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Motivation.

What if the weak scale is selected by cosmological 
dynamics, not symmetries? 

Special point in parameter space:
 
m2

H = 0 not related to a symmetry 
Instead, related to early-universe dynamics. 



Relaxion idea: Higgs mass parameter is field-dependent
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must settle  
close to Φc

UV cutoff

mH naturally stabilized due to back-reaction of the 
Higgs field after EW symmetry breaking !
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Relaxion mechanism.
[GKR: Graham, Kaplan, Rajendran ’15]

inspired by Abbott's attempt to solve the Cosmological Constant problem, ’85 

𝟇: relaxion, classically evolving pNGB. 
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𝝠: cutoff of the Higgs effective theory

[for a recent update see 2210.01148]

Dynamical Higgs mass, controlled by  vev of 𝝓:
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The (GKR) relaxion mechanism
• Dynamical Higgs mass, controlled by vev of �

• Rolling potential for �

• Higgs-vev-dependent relaxion barriers. �ℎ
2 = 0

symmetric phase symmetry broken

�ℎ
2 =−  88GeV 2

Stopping mechanism

Slow-roll dynamics during inflation, ��� = �′

3��
 

The relaxion stops near the first minimum:   Λ�
4 ∼ �Λ3�.

Graham et. al., 1504.07551
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Relaxion mechanism.

Slow-roll dynamics during inflation
Aleksandr Chatrchyan The role of fluctuations in the cosmological relaxation of the weak scale 4

The (GKR) relaxion mechanism
• Dynamical Higgs mass, controlled by vev of 𝜙𝜙

¾Rolling potential for 𝜙𝜙

• Higgs-vev-dependent relaxion barriers. 𝜇𝜇ℎ2 = 0

symmetric phase symmetry broken

𝜇𝜇ℎ2 = − 88GeV 2

Stopping mechanism

Slow-roll dynamics during inflation, 𝜙̇𝜙𝑆𝑆𝑆𝑆 =
𝑈𝑈′

3𝐻𝐻𝐼𝐼

The relaxion stops near the first minimum:   Λ𝑏𝑏4 ∼ 𝑔𝑔Λ3𝑓𝑓.

Graham et. al., 1504.07551

Higgs-vev-dependent barriers

Aleksandr Chatrchyan The role of fluctuations in the cosmological relaxation of the weak scale 4

The (GKR) relaxion mechanism
• Dynamical Higgs mass, controlled by vev of 𝜙𝜙

¾Rolling potential for 𝜙𝜙

• Higgs-vev-dependent relaxion barriers. 𝜇𝜇ℎ2 = 0

symmetric phase symmetry broken

𝜇𝜇ℎ2 = − 88GeV 2

Stopping mechanism

Slow-roll dynamics during inflation, 𝜙̇𝜙𝑆𝑆𝑆𝑆 =
𝑈𝑈′

3𝐻𝐻𝐼𝐼

The relaxion stops near the first minimum:   Λ𝑏𝑏4 ∼ 𝑔𝑔Λ3𝑓𝑓.

Graham et. al., 1504.07551

potential:

Relaxion stops near the first minimum
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where HI denotes the inflationary Hubble parameter. Under this assumption the field should
stop near the first local minimum,

0 = V
0(�0) = �g⇤3 +

⇤4
b
(�0)

f
sin

⇣
�0

f

⌘
. (2.7)

Usually the relaxion barriers increase by a small amount from one minimum to the next one.
This implies that sin(�0/f) is of order one and, hence, the stopping condition can be expressed
as

⇤4
b
(�0) ⇠ g⇤3

f. (2.8)

Several conditions must be satisfied for the slow-roll dynamics to be described by Eq. (2.6).
In particular,

• The Hubble parameter during inflation must be large enough so that the change of the
potential energy in the relaxion sector, which is of order �U ⇠ ⇤4(g/g

0) over the typical
field range, does not impact the expansion rate,

H
2
I >

8⇡

3

g

g0
⇤4

M
2
P l

(vacuum energy). (2.9)

If this condition is not satisfied, the backreaction of the relaxion on the Hubble expansion
must be taken into account (see e.g. [8] which considers similar e↵ects).

• The classical beats quantum (CbQ) requirement,

H
3
I < V

0 = g⇤3 (classical beats quantum). (2.10)

If this condition is not satisfied, inflationary quantum fluctuations, which produce random
kicks �� ⇠ HI per Hubble time t ⇠ H

�1
I

, cannot be neglected compared to the slow-roll.
Later in this work we discuss what happens if this constraint is dropped.

The two above conditions imply that the inflationary Hubble scale should be inside the
range

⇤2

MPl
< HI < g

1/3⇤. (2.11)

In the above expression we dropped order one prefactors for the sake of simplicity.
To ensure that the relaxion ends up at the correct Higgs vev, it must have enough time to

scan a typical field range �� ⇠ ⇤/g
0. Using (2.6), one arrives at the required minimum number

of e-folds during inflation

NI = HItI & Nreq =
3H

2
I

gg0⇤2
. (2.12)

This usually corresponds to a very long period of inflation. The slow-roll makes the dynamics
insensitive to the initial conditions, as long as it starts from a positive Higgs mass.

In the next subsections we present the relaxion parameter space in the QCD and the nonQCD
models.
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Relaxion mechanism.
[GKR: Graham, Kaplan, Rajendran ’15]

inspired by Abbott's attempt to solve the Cosmological Constant problem, ’85 

𝟇: relaxion, classically evolving pNGB. 
Higgs-relaxion potential

slope

The relaxion mechanism

Graham, Kaplan, Rajendran 1504.07551, PRL
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back-reaction term

The relaxion-Higgs coupling generates a rolling potential for the relaxion, of the following
form,

Uroll(�) = �g⇤3
�, g & g

0
/4⇡. (2.2)

Higher-order terms are also generated, however suppressed by powers of g�/⇤. The rolling
potential allows the relaxion to dynamically minimize the squared mass of the Higgs. We set
g ⇠ g

0 in most of our expressions, unless stated otherwise.

The second important ingredient for the mechanism are the Higgs-vev-dependent barriers in
the relaxion potential,

Ubr(�) = ⇤4
b
(h)[1 � cos(�/f)], (2.3)

which allow the relaxion to get trapped in a local minimum of its potential and, thus, select
a certain value for µ

2
h
. The latter should match the measured value of the Higgs mass, µ

2
h

=
�(88GeV)2. Here the negative sign is due to the broken symmetry, which leads to a nonzero

Higgs vev, hhi = vh =
q

(�µ
2
h
)/�h = 246GeV.

In the minimal model the relaxion is the QCD axion. The barriers for � then originate
from the anomolous coupling to gluons, �Gµ⌫G̃

µ⌫ . The parameter ⇤b, which is the topological
susceptibility of QCD, is computed to be around ⇤b = 75MeV (for the correct Higgs vev) at
temperatures below the QCD scale, T ⇠ ⇤QCD ⇡ 150MeV. The value of ⇤b depends on the
Higgs vev at least through the mass of the lightest quark [6]. In particular, if the Higgs is in the
symmetric phase, the quarks are massless (their mass is proportional to the Yukawa coupling,
mq = yqvh/

p
2), and there are no barriers. Once the Higgs develops a symmetry breaking vev,

the barrier height takes the form

⇤4
b

⇡ f
2
⇡m

2
⇡

mumd

(mu + md)2
⇡ ⇤3

QCDmu. (2.4)

In the nonQCD model, the Higgs-dependent barriers originate from an analogous coupling
of the relaxion to some hidden gauge group. The dependence on the Higgs vev in this case is
usually of the form ⇤4

b
/ (hhi2/v

2
h
).

To summarize, in both models the dynamics of the relaxion takes place in a potential of the
following form,

V (�) = �g⇤3
� + ⇤4

b
(�)[1 � cos(�/f)]. (2.5)

Here it is implicitly assumed that the Higgs adiabatically follows the minimum of its potential,
which in turn is determined by the value of �.

The relaxion gets trapped in one of its local minima, determined by the stopping mechanism.
The simplest one, as proposed by the authors in [1] is realized by assuming that relaxation takes
place during inflation and the relaxion is in the slow-roll regime 1, governed by

�̇ = �̇SR = �V
0(�)

3HI

, (2.6)

1
For the Hubble friction to be strong enough so that the relaxion tracks the slow-roll velocity from (2.6), the

rolling time between neighboring minima �t = 2⇡f/�̇SR should be larger compared to the Hubble time ⇠ H
�1

.

This was explained in [7], where the authors also investigated the relaxion scenario in both cases.

5
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𝝠: cutoff of the Higgs effective theory

[for a recent update see 2210.01148]
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The QCD and non-QCD models.
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The QCD and nonQCD models

The QCD relaxion model
• Higgs-dependent barriers from the QCD anomaly,

• Problem: the relaxion no longer solves the strong CP problem!

The nonQCD relaxion model
• Higgs-dependent barriers from a hidden gauge group

(stability of the potential)

2.2 The QCD model

In the model where the relaxion is a QCD axion, its barriers result from the QCD anomaly
and ⇤b is given by Eq. (2.4). This model, while minimalistic, leads to the reappearance of the
strong CP problem. More specifically, the local minimum of the relaxion potential from (2.7)
is displaced from the CP-conserving minimum of the cosine potential at sin(�0/f) = 0, due to
the rolling term. This generates an order one ✓-angle for QCD,

✓QCD =
�0

f
= arcsin

⇣
g⇤3

f

⇤4
b

⌘
, (2.13)

in contradiction with the experimental bounds ✓QCD < 10�10.

In order to reduce the CP violation, the authors of [1] proposed a modification to the set-
up, in which the slope of the rolling potential changes after inflation, so that ✓QCD < 10�10

is satisfied today. As can be understood from (2.13), the coupling gI during inflation and its
today’s value g should then satisfy

g = ⇠gI < 10�10
gI .

It is argued in [1] that such a modification can be achieved by an additional coupling of the
relaxion to the inflaton.

The new constraints on the relaxion can be obtained by replacing g ! gI = g/⇠ in (2.8),
(2.9) and (2.10). One obtains

⇤2

MPl

1p
⇠

< HI <

⇣
g

⇠

⌘ 1
3
⇤, and ⇤4

b
(�0) ⇠ g

⇠
⇤3

f (2.14)

Eliminating HI in the first equation and expressing g from the second equation one arrives at
the upper bound on the cut-o↵ scale ⇤ that can be successfully relaxed,

⇤ < 3 ⇥ 104GeV
⇣109GeV

f

⌘1/6⇣ ⇠

10�10

⌘1/4
. (2.15)

Here we used the benchmark value for the axion decay constant f = 109GeV from [1], which
is the typical lower bound from astrophysical constraints. We note that this bound is model-
dependent.

