>3 \times 10^{7}$          |
| 4 | $>1 \times 10^{7}$          |
| 5 | $>5 \times 10^{6}$          |
| 6 | $>3 \times 10^{6}$          |

TABLE II. Bound on  $M_*$  for equal size extra dimensions.

| Ν | <i>R</i> [µm]        | $M_*$ [GeV]        |
|---|----------------------|--------------------|
| 2 | 1.1                  | $>7 \times 10^{9}$ |
| 3 | $1.6 \times 10^{-5}$ | $>3 \times 10^{8}$ |
| 4 | $5.5 \times 10^{-8}$ | $>2 \times 10^{7}$ |
| 5 | $2 \times 10^{-9}$   | $>4 \times 10^{6}$ |
| 6 | $2.2 	imes 10^{-10}$ | $>8 \times 10^5$   |

Manuel Ettengruber

Institut de Physique Théorique

| Introduction<br>00000 | Neutrinos in many species theories | Neutrinos in Nnaturalness | Neutrons in ADD<br>00000●0 | Conclusion<br>000 |
|-----------------------|------------------------------------|---------------------------|----------------------------|-------------------|
| Resulting             | bounds                             |                           |                            |                   |

- If  $\Psi$  is massive with:  $m_n^{\rm bounded} \ll m_{\Psi}$ , the previous bounds are evaded.
- Neutron oscillation experiments can also test the KK tower of the neutron. The oscillation amplitude is

$$A \simeq \frac{\alpha^2}{|\epsilon - \Delta m|^2}, \qquad (18)$$

- For experiments in the regime  $|\epsilon-\Delta m|\sim\Delta m$ 

$$\frac{10 \text{TeV}}{M_f} \left(\frac{M_f}{M_*}\right)^{2+N/2} \frac{R^2}{R_{max}^2} \lesssim \frac{1}{3}.$$
 (19)

| Introduction |  |
|--------------|--|
|              |  |

eutrinos in Nnaturalness

Neutrons in ADD

Conclusion

Energy

#### Resulting bounds



$$\alpha \lesssim 10^{-14} \text{eV},$$
 (20)

(21)

 $0.8 \mu m < R < 10 \mu m.$ 



- 2 Neutrinos in many species theories
- **3** Neutrinos in Nnaturalness
- 4 Neutrons in ADD



Manuel Ettengruber

Institut de Physique Théorique

| Introduction<br>00000 | Neutrinos in many species theories | Neutrinos in Nnaturalness | Neutrons in ADD | Conclusion<br>0●0 |
|-----------------------|------------------------------------|---------------------------|-----------------|-------------------|
| Many addi             | itional signatures                 |                           |                 |                   |

- ADD and many species models predict Quantum Gravity effects at LHC.
- ADD and Nnaturalness predict a tower of additional light neutrino states that could influence neutrino mass maesurements like KATRIN [*Basto-Gonzalez, Esmaili, Peres* 2013, M.E. 2025].
- A tower of light neutrino states influencing neutrinoless double beta decay experiments [*M.E. 2025*].
- Axion physics could get influenced by many species and Nnaturalness model [*M.E., Koutsangelas 2023*]

. . .

| Introduction<br>00000 | Neutrinos in many species theories | Neutrinos in Nnaturalness<br>000000 | Neutrons in ADD<br>0000000 | Conclusion<br>00● |
|-----------------------|------------------------------------|-------------------------------------|----------------------------|-------------------|
| Conclusio             | n                                  |                                     |                            |                   |
|                       |                                    |                                     |                            |                   |

- IR neutrino mass models are motivated by the hierarchy problem.
- IR neutrino mass models offer an alternative to explain the smallness of neutrino mass.
- They are highly predictive with a limited set of BSM parameters.
- They have a smoking gun signature in the mass distribution of the additional neutrino states.
- Several different types of neutrino experiments are suited to search for their signatures.
- Many additional signatures in other low energy experiments.