The parameter space for this model is shown in Fig. 1 in the g vs ⇤ plane. The green region
is excluded by the inequality (2.11) (after eliminating HI), which requires the relaxion to be
both subdominant as well as dominated by classical slow-roll. The blue region is excluded by
the stopping condition in (2.8) combined with requirement f > 109GeV. Inside the remaining
region the QCD angle can still be large. The inequalities from (2.14) with ⇠ = 10�10 exclude
the grey region, leaving the unshaded one with ⇤ < 3⇥104GeV available for the relaxion. Note
that the value of HI is not fixed in the figure. One can check that inside the allowed region it
is in the range 10�7⇤b < HI < 10�3⇤b

2.3 The nonQCD model

Larger cut-o↵ scales are possible in the nonQCD relaxion model. Here the barriers originate
from the confinment of some hidden gauge group. The parameter ⇤b is therefore an additional
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(stability of the potential)
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The classical non-QCD relaxion window.

Aleksandr Chatrchyan The role of fluctuations in the cosmological relaxation of the weak scale 6

How large masses/cut-offs can be relaxed?
1) Vacuum energy

The change of relaxion energy much less 
compared to the energy scale of inflation

2) Classical beats quantum

The slow-roll (𝜙̇𝜙 = 𝑔𝑔Λ3/3𝐻𝐻𝐼𝐼) per unit Hubble 
time dominates over the random walk (Δ𝜙𝜙 ∼ 𝐻𝐻𝐼𝐼) Λ2

𝑀𝑀𝑃𝑃𝑃𝑃
> 𝑔𝑔1/3Λ

Λ𝑏𝑏 > 𝑣𝑣ℎ

1) + 2) 
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Figure 2: The nonQCD relaxion parameter space in the g vs ⇤ plane, with the allowed region shown
in white. The violet, blue and green regions are excluded by Higgs mass scanning precision (2.18),
problematic radiative corrections for the barriers (4.7) and the CbQ constraint, respectively.

• The decay constant is assumed to be in the range

⇤ < f < MPl. (2.19)

Indeed, f > MPl is theoretically unreliable as it involves trans-Planckian physics, whereas
f > ⇤ assures that the relaxion as an e↵ective degree of freedom is present at scales below
the cut-o↵ scale ⇤.

The upper bound on the cut-o↵ scale can be estimated from (2.8), (2.9) and (2.10), as it
was done in the QCD model. Here we supplement these inequalities with the lower bound on
the decay constant from (2.19) and arrive at

⇤ < 4 ⇥ 109GeV
⇣ ⇤bp

4⇡vh

⌘4/7
. (2.20)

The parameter region in the g vs ⇤ plane for the nonQCD model is shown in Fig. 2. In
the white part relaxation can take place. In the violet region, the Higgs mass scanning is too
unprecise according to (2.18) for any allowed value of f . In the green region there is no value
for the inflationary Hubble parameter, such that the relaxion is both subdominant as well as in
the CbQ regime. The blue region is excluded by the stopping condition in (2.8) combined with
the lower bound on f and the upper bound on ⇤b.

In the next sections we introduce the stochastic formalism to describe the relaxion dynamics
and, afterwards, explain what happens if the CbQ condition is dropped.
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The nonQCD model

1) Vacuum energy

The change of relaxion energy much less 
compared to the energy scale of inflation

2) Classical beats quantum

The slow-roll (� = �Λ3/3��) per unit 
Hubble time dominates over the random 
walk (Δ� ∼ ��) Λ2

���
> �1/3Λ

Λ� > �ℎ

1) + 2) 
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Figure 1: The QCD relaxion parameter space in the g vs ⇤ plane, with the change of the slope after
inflation to conserve CP. The allowed region is shown in white. The blue region has an axion decay
constant below 109GeV, while the green region violates the CbQ constraint. In the grey region ✓QCD

cannot be less than 10�10.

free parameter in the nonQCD model and, in particular, can take values larger than 75MeV.
The dependence of the barrier height on the Higgs vev is usually of the form

⇤4
b
(h) = ⇤4

b

h
2

v
2
h

, (2.16)

where ⇤4
b

= ⇤4
b
(vh) denotes the barrier height at the measured Higgs vev. Moreover, there is

no constraint on the ✓ angle anymore and, hence, the trick of changing the slope of the rolling
potential is no longer required.

Below we summarize the constraints, that are relevant in the nonQCD model.

• The following upper bound is imposed on ⇤b

⇤b <

p
4⇡vh, (2.17)

which ensures that the barrier potential is stable against radiative corrections and, thus,
sensitive to the Higgs vev [7].

• Due to the larger barriers, the nonQCD model allows to have larger couplings g. Here one
has to take care that the local minima of the potential have a separation that is smaller
compared to the precision required to scan the Higgs vev [7]. In other words,

g
0⇤(2⇡f) < µ

2
h
. (2.18)
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The classical QCD relaxion window .
Local minima are not CP conserving
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The QCD model with a change of slope 
The local minima of the relaxion potential are not 퐶� conserving

 

Solution: the slope of the potential drops after inflation,

to reduce CP violation

Graham et. al., 1504.07551
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potential is no longer required.

Below we summarize the constraints, that are relevant in the nonQCD model.

• The following upper bound is imposed on ⇤b

⇤b <
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4⇡vh, (2.17)

which ensures that the barrier potential is stable against radiative corrections and, thus,
sensitive to the Higgs vev [7].

• Due to the larger barriers, the nonQCD model allows to have larger couplings g. Here one
has to take care that the local minima of the potential have a separation that is smaller
compared to the precision required to scan the Higgs vev [7]. In other words,

g
0⇤(2⇡f) < µ
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Figure 2: The nonQCD relaxion parameter space in the g vs ⇤ plane, with the allowed region shown
in white. The violet, blue and green regions are excluded by Higgs mass scanning precision (2.18),
problematic radiative corrections for the barriers (4.7) and the CbQ constraint, respectively.

• The decay constant is assumed to be in the range

⇤ < f < MPl. (2.19)

Indeed, f > MPl is theoretically unreliable as it involves trans-Planckian physics, whereas
f > ⇤ assures that the relaxion as an e↵ective degree of freedom is present at scales below
the cut-o↵ scale ⇤.

The upper bound on the cut-o↵ scale can be estimated from (2.8), (2.9) and (2.10), as it
was done in the QCD model. Here we supplement these inequalities with the lower bound on
the decay constant from (2.19) and arrive at

⇤ < 4 ⇥ 109GeV
⇣ ⇤bp

4⇡vh

⌘4/7
. (2.20)

The parameter region in the g vs ⇤ plane for the nonQCD model is shown in Fig. 2. In
the white part relaxation can take place. In the violet region, the Higgs mass scanning is too
unprecise according to (2.18) for any allowed value of f . In the green region there is no value
for the inflationary Hubble parameter, such that the relaxion is both subdominant as well as in
the CbQ regime. The blue region is excluded by the stopping condition in (2.8) combined with
the lower bound on f and the upper bound on ⇤b.

In the next sections we introduce the stochastic formalism to describe the relaxion dynamics
and, afterwards, explain what happens if the CbQ condition is dropped.
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The classical relaxion windows .



Role of quantum fluctuations 
during inflation: 

The Stochastic Relaxion .

The relaxion stops near the first local minimum, unless the Hubble 
parameter during inflation is large enough so that the random walk 
prevents it from getting trapped. 



CP is less violated if the relaxion stops at a 
much deeper minimum .
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CP is less violated if the relaxion stops later

The local minima are at 

Can fluctuations during inflation modify the stopping condition?

�

�

Can fluctuations during inflation modify the stopping condition?



Different approaches to the QCD relaxion .
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Different approaches to the QCD relaxion

Wrong stopping condition 
used, 

Nelson et. al., 1708.00010

Graham et. al., 1504.07551 Chatrchyan et al., 2210.01148
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Different approaches to the QCD relaxion

Wrong stopping condition 
used, 

Nelson et. al., 1708.00010

Graham et. al., 1504.07551



Preview of this talk.

- We revisit the original relaxion mechanism 
including the stochastic behavior of the relaxion

- Important consequences even in the “classical-
beats-quantum” regime, 

- We explore the regime“quantum-beats-classical”

- Large new region of parameter space

- Relaxion can naturally be dark matter



What if the 
“Classical-beats-Quantum”

(CbQ)
 condition is dropped ?

The relaxion stops near the first local minimum, unless the Hubble 
parameter during inflation is large enough so that the random walk 
prevents it from getting trapped. 



The Fokker-Planck formalism .
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Dropping the “classical-beats-quantum” constraint
The dynamics can be described in terms of a Fokker-Planck equation

Diffusion termDrift term

𝜌𝜌 𝜙𝜙 - probability distribution

Random kicks from low-𝑘𝑘 superhorizon fluctuations

e.g. 9407016 [Starobinsky-
Yokoyama]

Dynamics of quantum fluctuations of a light scalar field, m ≪ HI , in de 
Sitter spacetime can be described in terms a Fokker-Planck equation:

of the relaxion having its average 
field value inside the Hubble 
patch equal to φ at time t. 

describing  
slow-roll

equivalent to a Langevin equation, describing the Brownian motion of a particle. 



Stochastic dynamics of the relaxion .
In the relaxion potential, each local minimum is followed by a deeper one.
Diffusion effects + slope of the potential —> nonzero flux for the distribution function. 

Backwards flux of probability from the lower minimum is generated as well
but is smaller due to the larger barriers in the backwards direction.
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Diffusion generates a flux of probability to a lower minimum

Stochastic dynamics of the relaxion
In a bounded potential, 𝜌𝜌 𝜙𝜙 reaches equilibriumExact solution in the 𝑣𝑣ℎ = 0 region,

with

Hawking-Moss 
instanton

1

2

3

9407016
1708.00010

PLB 110 (1982) 35.

broadening of the distribution
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The stochastic formalism

• The relaxion vev receives random kicks from superhorizon fluctuations

• The dynamics can be described in terms of a Fokker-Planck equation

Diffusion introduces new effects, such as
• the broadening of the distribution,

• probability fluxes between neighboring local minima,

Diffusion termDrift term� �, �  - probability distribution
e.g. 9407016

Nelson et. al., 1708.00010

Hawking-Moss 
instanton

PLB 110 (1982) 35.



Stochastic dynamics of the relaxion .
Modified stopping condition: 
The relaxion is trapped at the minimum whose  lifetime 
is longer than the duration of inflation.

strength of diffusion

Aleksandr Chatrchyan From QCD axion to the relaxion 13

Illustration of the dynamics & stopping

The relaxion slows down after

The new stopping condition



Real-time numerical simulation of the FP equation .

Aleksandr Chatrchyan The role of fluctuations in the cosmological relaxation of the weak scale 15

Illustration of the dynamics & stopping
Probability distribution: 𝜌𝜌(𝜙𝜙)

Potential: 𝑈𝑈(𝜙𝜙)

First minimum,
Λ𝑏𝑏4 (𝜙𝜙) ∼ 𝑔𝑔Λ3𝑓𝑓

Wiggles appear
𝜇𝜇ℎ2 = 0

Field value

The new stopping condition,

The relaxion slows down after

>
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Real-time numerical simulation of the FP equation .
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Illustration of the dynamics & stopping
Probability distribution: 𝜌𝜌(𝜙𝜙)

Potential: 𝑈𝑈(𝜙𝜙)

First minimum,
Λ𝑏𝑏4 (𝜙𝜙) ∼ 𝑔𝑔Λ3𝑓𝑓

Wiggles appear
𝜇𝜇ℎ2 = 0

Field value

The new stopping condition,

The relaxion slows down after
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Illustration of the dynamics & stopping

The relaxion slows down after

The new stopping condition

>



Can the Relaxion be a QCD axion/solve 
the strong CP problem  ?

 former discussion: A. Nelson and C. Prescod-Weinstein, 1708.00010.  



QCD Relaxion parameter space  .

Aleksandr Chatrchyan From QCD axion to the relaxion 16

Strong CP problem solved if

and

QCD Relaxion parameter space

        

�QCD =arcsin 
�Λ3�
Λ�

4  ≈ � 1 

�QCD ∼arcsin 
�Λ3�
��

4  

QCD relaxion

�QCD =arcsin 
�Λ3�
Λ�

4  ≈ � 1 



Eternal Inflation  .
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Eternal inflation and volume weighting
• The minimum number of e-folds of inflation required to relax the Higgs 

mass from �ℎ ∼ Λ to �ℎ = 0 is given by

• If                            , inflation
is eternal.

• Eternal inflation has associated 
measure problems.

• Possible solution: using scale factor cut-off measure. Nelson et. al., 1708.00010

0802.1067



Non-QCD Relaxion.



Dropping the Classical-beats-Quantum 
condition for the non-QCD relaxion .

Hubble scale: 𝐻𝐻𝐼𝐼

Λ2/𝑀𝑀𝑃𝑃𝑃𝑃

𝑔𝑔Λ3
1
3

𝑔𝑔Λ3𝑓𝑓
1
4

𝑣𝑣ℎ

Q
uantum

 
beats classical

𝚲𝚲𝒃𝒃 ∼ 𝑯𝑯𝑰𝑰
(QbC II)

𝚲𝚲𝒃𝒃𝟒𝟒 ∼ 𝒈𝒈𝚲𝚲𝟑𝟑𝒇𝒇
(CbQ)

𝚲𝚲𝒃𝒃𝟒𝟒 ∼ 𝒈𝒈𝚲𝚲𝟑𝟑𝒇𝒇
(QbC I)

Classical beats 
quantum
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b ⇠ g⇤3

f

Figure 9: The nonQCD relaxion parameter space in the g vs ⇤ plane.

the inflationary Hubble parameter HI < 100GeV,

⇤ <

⇣ 3

8⇡

⌘1/4p
MPlHI ⇡ 2 ⇥ 1010GeV

⇣
HI

100GeV

⌘1/2
, (4.7)

The upper bound on the Hubble scale is required to have a relatively small spread in the relaxion
distribution at the end of relaxation, according to Eq. (3.7).

We show the allowed parameter region for this model in Fig. 9. As can be seen, compared
to Fig. 2 for the CbQ relaxion, the lower bound on the parameter region is replaced by the
upper bound on the cut-o↵ from (4.7).

Eternal vs noneternal inflation: As in the QCD model, it is important to check whether
the relaxion necessarily requires eternal inflation or not, i.e. the condition (4.6). Combining this
inequality with (2.9) and eliminating HI one arrives at the lower bound on g for noneternal
inflation,

g >
8p
2

⇤3

M
3
Pl

. (4.8)

The resulting parameter region is shown with the brown line in Fig. 9. Below the lower bound of
this region eternal inflation is required. Importantly, the lower bound approximately coincides
with the one in the CbQ relaxion, arising from eliminating HI in (2.11). The allowed region for
the CbQ relaxion is marked with the blue line in Fig. 9. The same applies for the upper bound
on the cut-o↵, which can thus be comparable to one in the CbQ case, given by Eq. (2.20).

If one restricts to the late stopping ⇤b ⇠ HI the allowed parameter region shrinks further.
In this case we have H

4
I

> (16⇡
2
/3)g⇤3

f > (16⇡
2
/3)g⇤4. Combining this with (4.6) and

eliminating HI one arrives at the lower bound, whereas combining with HI < 100GeV and
eliminating HI gives the upper bound,

24⇤2

MPl
< g <

3

16⇡2

(100GeV)4

⇤4
. (4.9)

22



Interactions of the relaxion .
The relaxion interacts via its mixing with the Higgs

Aleksandr Chatrchyan From QCD axion to the relaxion 20

Interactions of the relaxion
The relaxion interacts via its mixing with the Higgs

Flacke et. al., 
1610.02025

Hardy et al., 
1611.05852

Balaji et al., 
2205.01699
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Interactions of the relaxion
The relaxion interacts via its mixing with the Higgs

Flacke et. al., 
1610.02025

Hardy et al., 
1611.05852

Balaji et al., 
2205.01699

Light and stable in most of the parameter space: 
Can the relaxion be Dark Matter?



Relaxion Dark Matter 
from 

Stochastic Misalignment .
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Relaxion dark matter window

Can the relaxion explain dark matter?

“Classical beats quantum” regime (GKR): 

Small relic density

unless a high reheating temperature

“Quantum beats classical” regime:

See Banerjee et. al., 1810.01889

Typical displacement of 𝜙𝜙 from the minimum:

Relaxion Dark Matter .

Here ⇢
(w=1/3)
�,0 can be understood as today’s energy desnity in the case of w = 1/3 which is also

the prediction for the relic density in the previous case of Hrh > Hosc. As can be seen, w < 1/3
leads to a suppression of the relic density compared to the previous case.

Combining the 1(a) and 1(b) cases we can express the relaxion DM fraction as

⌦�,0

⌦DM

⇡ 0.2 ⇥ 10�6
⇣

m

eV

⌘�3/2⇣ HI

GeV

⌘4
min

n
1,

⇣
Hrh

Hosc

⌘ 1�3w
2(1+w)

o
. (5.12)

5.3 The relaxion DM window

The relaxion can naturally account for the observed dark matter in the universe for a wide
range of masses, which we discuss in this section.

To obtain the bounds on the mass we first set ⌦�,0 equal to ⌦DM . Assuming w = 1/3 one
arrives at

m ⇡ 10 eV
⇣

HI

100GeV

⌘8/3
. (5.13)

If we instead use w = 0, the upper bound on the mass becomes

m ⇡ 0.4 eV
⇣

HI

100GeV

⌘2⇣ Trh

100GeV

⌘1/2⇣g(Trh)

100

⌘1/8
. (5.14)

For the upper bound we simply impose HI < 100GeV for the inflationary Hubble scale in the
above expressions. Note that the upper bound depends on physics before reheating, which is
consistent with the fact that the onset of oscillations for masses that do not satisfy (5.3) is
before reheating.

A lower bound on the mass of relaxion DM can be imposed by requiring (4.6) to avoid
eternal inflation. Here the stopping condition near the first minimum is relevant and the �-
dependent prefactor in the expression for the mass, which is now expected to be small, should
be included. Inserting everything into the expression for the mass one can write

m
2 =

⇤4
b

f2
sin � ⇡

⇤4
b

f2
� ⇡

⇤6
b

f2⇤(�µ
2
h
)1/2

>

⇣ 3H
2
Ip

2⇡MP l

⌘3/2 ⇤2

f1/2(�µ
2
h
)1/2

. (5.15)

Rewriting this as an upper bound on HI and inserting into the expression for the relic density
with ⌦�,0 ⇠ ⌦DM one arrives at

m > 10�13eV
⇣ ⇤

TeV

⌘ 16
7
⇣

MP l

f

⌘ 4
7

(5.16)

For the lower bound above the oscillations start after reheating, according to (5.3).

To summarize, in a wide range of masses

10�13eV
⇣ ⇤

TeV

⌘ 16
7
⇣

MP l

f

⌘ 4
7

< m� < 10 eV , (5.17)

32
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Relaxion DM window

Brown: low reheating temperature, stochastic misalignment

Grey: high reheating temperature, misalignment from roll-on after reheating

Black: high reheating temperature, stochastic misalignment

Banerjee et. al., 1810.01889

Relaxion dark matter window .



Relaxion dark matter window .
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Trh < Tb, w = 1/3 (QbC)

Trh = 102GeV < Tb, w = 0 (QbC)

Trh = 1GeV < Tb, w = 0 (QbC)

Trh = 10MeV < Tb, w = 0 (QbC)

Trh � Tb, roll-on (CbQ and QbC)

Trh � Tb (QbC)

Figure 2: The relaxion DM window in the [m�, sin ✓h�] (top) and [m�, 1/f ] (bottom) planes. The

brown shaded regions correspond to the stochastic window in the QbC regime with Trh < Tb. Here

different lines correspond to different values of the equations of state parameter during reheating and

different values of the reheating temperature. The grey region shows the DM window from roll-on

for Trh � Tb, which was proposed in [13] for the CbQ regime, and extended here for the QbC case.

The stochastic window in the QbC regime for Trh � Tb is enclosed by the black solid line. The

constraints from fifth force experiments [24] (navy), stellar cooling [25] (purple) as well as from black

hole superradiance [26] (pink) are shown for the DM window.

where V (h, �) is given in Eq. (1.1). The DM window is highlighted in brown. We use the
same choices of w and Trh as in figure 1. Constraints arising from fifth force experiments,
including inverse-square-law and equivalence-principle tests [28–34], are shown in navy, while

– 9 –



Relaxion dark matter window .
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Trh = 10 MeV < Tb, w = 0 (QbC)

Trh � Tb, roll-on (CbQ and QbC)
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Figure 3: The relaxion DM windows (in brown and grey), in the [⇤, g] (top) and the [f, HI ] (bottom)

planes, complementing figure 2.

time interval. Here one has to make sure that the field gets trapped again once the barriers are
back. The displacement was computed in [13], and in section 4.1 we revisit the computation
generalizing it to the QbC regime. As it was seen in the previous section, the stochastic
misalignment of the relaxion cannot explain the observed DM abundance in the universe in
the CbQ regime. This is however not true when Trh � Tb. In the later case, the additional
displacement of the relaxion can itself generate the required misalignment to explain DM as
it was found in [13]. We discuss this DM window in section 4.2, first in the CbQ regime and
then extend it to the QbC regime. Finally, in section 4.3, we construct the stochastic DM

– 11 –



Summary Non-QCD relaxion: A rich spectrum of possibilities: 

36

“Classical beats Quantum” “Quantum beats classical”
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Figure 4: The relaxion parameter region in the [⇤, g] plane for the CbQ (left) and QbC (right)

regimes for small (top) and large (bottom) reheating temperatures. Constraints from meson decays,

stellar cooling, late decays (1s < ⌧� < 1026
s), black hole superradiance and density-induced runaway

(in NSs) are incorporated. The region where the relaxion can explain DM is inside the black dashed

lines, where also the contours of log10(HI,max) are shown. In the low-temperature reheating scenario

w = 0 before reheating is assumed. The laboratory and the astrophysical constraints under the

additional assumption that the relaxion explains DM are not shown here and can be found in the

upper panel of Fig. 3.

DM window is determined by the values of g, ⇤ and f and by physics after inflation, while
the value of HI is irrelevant.

The QbC regime: Larger values of inflationary Hubble scales HI are available in the
QbC regime. It is thus important to find the additional parameter region for the DM window,
that opens up if one drops the CbQ condition.

For reasons explained in the previous section, we consider only the case when the field
stops at ⇤4

b ⇡ g⇤3
f and � ⌧ 1, i.e. the QbC I regime. Increasing HI increases also the

stochastic misalignment, which can be computed using Eq. (2.5). To ensure that the stochastic

– 15 –

[2210.01148]



QCD Relaxion Dark Matter window .
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Figure 5: Upper row: the QCD relaxion DM window in the [⇤, g] (left) and in the [1/f, m�] (right)

planes. In the left plot, the contours of the minimal value of ✓QCD are shown inside the region where

the relaxion can constitute the totality of DM. In the right plot, the current and projected sensitivities

of haloscope experiments are shown, assuming a KSVZ axion model. Different benchmark cases are

displayed along the QCD line. Lower row: a schematic illustration of the different value of ✓QCD,

determined by the linear slope, in the QCD relaxion model (red), compared to the standard QCD

axion case (black) which predicts ✓QCD . 10�17
(see e.g. [52]). The first panel depicts the decaying

oscillations of ✓QCD while the remaining two panels illustrate the potential energy for both cases.

show in this section how the QCD relaxion can be the DM, overlooking the eternal inflation
issue. In the original proposal [1], the QCD axion can be the relaxion in the CbQ regime if
a change of the slope of the potential after inflation can be engineered, but the cutoff scale
is limited to O(30) TeV. The corresponding region of parameter space is shown in the upper
left plot of figure 5 (see also [10]). In the following, we show that the QCD axion can be
the relaxion up to large cutoff scales and constitute DM. We review both the low and high
reheating temperature cases. The DM discussion is essentially the same in the CbQ and QbC
regimes, only the corresponding regions of parameter space are different.

6.1 QCD relaxion dark matter for Trh < Tb

The energy density due to the stochastic misalignment can be estimated using the formulas
from section 2 where, for the QCD relaxion, we require that the reheating temperature does
not exceed Tb = ⇤QCD ⇡ 150 MeV. The field is typically misaligned by �� ⇠ f from its local
minimum, which follows directly from the modified stopping condition HI ⇠ ⇤b [10]. This is
also true for the model of [1] where, although HI is much smaller, the change of the slope

– 18 –



Fluctuations are important 
even in the ‘Classical-

beats-Quantum’ regime !



Classical-beats-quantum regime .

The relaxion does not stop at the first 
minimum!

4

where we have scaled f by its lower bound of 109 GeV set by astrophysical constraints on the QCD axion (see for
example [17]).

Note that in order to have a cuto↵ M above the weak scale, mW, Eqn. (8) requires gf ⌧ m
2
W. This implies that

the e↵ective step size of the Higgs mass from one minimum to the next is much smaller than the weak scale. So the
barriers grow by a tiny fractional amount compared to ⇤QCD per step. Classically � stops rolling as soon as the slope
of its potential changes sign. However since gf ⌧ m

2
W, the slope of the first barrier after this point is exceedingly

small, much smaller than ⇤4
/f . Therefore around this point, quantum fluctuations of � will be relevant. The field �

will be distributed over many periods f (see Figure 2), but in all of these the Higgs will have a weak-scale vev. This
quantum spreading is an oddity of the model. As the universe inflates, di↵erent patches of the universe will have a
range of � field values and a range of Higgs vevs, but all around the weak scale. In future work, we will show it is
possible to build models which land the full initial patch in a single vacuum, thus removing this feature of our solution
[18].

(a)

(b)

(c)

(d)

V (�)

�

FIG. 2: A close up of the region of �’s potential as the barriers appear. The evolution in these regions are (a) classical rolling
dominated, (b) dominated by quantum fluctuations in the steps but classical rolling between steps, (c) classically stable, but
quantum fluctuations/tunneling rates shorter than N e-folds, and (d) classically stable, quantum transition rates longer than
both N e-folds and 10 Gyr. Again, for clarity, the potential is not to scale.

Some of the resulting � range is before the classical stopping point and is therefore classically unstable. The rest is
in � vacua with varying potential barrier heights. Far enough beyond the classical stopping point, � reaches barriers
where the slope pushing � backwards towards a minimum is O(1) of the original slope gM

2. By this point the
quantum jumps of size Hi can no longer walk � out of each minimum. The lifetime of these vacua is much longer
than the current age of the universe because tunneling rates are exponentially suppressed. In addition, if inflation
lasts longer than ⇠ 10 Gyr (typical in our parameter space), this will easily guarantee that most patches populate
the stable-enough vacua. Therefore, it is highly likely to end up in a patch of the universe which is at the weak scale
and lives much longer than 10 Gyr. As a result of these multiple vacua, there will be domain walls after reheating in
the full initial patch of the universe. However these domain walls will be spaced by distances much larger than our
current Hubble size because we have much more than 60 e-folds of inflation in any one vacuum, and are therefore
unlikely to be observable.

We wish to avoid eternal inflation in our scenario because at least some part of the universe would end up with a
Higgs vev above the weak scale. The decay rates to such vacua are exponentially suppressed but with a long enough
period of inflation, some fraction of the universe would end up there before reheating. Although this might naively

classical 
rolling



Classical-beats-Quantum regime .

The relaxion does not stop at the first 
minimum but at the 10𝓁 th !

105 108

⇤ [GeV]

10�50

10�37

10�24

10�11

g

f = 109GeV: log10(lmax)

0

5

10

15

20

25

105 108

⇤ [GeV]

10�50

10�37

10�24

10�11

g

f = 1014GeV: log10(lmax)

0

5

10

15

20

25

105 108

⇤ [GeV]

10�50

10�37

10�24

10�11

g

f = 1019GeV: log10(lmax)

0

5

10

15

20

25

Figure 5: In which (l-th) minimum does the relaxion stop in the CbQ regime? For three values of the
decay constant f = 109GeV, f = 1014GeV and f = 1019GeV (corresponding to the first, second and
the third columns), the minimal (upper row) and maximal (lower row) values of l (depending on HI) for
each point in the g vs ⇤ plane are shown. As can be seen, l can be as large as 1025 for small values of
g, while at the same time l = 1 in the large white regions for large g.

However, before doing that, in this section we revisit the relaxion mechanism in the CbQ
regime, focusing on the nonQCD model. Importantly, even in this case the relaxion does not
necessarily get trapped in the first local minimum if stochastic e↵ects are taken into account.
If B < 1 at the first minimum, the relaxion will overshoot it and get trapped only after B ⇠ 1
is satisfied. The width of the distubution is usually not too large in this case. The final local
minimum can be estimated by taking the � ⌧ 1 limit in (3.18) and using the �l =

p
l�1 relation

for the l-th local minimum in that limit, derived in appendix B, which leads to

l ⇠
⇣ 3d

2�
3
1

⌘2
. (3.20)

In Fig. 5 we plot the minimum and maximum value of l as a function of g and ⇤ for the nonQCD
relaxion model from section 2. We fix several benchmark values for the decay constant f , after
which l is a function of the Hubble scale HI . As can be seen, in some regions of the parameter
space l = 1 holds (the large white regions in the upper part), while in other regions l can be as
large as 1025.

Knowing in which minimum the relaxion ends up allows one to study more carefully the
stability of that local minimum after inflation. In [14] the authors considered the behavior of
the relaxion in dense environments, such as stars. Finite density e↵ects can modify the e↵ective
relaxion potential and suppress the height of its barriers. For the nonQCD relaxion this e↵ect
is because the Higgs vev, which determines the height of the barriers, depends among other on
the density of fermion fields coupled to the Higgs, including baryons. Based on this the authors
of the paper derived constraints on the relaxion parameter space by requiring that no relaxion
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Knowing in which minimum the relaxion ends up is crucial to study the 
stability of that local minimum after inflation.

In particular: the behavior of the relaxion in dense environments, such as 
stars. 

Height of barriers depends on Higgs vev which depends on the density of 
fermion fields coupled to the Higgs, including baryons. 
—>
Finite density effects can modify the effective relaxion potential and 
suppress the height of its barriers. 

“
[Balkin, Serra, Springmann, Stelzl, Weiler, 2106.11320]

Implications for the 
“Runaway relaxion from finite density”.



Require that no relaxion bubbles of lower local minima can form in neutron 
stars, white dwarfs and sun-like stars. 

condition for  barrier to 
disappear inside the 
core of the star:

Figure 6: The constraints from the formation and escape of a relaxion bubble induced by neutron stars
(red), white dwarfs (blue), and the Sun (green), in the case of the nonQCD relaxion in the CbQ regime.
In the upper row l is set to one, while in the lower row it is determined from Eq. (3.20) corresponding
to a suppressed escape rate from the local minimum.

bubbles of lower local minima can form in neutron stars, white dwarfs and sun-like stars. We
use the relevant formulas from [14], which involve requiring that barrier disappears inside the
core of the star,

n > 3 ⇥ 10�3MeV3
⇣ TeV

⇤/
p

l

⌘2⇣ ⇤b

MeV

⌘4
, (3.21)

and that the bubble that emerges from this can overcome the pressure and expand outwards,

r >
⇤2

b

g⇤3
. (3.22)

Here r and n are the typical radius and the average baryonic density for the objects of consid-
eration. We use the values of these parameters from [14].

As can be seen, the constraints depend on the value of l. In the figure 6 below we present
the exclusion regions for l = 1 as was shown in the paper, as well as the constraints for l

determined from the condition that B ⇠ 1. As can be seen, the constraints become weaker and,
in particular, only the neutron stars remain relevant. We note that the constraints are even
weaker in the QbC regime due to larger values of l.

4 Implications of dropping the classical-beats-quantum condi-
tion

Having discussed the stochastic dynamics, we now apply our results to the QCD and nonQCD
relaxion models and discuss the implications of dropping the QbC condition. To summarize,
the parameter space of the relaxion can be split into three regimes depending on the value of
the Hubble parameter HI during inflation:
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overcoming the pressure and 
expanding outwards:

Implications for the 
“Runaway relaxion from finite density”.
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baryonic 
density
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“
[Balkin, Serra, Springmann, Stelzl, Weiler, 2106.11320]
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Relaxion safe from finite density effects! .

Almost no dangerous runaway-relaxion region.



Conclusion.
- We explored the stochastic window for the relaxion.

- We explore the regime“Quantum-beats-Classical”

- Full determination of the viable regions of 
parameter space (HI, f, g, 𝝠)

- Relaxion can naturally be dark matter

- We determined precisely the stopping minimum 
(very far from the first one even in the Classical-
beats-Quantum regime —> no runaway from 
high-density effects)

- We derived a new stopping condition.



A new approach to the hierarchy problem based on intertwined 
cosmological history of Higgs and axion-like states.

Connects Higgs physics with inflation & (DM) axions.

An existence proof that technical naturalness does not require new 
physics at the weak scale

no signature at the LHC , new physics are weakly coupled
light states  which couple to the Standard Model through 

Change of paradigm:

their tiny mixing with the Higgs.

Experimental tests from cosmological overabundances, late decays, 
Big Bang Nucleosynthesis, Gamma-rays, Cosmic Microwave Background...

Christophe Grojean BSM CERN, July 2015100

Higgs-axion cosmological relaxation

⇤ <
�
v4M3

P

�1/7
= 3⇥ 109 GeV

An existence proof
of a model with a quantum stable mass 
gap between the weak scale and the 

new physics threshold Λ 

interesting cosmology signatures
◎ BBN constraints
◎ decaying DM

◎ ALPs
◎ superradiance

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant ’15

a solution to the hierarchy pb
with no signature at the LHC,

 nor at other high-energy machine!

General Summary on Relaxion.
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Figure 2. Parameter space projected in the ⇤, g0 plane of the relaxion mechanism taking
place with Higgs-dependent barriers, during inflation, where the relaxion is a subdominant
component of the energy density of the universe (non-QCD case of [1]), as described in
Section 3.1. Shown are three distinct stopping mechanisms. ‘Hubble friction’ corresponds
to the mechanism discussed in [1]. Each of these regions is associated with distinct values
of the inflationary scale and the relaxion mass, as illustrated in Fig. 4. In other words, none
of these regions overlap in the full parameter space. Benchmark point a can be reached by
all three stopping mechanisms. Benchmark point b cannot be reached by fragmentation.
Benchmark points c and d can only occur through ‘Hubble friction’. In the region below
the line �� = ⇤/g0 = MPl, the field excursion is super-Planckian.

Figure 3. Minimal number of efolds in the scenario where relaxation takes place during
an inflation era for the three stopping mechanisms discussed in Sec. 3.1. Same color code
as in Fig. 2. Below the solid line the field excursion ⇤/g0 is super-Planckian.
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Parameter space of different stopping 
mechanisms during inflation .

Consequence of fragmentation: 
A smaller number of efolds needed!

Relaxion fragmentation: 
A non-baroque solution to the little 

hierarchy problem

Classical relaxion  [1911.08473]
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E.3 Self-stopping relaxion triggering a stage of inflation
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Figure 28. Allowed parameter space in the plane g
0
,⇤ for the case discussed in Sec. 3.3,

of a self-stopping relaxion, where the relaxion dominates the energy density of the universe
during relaxation and drives an inflationary period. The dotted lines are the contours of
number of efolds of inflation, log10(Nefolds).
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3.3 Relaxion inflating the Universe

As a last possibility, we consider the one in which the relaxion dominates the energy
density (as most of the cases above) but, instead of Eq. (3.25), we assume that the
relaxion slow rolls, thus driving a period of inflation

�̇0 = �̇SR =
g⇤3

3H
, with H =

⇤2

p
3MPl

. (3.38)

Note that to be consistent with the effective field approach, �̇SR has to satisfy

1

2
�̇

2
SR < ⇤4

. (3.39)

In Fig. 39 in App. F we illustrate an example of such a case and the parameter
space consistent with this scenario in the g

0
, ⇤ plane is depicted in Fig. 6, where we

assume g = g
0. The benchmark point corresponds to

Benchmark h : ⇤ = 100 TeV, g
0 = 3 ⇥ 10�16

. (3.40)

The allowed em� range for such benchmark is given by

Benchmark h : em� 2 [0.2, 3 GeV]. (3.41)

We refer to Appendix E.3 for more details about the parameter space.
Comparing the parameter space in Fig. 6 with the case without inflation in

Fig. 5, we see that this case allows for a larger cutoff, while constraining much more
the range of the coupling g

0. This scenario has similarities with the third case relaxion

fragmentation discussed in section 3.1.
A scenario in which the relaxion is the inflaton was discussed in Ref. [30]. At

least two non-trivial additions were required. First, in [30], a Chern-Simons coupling
between the relaxion and a dark photon is included. The dark photons carry very
low momentum at the end of inflation such that the particles cannot be thermalized
through perturbative scatterings. On the other hand, such low momentum photons
have large occupation number generating a strong electromagnetic field, which then
allows for the vacuum production of electron-positron pairs via the Schwinger effect.
In order to reheat the universe at temperatures above the electron mass using the
mechanism in [30], it is crucial to couple the relaxion to a dark photon, which in turn
has a kinetic mixing with the Standard Model photon. Second, the curvature pertur-
bations in the simplest model are suppressed. Therefore, the relaxion only addresses
the horizon and flatness problems but not the origin of cosmological perturbations
and the addition of a curvaton field is necessary. In our case, we simply assume that
the relaxion-driven inflation precedes the inflationary period that ends with the Big
Bang Nucleosynthesis and originates the cosmic microwave background curvature
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Relaxion fragmentation: 
Inflation sector not even needed

Classical relaxion



F Cosmological histories

In this appendix, we illustrate and comment on the possible cosmological scenarios
that could arise in the various cases we have discussed.

First, in the case of relaxation with Higgs-dependent barriers which happens dur-
ing inflation (Section 3.1), we assume the energy density of the universe is dominated
by the inflaton, and the relaxion is a subdominant component (see Fig. 34). The
universe is eventually reheated from the inflaton energy density and cosmological
perturbations are inherited from the inflaton. Generally, the energy density stored
in relaxion oscillations is subdominant, see e.g. [2]. One has nevertheless to make
sure that the relaxion vacuum energy density does not eventually take over, so it
should decay (for instance by introducing a new coupling to gauge bosons) or the
corresponding cosmological constant should be cancelled. In the new scenario that
we have discussed where the relaxion stops because of fragmentation (section 3.1.3),
most of the relaxion kinetic energy goes into relaxion particles which behave as hid-
den radiation that gets diluted away by inflation. Note also that in this case, the
number of efolds and the inflation scale can be small (see Fig. 4 and Fig. 3), this
means even a short late stage of inflation is enough for relaxation of the EW scale,
and we do not have to impose necessarily that this stage of inflation is responsible
for cosmological perturbations.

In the case of relaxation before inflation with axion fragmentation (section 3.2),
there is no concern and standard big bang cosmology can proceed. This case is shown
in Fig. 35.

We now discuss the case where relaxation takes place after inflation, while the
universe has been reheated into some hidden radiation, and ends because of axion
fragmentation (Sec. 3.2). Fig. 36 shows the situation where the relaxion is a subdom-
inant component of the energy density during relaxation, for which there is no need
to worry about overclosure of the universe by the relaxion. The underlying assump-
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Figure 34. Sketch of the energy density of the universe as a function of the scale factor
in the scenario discussed in Sec. 3.1 where relaxation happens when the energy universe is
dominated by the inflaton potential.
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Figure 35. Sketch of the energy density of the universe as a function of the scale factor
when relaxation happens before inflation and ends because of axion fragmentation.

tion is that the relaxion potential emerges from a sector independent from the one
dominating the energy density. In contrast, Fig. 37 corresponds to the case where
the relaxion potential emerges due to coupling to the hidden radiation and therefore
relaxation starts when the relaxion energy density dominates. In this case, we need
to introduce a coupling to photons as discussed in Sec. 3.2.1 to avoid that the relax-
ion energy density takes over eventually and overclose the universe. The evolution of
the equation of state of the universe until fragmentation starts is shown in Fig. 38.
In the cases (a-b-c) of Fig. 37, we need to assume that the relaxion eventually decays
into photons to recover a standard radiation era. In case (d), we assume a stage of
kination domination may enable hidden radiation to dominate after relaxation.

Finally, there is the case where the relaxion drives a stage of inflation as discussed
in Sec. 3.3. This is illustrated in Fig. 39. At the end of relaxation, the energy
density of the universe is in relaxion radiation. This should be followed by a stage
of standard inflation and then by reheating (we know that the relaxion cannot lead
to the correct size of perturbations [27]). Alternatively, this period can follow the
standard inflationary epoch in which curvature perturbations are generated, provided
that it lasts for less than O(10) efolds.
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before inflation 
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Figure 36. Sketch of the energy density of the universe as a function of the scale factor
in the case where relaxation takes place after inflation and when the energy density of the
universe is dominated by a hidden sector that later decays into the SM.
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Figure 37. Sketch of the energy density of the universe as a function of the scale factor
for cases where relaxation happens after inflation when the energy density is dominated
by the relaxion field, i.e. H ⇠ ⇤2

/(
p
3MPl). (a): Hidden sector red-shifts as radiation,

which makes this scenario very constrained by dark radiation bounds; (b): Hidden sector
red-shifts faster than radiation !h > 1/3 (as a kination-like period); (c): There is a period
of matter domination after relaxation. (d): Hidden sector red-shifts as radiation and at the
end of relaxation !� > 1/3 (kination-like). At late times the hidden sector decays into the
Standard Model particles.
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relaxation 
after inflation  
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driving inflation

Figure 38. Equation of state of the universe in model with self-stopping relaxion, for
⇤b = 800 GeV, ⇤ = 8 TeV, g = 2 ⇥ 10�14, and f is determined by the stopping condition.
This corresponds to the cases in Fig. 37 where the relaxion dominates the energy density.
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Figure 39. Sketch of the energy density of the universe as a function of the scale factor
in the scenario where the relaxion drives an inflationary period.
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gigantic number of e-folds Ne nor a small Hubble rate during inflation HI);

• sub-Planckian field excursions for the relaxion;

• the barriers of the relaxion periodic potential are independent from the Higgs
vacuum expectation value;

The plan of the paper is the following. In Section 2, we discuss the general condi-
tions for realizing the relaxion mechanism after inflation. In Section 3, we discuss the
conditions for using particle production as friction instead of inflation. We consider
first Higgs particle production and then gauge boson production. In Section 4, we
present the induced relaxion couplings to photons and fermions. Section 5 lists all
requirements and summarizes the result of the combination in terms of constraints
on the cutoff scale and relaxion coupling to the Higgs. The relaxion properties are
presented in Section 6. We then consider in Section 7 the phenomenological, cosmo-
logical (relic abundance and Big Bang nucleosynthesis) and astrophysical constraints
and determine the parameter space where a successful implementation is realised. We
conclude in Section 8. The equations of motion for the Higgs, relaxion and the gauge
bosons are reproduced in Appendix A, with a display of their numerical solutions.

2 General conditions for relaxation after inflation

The scalar potential for the Higgs h and relaxion � fields reads:

V (�, h) = ⇤4
� g⇤3�+

1

2

�
�⇤2 + g0⇤�

�
h2 +

�

4
h4 + ⇤4

b
cos

✓
�

f 0

◆
, (2.1)

where ⇤ is the cutoff scale up to which we want to solve the hierarchy problem
using the relaxion. The relaxion � is an axion-like field with decay constant f 0. The
dimensionless couplings g and g0 are assumed to be spurions that quantify the explicit
breaking of the axion shift symmetry, and ⇤b is the scale at which the � periodic
potential is generated. The term ⇤4 cancels the final value of the cosmological
constant and corresponds to the usual tuning of the cosmological constant.

We want the scanning of the Higgs mass parameter to occur when the inflaton
is a subdominant component of the energy of the universe so as to decouple the
relaxation scenario from inflation. For that, a crucial difference with respect to
the original relaxion scenario [1] is that we start in the broken electroweak phase,
where the Higgs mass parameter in the Higgs potential is large and negative [10].
Another important difference is that that the amplitude ⇤4

b
of the cosine potential is

constant and does not depend on the Higgs vacuum expectation value.2 We require
2The existence of large barriers was also present in the double scanning mechanism of the CHAIN

model presented in [2].
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Figure 1: Schematic parameter space in the three main non-supersymmetric relaxion models.
See [2] for the derivation of the constraints on the parameter space.
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Table 1: Summary of parameter values in the three non-supersymmetric relaxion models.

potential terms of the type

V ⇠ A cos(
�

feff

) + B cos(
�

feff

)h2 + C(h) cos(
�

f
), feff ⇠ e

⇣N
f � f (7)

In this context, both the slope responsible for the rolling of the relaxion and the �-dependent
Higgs boson mass term do not come from an explicit breaking of the discrete shift symmetry
of the relaxion.

The relaxation mechanism then remains the same as the original one. It is conceivable
that one could combine this construction with [2] to address as well the coincidence problem
[20].

We will see whether similar structures can be made manifest in axion monodromy string
constructions.

2.3 Realizing the Higgs

Our discussion will be centered on the justification of the second term in (1). On the other
hand, we should also try to see how to couple the relaxion to the Higgs.
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Origin of

1 Introduction

Our understanding of Nature is based on the empirical evidence that natural phenomena

taking place at di↵erent energy/distance scales do not influence each other. At present,

these di↵erent phenomena are described by a succession of e↵ective theories with di↵erent

degrees of freedom manifesting themselves as shorter and shorter distances are probed. The

parameters of the low-energy e↵ective theory are natural if they do not require any special

tuning of the parameters of the theory at higher energies.

Wilson [1] and ’t Hooft [2] gave a quantitative meaning to this naturalness principle

by demanding that all dimensionless parameters controlling the di↵erent e↵ective theories

should be of order unity unless they are associated to the breaking of a symmetry. Numerous

examples of the naturalness principle to understand the necessity of new phenomena have

been extensively discussed in the literature (see for instance [3] and references therein).

The Higgs boson mass and the value of the cosmological constant have been long recog-

nized as two notorious challengers of this naturalness principle, a situation that stimulated

the creativity of physicists in finding extensions of the Standard Model at higher energies.

In most of these e↵orts to explain the smallness of the Higgs mass, such as supersymmetric

and composite Higgs models, new physics is predicted to be present at TeV energies. Re-

cently, however, a radically new approach to the Higgs mass hierarchy problem has been

proposed [4], in reminiscence of the relaxation mechanism of [5] proposed for explaining dy-

namically the smallness of the cosmological constant (see [6, 7] for similar previous ideas).

In principle, in this new approach no new degrees of freedom around the TeV scale are

needed anymore to screen the Higgs mass from large quantum corrections. This has of

course profound implications for the physics agenda of the LHC and beyond.

Technically, the relaxation mechanism of [4] is based on the cosmological interplay be-

tween the Higgs field h and an axion-like field �, arising from the following three terms of

the scalar e↵ective potential:

V (�, h) = ⇤3g�� 1
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where ⇤ is the UV cut-o↵ scale of the model, while ⇤c . ⇤ is the scale at which the periodic

cos(�/f)-term originates and n is a positive integer. The first term is needed to force � to

roll-down in time, while the second one corresponds to a Higgs mass-squared term with a

(positive) dependence on � such that di↵erent values of � scan the Higgs mass over a large

range, including the weak scale. Finally, the third term plays the role of a potential barrier
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but leads to θQCD~1 due to the tilt !

it must be arranged such that at the end of inflation, the tilt disappears

one gets: Λ≲30 TeV (1000 TeV if the tilt changes sign) (HI ~10-9 GeV)
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by demanding that all dimensionless parameters controlling the di↵erent e↵ective theories

should be of order unity unless they are associated to the breaking of a symmetry. Numerous

examples of the naturalness principle to understand the necessity of new phenomena have

been extensively discussed in the literature (see for instance [3] and references therein).

The Higgs boson mass and the value of the cosmological constant have been long recog-

nized as two notorious challengers of this naturalness principle, a situation that stimulated

the creativity of physicists in finding extensions of the Standard Model at higher energies.

In most of these e↵orts to explain the smallness of the Higgs mass, such as supersymmetric

and composite Higgs models, new physics is predicted to be present at TeV energies. Re-

cently, however, a radically new approach to the Higgs mass hierarchy problem has been

proposed [4], in reminiscence of the relaxation mechanism of [5] proposed for explaining dy-

namically the smallness of the cosmological constant (see [6, 7] for similar previous ideas).

In principle, in this new approach no new degrees of freedom around the TeV scale are

needed anymore to screen the Higgs mass from large quantum corrections. This has of

course profound implications for the physics agenda of the LHC and beyond.

Technically, the relaxation mechanism of [4] is based on the cosmological interplay be-

tween the Higgs field h and an axion-like field �, arising from the following three terms of
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where ⇤ is the UV cut-o↵ scale of the model, while ⇤c . ⇤ is the scale at which the periodic

cos(�/f)-term originates and n is a positive integer. The first term is needed to force � to

roll-down in time, while the second one corresponds to a Higgs mass-squared term with a

(positive) dependence on � such that di↵erent values of � scan the Higgs mass over a large
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Origin of back-reaction term. 
Could the relaxion be the QCD axion?

From QCD condensate ⇤c = ⇤QCDb

Christophe Grojean BSM CERN, July 2015

2

a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M
2 + g�)|h|2 + V (g�) +

1

32⇡2

�

f
G̃

µ⌫
Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃

µ⌫ = ✏
µ⌫↵�

G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M
2 + g�)|h|2 +

�
gM

2
� + g

2
�
2 + · · ·

�
+ ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M
2, and thus we take the range of validity for � in this e↵ective

field theory to be � . M
2
/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact

the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.

�

V (�)

FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that
the e↵ective mass-squared of the Higgs, m

2
h, is positive. During inflation � will slow-roll, scanning the physical Higgs

⇤/g
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Introduce a new confining hidden gauge group, 
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can be rotated away by a chiral rotation for N , and replaced by the term 
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Figure 4: Left: Diagram generating �NN at the radiative level. Middle: Diagram con-

tributing to the coupling NN |H|2. Right: Diagram generating an O(✏2) contribution to

(NN)2.

Under the SU(2)L⇥U(1)Y SM group, L has the quantum numbers of a lepton doublet, while

N is a singlet. We assume that the SU(N) gauge sector becomes strongly-coupled at the

scale ⇤. A key ingredient of the model is the presence of a specific set of mass and interaction

terms for the fermions that break the accidental global symmetries. We assume that the L

and N fields have Dirac masses (here and in the following we neglect O(1) parameters):

Lmass = ⇤LL+ ✏⇤NN , (35)

and couplings to the SM Higgs given by

LY uk =
p
✏LHN + h.c. . (36)

Finally, interaction terms of the singlet N to the � and � fields are included with couplings

of order ✏g and ✏g� respectively

LN = ✏g�NN + ✏g��NN . (37)

As can be seen from the Lagrangian above, we have associated to each N field a coupling
p
✏ ⌧ 1. In the limit ✏ ! 0 the theory acquires an additional chiral invariance (broken only

by the axial anomaly). It is interesting to notice that even if we do not introduce in the

Lagrangian the coupling of the � field to N , it is nevertheless generated at the radiative level

due to the presence of the g⇤�|H|2 coupling in the e↵ective Lagrangian, as shown by the

left diagram of Fig. 4.

We also assume that the � field interactions are invariant under a shift-symmetry, � !
�+ c, up to the explicit breakings due to g, and an anomalous interaction term

�

f
G0

µ⌫
eG0µ⌫ , (38)
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Origin of back-reaction term from 
a non-QCD axion (generic ALP).

and new lepton L charged under SU(2) + new singlet N  
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A Origin of the backreaction term

Here we discuss the simple UV completion which leads to Higgs-dependent barriers
for the relaxion potential used in Section 3. Let us assume that the relaxion couples
to the field strengths G eG of a new strongly interacting gauge group, and that new
fermions L, L

c
, N, N

c are charged under this group. Under the Standard Model gauge
group, the fermions L, L

c have the same quantum numbers as left- and right-handed
leptons respectively, while N, N

c are singlet. The Lagrangian of this model is:

L = �mNNN
c
� mLLL

c + yHLN
c + ỹH

†
L

c
N +

�

f
G eG + h.c. (A.1)

With a chiral rotation of the new fermion phases, the last term can be cancelled and
the field � appears as a phase in the mass terms. Let us assume that mL � 4⇡f⇡ �

mN , where f⇡ is the confinement scale. Integrating out the L fermions one gets
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f
. (A.2)

Below the confinement scale, one can replace NN
c with hNN

c
i = 4⇡f

3
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symmetry breaking, the Higgs can be expanded as H = hhi+h, where we denote by
hhi the Higgs VEV. Hence
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2hhih

mL

◆
(4⇡f

3
⇡) cos

�

f
(A.3)

The mass mN contains a tree level term and a loop correction,

mN = m
0
N +

yỹ

16⇡2
mL log

⇤

mL
. (A.4)
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Wiggles from new strong dynamics

[Graham, Kaplan, Rajendran ’15]

Predictions: weak-scale fermions L accessible at colliders.

The key point is that the third term in (A.3) generates, when closing the Higgs loop,
a contribution to the relaxion potential. This loop has a natural cut-off at 4⇡f⇡. The
potential is then
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Finally, we impose that the wiggles are dominated by the term proportional to the
Higgs VEV hhi

2. The tree level mass m
0
N can be set to 0, while comparison with the

other terms give

f⇡ < hhi (A.6)

mL <
4⇡ hhip

log(⇤/mL)
(A.7)

The scale f⇡ must be below the EW scale, while mL can go up to the TeV. This
strongly constrains the model, because the N, L fermions (or at least one of them)
are charged under the Standard Model, and cannot be too light. On the other hand,
this feature makes the model testable. Experimental bounds on this model have been
discussed in [23]. The backreaction term thus reads Vbr = ⇤2
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B Stopping condition for Higgs-dependent wiggles

In this Appendix, we discuss the stopping condition of the relaxion in the case of
Higgs-dependent barriers and negligible particle production. For this, let us solve
the following equation of motion:
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We consider the evolution from the time when EW symmetry gets broken and we
assume that the Higgs field always tracks its VEV at the minimum of its potential
such that ⇤4

b(�) = ⇤̃3(� � ⇤/g
0). The initial condition is �(0) = ⇤/g

0, �̇(0) =

g⇤3
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A Origin of the backreaction term

Here we discuss the simple UV completion which leads to Higgs-dependent barriers
for the relaxion potential used in Section 3. Let us assume that the relaxion couples
to the field strengths G eG of a new strongly interacting gauge group, and that new
fermions L, L

c
, N, N

c are charged under this group. Under the Standard Model gauge
group, the fermions L, L

c have the same quantum numbers as left- and right-handed
leptons respectively, while N, N

c are singlet. The Lagrangian of this model is:

L = �mNNN
c
� mLLL

c + yHLN
c + ỹH
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G eG + h.c. (A.1)

With a chiral rotation of the new fermion phases, the last term can be cancelled and
the field � appears as a phase in the mass terms. Let us assume that mL � 4⇡f⇡ �

mN , where f⇡ is the confinement scale. Integrating out the L fermions one gets
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Below the confinement scale, one can replace NN
c with hNN
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hhi
2

mL
+ yỹ
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5 Summary and outlook

The production of relaxion particles during the evolution of the homogeneous re-
laxion field while rolling down its potential had so far been ignored in the relaxion
literature. We showed that it can act as an efficient source of friction and eventually
stop the relaxion field. This opens parameter space for the relaxion mechanism, espe-
cially in the original implementation of the relaxion mechanism of Ref. [1]. This can
also severely reduce the parameter space in the second class of models [3, 4] where
the potential barriers are Higgs-independent and relaxation starts in the electroweak
broken phase. The parameter space comprises the cutoff scale ⇤, the relaxion cou-
pling g

0, the size of the periodic potential barrier ⇤b, and, in the case where we invoke
inflation, the value of the Hubble scale during inflation HI . These parameters can
also be traded for ⇤, g

0, m� and MI , where m� is the relaxion mass and MI is the
scale of inflation.

We have worked out in detail the precise regions of parameter space when the
relaxion mechanism is successful. In particular, an important question is whether
cosmological relaxation of the electroweak scale can occur without inflation, as this
clearly modifies the perspectives and constraints for model building. We have shown
that this is possible in the case of Higgs-dependent barriers. Our results are sum-
marised below.

For given values of the cutoff scale ⇤ and the relaxion coupling g
0, ⇤b, there are

three ways by which a relaxion with Higgs-dependent barriers can be stopped during
an inflation era: From Hubble friction (as in [1]), from large barriers and low Hubble
friction, from relaxion particle production and low Hubble friction. These last two
cases were not considered in Ref. [1]. They correspond to distinct values of HI and
⇤b (equivalently of MI and m�). This is summarised in Fig. 3 and 4. If instead
the relaxion has Higgs-independent barriers and an additional coupling to EW gauge
bosons �WW̃ and �BB̃, it can still be stopped during inflation, as summarised in
Fig 13.

• Relaxation via Higgs-dependent barriers [1]:

– During inflationary stage not driven by the relaxion (Section 3.1, bench-
mark points a, b, c, d). Interestingly, relaxion fragmentation opens the pa-
rameter space towards smaller inflationary scale O(100) TeV and heavier
relaxion O(1) GeV. The inflationary stage can be much shorter O(100)

e-folds. Besides, a larger range of barrier sizes are now allowed. Cutoff
scale can be as high as. The relaxation can also be stopped simply because
of larger barriers.

– Without inflation (either before or after), the relaxion may dominate or
not the energy density of the universe (Section 3.2, benchmark points
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Sec. 3, referring the reader to it for their discussion:
����
µ̇h

µ
2
h

����
v=vEW

<1 ()
g

0⇤�̇

2�3/2v3
EW

< 1 Higgs tracking the minimum (4.23)

g⇤3
<

⇤4
b

f
Large barriers (4.24)

g
0⇤(2⇡f) <

m
2
h

2
Precision of the mass scanning (4.25)

f >⇤ Consistency of the EFT (4.26)
f <MPl Sub-Planckian decay constant (4.27)

�� ⇡
⇤

g0 Field range (4.28)

In order to constrain the parameter space, we will apply the same logic as in
Sec. 3. The free parameters are {⇤, g, g

0
, ⇤b, f, F, �̇, H}. Unless otherwise specified,

we assume g = g
0, and we use Eq. (4.13) to fix the scale f in terms of the other

parameters of the model.

4.1 Relaxation after inflation

Let us first consider the possibility of relaxation after inflation with the tachyonic
production of SM gauge bosons, which was discussed in [3] and, in greater details,
in [4]. In addition to Eqs. 4.13-4.28, we assume that the relaxion dominates the
energy density

H =
⇤2

p
3MPl

. (4.29)

Moreover, we assume that the relaxion does not drive a secondary period of inflation,
in which the curvature perturbations generated during inflation would be erased.
Thus we impose [4]

g
0
> 0.18

⇤

MPl
, (4.30)

where the numerical factor comes from requiring that, if a short period of relaxion-
driven inflation takes place, this does not exceed 20 efolds. A similar bound can
be obtained by imposing that the velocity ⇤2 is smaller than the slow-roll velocity
g⇤3

/(3H), with H as in Eq. (4.29). Under this condition, it is safe to neglect Hubble
in the equation of motion for the relaxion field and its fluctuations.

Due to the constant barriers ⇤4
b
cos �/f , relaxion fragmentation is always active

in this construction, and it can slow down the field evolution at a position which is
not related to the Higgs vev. To avoid this scenario, we assume that either the effect
of fragmentation is subdominant compater to the acceleration due to the large slope,
or that, if present, the fragmentation time-scale is longer than the time needed to
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Relaxion Parameter space.

can be reduced to 4 independent parameters.

limit has no relevant consequences on our study. Third, if this condition is
violated and the shift symmetry is restored after reheating, a very interesting
scenario opens up, in which the relaxion starts rolling again and is stopped
a second time when the Universe cools down and the barriers appear again.
We will not discuss this scenario here for simplicity, but we refer the reader
to Refs. [18–20] in which this scenario is analysed and many consequences are
discussed.

Parameter space

The mechanism can be described in terms of 7 free quantities:

g, g
0
, ⇤, ⇤b, f, H, �̇0 . (3.10)

In addition, we define the quantity em�:

em� ⌘
⇤2

b

f
, (3.11)

which is related to the relaxion mass in a way that depends on the actual realization
of the mechanism, as we will detail in the next section. To simplify the problem, we
will assume a fixed ratio g/g

0, which we will take equal 1 unless otherwise specified.
Moreover, we will relate f and �̇0 to the other parameters using the fact that the final
Higgs VEV should match the observed value, and choosing a sensible value for the
field velocity. Thus, the parameter space has dimension 4, and can be characterized
by g

0, ⇤, ⇤b and one among H or f . To constrain the parameter space we adopt the
following logic. We will combine all the constraints in order to eliminate the variables
⇤b, H or f , and derive all the equations that constrain the variables g

0, ⇤ only. In
other words, this is equivalent to projecting the 4 dimensional hypersurface to the g

0,
⇤ plane. Then, we will present contours in this plane for the other free quantities,
as well as the constraints on the other variables for a few selected benchmarks.

3.1 Relaxation during inflation

We first consider the case in which relaxation happens during inflation. This is the
scenario proposed in [1], and the most studied in the literature (see Fig. 34 in App. F
for a sketch of the energy density of the universe during relaxation). We define the
slow-roll velocity

�̇SR ⌘
g⇤3

3H
, (3.12)
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List of conditions.

Total field excursion 
(assume Φ=0 initially)

Higgs mass scanning precision

Large barriers

microscopic origin of barriers

symmetry breaking pattern

3 Consequences I: Relaxation with Higgs-dependent barriers

We consider the original relaxion model, which was first introduced in [1] and later
studied in a large literature. In the non-QCD model in [1], the relaxion potential
features Higgs-dependent barriers that scale as2

V (�, h) = ⇤4
� g⇤3

� +
1

2
(⇤2

� g
0⇤�)h2 +

�

4
h

4 + ⇤4
b

hhi
2

v2
EW

cos
�

f
, (3.1)

and the initial conditions are such that the EW symmetry is initially not broken. For
the stability of the potential (3.1), the spurions should satisfy g & g

0
/(4⇡) since the

term ⇠ g
0⇤3

� is generated by closing the Higgs loop in the third term in Eq .(3.1).
The initial condition must be such that µ

2
h = (⇤2

� g
0⇤�) ⇡ ⇤2, and we assume

�̇0 > 0. Electroweak symmetry breaking happens for � ⇡ ⇤/g
0. After this point, the

Higgs VEV hhi grows up to its final value vEW.
Loop effects generate a Higgs-independent amplitude for the cosine, such that

there are small constant wiggles during the whole field excursion (see for details
App.A). In this paper we work in the regime in which the potential has local minima.
We postpone the study of fragmentation from wiggles that do not generate local
minima to future investigation.

List of conditions

There are a number of conditions that we will need to assume for a successful relax-
ation mechanism. We start by listing the ones that do not depend on the embedding
of the mechanism in the cosmological history, which we will discuss later.

• Initial conditions and total field excursion: First of all, to avoid fine-
tuning in the initial conditions, the total field excursion of the relaxion must
be larger than ⇤/g

0, so that the Higgs mass can scan the range from the cut-off
down to the EW scale. For definiteness, we assume that initially � = 0, so that

�� =
⇤

g0 . (3.2)

• Precision of the mass scanning: In order not to overshoot its measured
value m

2
h, the scanning of the Higgs mass should happen with enough precision.

2
This notation does not coincide with the one of [1], where the barriers are denoted by ⇤4 cos�/f

with ⇤ / hhi
n
, nor with [2], which writes ✏⇤4�n

c hhi
n
. The notation (3.1) makes it clear that the

barriers are proportional to hhi
2

and that ⇤b is the size of the barrier once the Higgs has reached

its stopping point with hhi = vEW. Thus, ⇤b is not the confinement scale nor a parameter of the

Lagrangian. It is determined by the dynamics of the stopping mechanism, and it depends on the

initial relaxion velocity and on the measured value of vEW. ⇤b is one of the parameters we are

scanning over in our various contour plots.
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Thus we impose

g
0⇤(2⇡f) <

m
2
h

2
. (3.3)

• Large barriers: After the Higgs has grown to vEW, the barriers should be
large enough to prevent the field from further rolling down, despite the slope
�g⇤3. Imposing that V

0
> 0 for some values of � > ⇤/g

0 we get

⇤4
b

f
� g⇤3

. (3.4)

• Symmetry breaking pattern: In the Lagrangian of Eq. (2.1), the scale f

should be thought as the scale of spontaneous breaking of a global symmetry,
whose Goldstone boson is the relaxion. The spurious g and g

0 control the
explicit breaking of the residual shift symmetry, as well as the Higgs mass
parameter. For the consistency of this picture, we impose

f > ⇤. (3.5)

• Microscopic origin of the barriers: The last term in Eq. (2.1) must orig-
inate from the interaction of some field charged under the Standard Model
gauge group and under the relaxion global symmetry. Explicit examples of
such a kind were proposed in [1] and [15]. A general feature of these construc-
tions is that the term ⇤4

bhh
2
i/v

2
EW cos �/f is accompanied by the similar term

⇤4
bh

2
/v

2
EW cos �/f by which the Higgs interacts with �. Closing a Higgs loop, a

constant term is generated, which must be subdominant compared to the pre-
vious one. The actual size of this term is model dependent, and we will here
assume that the model discussed in Appendix A is realized. Thus we impose

⇤b <

p
4⇡vEW . (3.6)

Notice that this condition will turn out to be important in determining the
upper bound on the cut-off of new physics, and thus weakening it will result
in a larger allowed parameter space. Nonetheless, in the simplest explicit UV
constructions, Eq. (3.6) has the correct numerical coefficient up to O(1) factors.

• Higgs field tracking the minimum of its potential: After EW symmetry
breaking, the evolution of the Higgs field should follow closely the minimum
of the potential, otherwise after the relaxion stops the Higgs would continue
growing. If we denote by v the minimum of the potential during the relaxion’s
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During inflation, the relaxion slow-rolls thanks to the large inflationary Hubble fric-
tion, which is dominated by some sector other than the relaxion. We thus assume

H >
⇤2

p
3MPl

. (3.13)

Moreover, the symmetry breaking pattern that leads to the Lagrangian Eq. (2.1)
requires

H < f, (3.14)

and
H < ⇤ . (3.15)

Finally, the evolution should be dominated by the classical rolling of the relaxion
field and not by the quantum fluctuations:

�̇SR

H
>

H

2⇡
. (3.16)

After EW symmetry breaking, wiggles turn on in the relaxion potential and the
relaxion stops as soon as the relaxion’s kinetic energy is smaller than the potential
barriers. Under the slow-roll assumption, one neglects the first term �̈ in Eq. (2.4),
and therefore, if the effect of quantum fluctuations is small, the relaxion stops as soon
as V

0 = 0, which requires sufficiently large barriers after EW symmetry breaking.
This is the stopping condition used in [1]. There is an underlying assumption behind
this reasoning, which is that the time scale to roll over one wiggle is much larger than
a Hubble time. As we discuss here, there are actually more stopping possibilities.
Depending on the strength of Hubble friction and on the velocity of the relaxion
field, the relaxion can stop at three different times corresponding to three different
stopping conditions and three separate regions in parameter space, whose projection
in the (⇤, g

0) plane is shown in Fig. 2. For each benchmark point a, b, c, d, the
constraints in the (⇤b, HI), (⇤b, f) and (em�, f) planes are shown in Fig. 4. We define
these regions below:

1. Hubble friction (GKR): If Hubble friction is strong, and in particular if it takes
longer than about a Hubble time for the relaxion to roll a distance between two
consecutive maxima of the potential, i.e �t1 � H

�1, where �t1 is the time to
cross one wiggle, then the slow-roll approximation is always valid. However,
the velocity is not well approximated by the average slow-roll velocity defined
in (3.12) but by the instantaneous slow-roll velocity

�V
0
/(3H).

Physically, this happens because Hubble friction has enough time to modify the

– 13 –
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Figure 13: Comparison of predictions between the CbQ regime (upper panel) and the QbC regime
without eternal inflation (middle panel) for the non-QCD relaxion model: Values of the required minimal
number of e-folds for relaxation (left), maximal possible value for the inflationary Hubble scale (center),
maximal possible value of the inflation scale EI (right). The ratio of values is shown in the lower panel.

the CbQ regime.

The final minimum in the QbC regime and finite-density constraints: We close
the section with figure 14. The upper column shows the maximal values of the final minimum
l in the QbC regime. Here, only the non-eternal inflation scenario is considered. We use the
same benchmark values for the decay constant as in Fig. 6. We do not show the minimal values
of l since l

CbQ
max = l

QbC

min . The lower row shows the excluded regions of the parameter space, where
relaxion bubble formation is possible in dense environments. The plots were constructed using
the relations from section 4.2, taken from [23], inserting the value of l determined from the
stopping condition B ⇠ 1. Constraints from neutron stars are the strongest for large decay
constants.

6 Properties of the relaxion

In this section we discuss some properties of the relaxion, including its mass, interactions and
the lifetime. We focus on the main interaction channel with the standard model particles, via
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Figure 12: The extended parameter region for the non-QCD relaxion model in the QbC regime, in the
H vs f plane. The blue line encloses the available region in the CbQ regime (GKR) whereas the yellow
and brown lines correspond to QbC I and QbC II regimes, where eternal inflation is not required. In left
panel, the remaining free parameters g and ⇤ are not fixed, while in the right panel we set g = 10�20

and ⇤ = 105GeV.

energies for �� ⇠ ⇤/g is �U ⇠ ⇤4). One might wonder whether this can spoil the
solution to the hierarchy problem. The fate of the “wrong” patches is also discussed in
the appendix D. We follow the more detailed analysis, considering the measure problem,
from [12]. The conclusion is that if the condition ( 5.6) for non-eternal inflation is imposed,
patches with a small Higgs VEV are still the most likely ones.

So far we did not make any statement about the value of cosmological constant (CC) in
the correct patches and, in particular, did not require that we end up in a value with a small
CC. As in [1], we assume that the CC in our observable universe is tuned to the correct value
independently of the relaxion mechanism.

For the non-eternal inflation window, which we mostly focus on in this work, the parameter
region in the g vs ⇤ plane is more or less the same as in the CbQ regime. However, for each
point in this allowed region, now larger values of inflationary Hubble parameter HI > g

1/3⇤
are allowed. To demonstrate this, figure 12 shows the H vs f parameter space for the CbQ
and QbC models. Again, in the QbC case, the brown color denotes the region where the early
stopping takes place whereas the yellow line corresponds to the stopping determined by the
Hubble scale. As can be seen in the left panel, a new region has opened up compared to the
CbQ scenario (blue line). We impose HI < 100GeV to ensure that the spread in the Higgs
masses after relaxation is not too large. The other upper bound for the CbQ scenario arises
from combining (2.8), (2.10) and (2.17). The lower bound for the QbC regime with ⇤b ⇠ HI

follows from (5.6) combined with the stopping condition and ⇤ > TeV. In each point of the
left panel, the values of g and ⇤ are not fixed, which is why the three di↵erent regions overlap.
In the right panel, we fix the values g = 10�20 and ⇤ = 106GeV, to illustrate how the QbC
parameter region opens up for larger values of HI .

In Fig. 13 we show the minimum number of inflationary e-folds and the largest possible
Hubble scale of inflation (as well as inflationary scale EI) for a successful relaxation for each
point in the g vs ⇤ plane in the QbC model, in comparison with the predictions obtained in
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Fate of the relaxion after inflation .
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The fate of the relaxion after inflation
1. Reheating: the relaxion can be destabilized if 𝑇𝑇𝑟𝑟ℎ > 𝑇𝑇𝑏𝑏

2. Onset of oscillations: 𝐻𝐻𝑓𝑓𝑓𝑓𝑐𝑐 ≈
𝑚𝑚𝜙𝜙

3

3. Relaxion decay:

4. Typical displacement from the minimum,

Require 𝑇𝑇𝑟𝑟ℎ < 𝑇𝑇𝑏𝑏

If Γ𝜙𝜙 < 1017s−1, relaxion oscillations behave as dark matter.

𝑇𝑇𝑏𝑏 < 𝑣𝑣ℎ is the barrier 
reappearance temperature
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Axion abundance from stochastic misalignment
• If ��ℎ > ����, the onset of oscillations in the radiation 

dominated era.

• If ��ℎ < ����, the onset of oscillations is before reheating. The 
fractional energy density today depends on the equation of state 
before reheating

Combining the two cases:

Axion abundance from stochastic misalignment .
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The case of high reheating temperature
• The displacement after inflation

Where for simplicity we take 
• The total displacement of the field

• The field gets re-trapped if 
• Additional constraints on the parameter region.

• DM from roll-on was studied in 
• DM from stochastic misalignment 

Banerjee et. al., 1810.01889

The case of high reheat temperature .
Trh > Tb



Relaxion dark matter .
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The case of the relaxion
In which local minimum does 
the relaxion end up?

The barriers disappear at � > ��
(�� is at most the weak scale)
• Additional displacement for ��ℎ ≫ ��

Bounds on isocurvature fluctuations:

Stopping condition



The case of low reheat temperature .
Trh < Tb
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Relaxion DM window, ��ℎ < ��
The classical beats quantum (CbQ) regime 

��
3 < �Λ3

The relaxion is always under-abundant



The case of low reheat temperature .
Trh < Tb
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Relaxion DM window, ��ℎ < ��
The classical beats quantum (CbQ) regime 

��
3 < �Λ3

The relaxion is always under-abundant

The quantum beats classical (QbC) regime 
��
3 > �Λ3

The lower bounds is to avoid eternal 
inflation

if �min > �� =
2�2

3
���

2

��
2
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Barriers for Non-QCD relaxion .
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Volume-weighting
• Volume-weighted Fokker-Planck equation

• Does the relaxion climb up during inflation?
            No, if �� <��

• The fate of “wrong” Hubble patches (�ℎ ∼ Λ) after inflation
            The field slow-rolls down to the region with a small 
Higgs vev. Gupta, 1805.09316

Volume-weighting.

volume effect
—> backward 

velocity the field
subdominant

 if NI < Nc 



As a justification, the authors explain that in this region of the potential, the backreaction due
to the wiggles will add order one corrections to the (initially gaussian) distribution function.
The authors then assume that this backreaction stops � from evolving. The backreaction time
is estimated treating the wiggles as small perturbative corrections.

While backreaction e↵ects set in quite quickly, we find that they do not necessarily prevent
the one-point function from evolving further. Even if the relaxion is trapped inside a local
minimum, it can have a large probability to escape to a lower minimum due to di↵usion e↵ects,
which generates a drift motion for the relaxion. Our analysis predicts that for the values of the
inflationary Hubble parameter that were mentioned in the NP model, HI > 3GeV, the relaxion
would slow down around a very large barrier, ⇤b(�) > 3GeV. This would still increase after
inflation by another factor of at least 102.5 due to temperature dependence of ⇤b, which obviously
corresponds to a larger value of the Higgs VEV. The only way to ensure that the relaxion stops
near the correct minimum is to have HI ⇠ ⇤b ⇠ 75MeV. At such low temperatures the QCD
potential has already reached its zero temperature limit and, hence, is approximately constant.

As a summary, in Fig. 10 we illustrate all three approaches to solving the CP problem.

Eternal inflation: As can be seen in Fig. 8, a new parameter region with small values of
g opens up if the CbQ constraint is dropped. This region corresponds to a small slope of the
rolling potential and, therefore, a larger number of inflationary e-folds that are required to scan
the Higgs mass. It turns out that there is a critical number of e-folds Nc, given by

Nc ⇠
2⇡

2

3

M
2
Pl

H
2
I

, (5.5)

such that if inflation lasts longer compared to Nc, the universe is in a regime of eternal infla-
tion [24, 25]. In this case, inflation never ends globally, as in the non-eternal scenario. Instead,
even though each Hubble patch eventually reheats, most of the universe is always inflating as
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Figure 9: The contours of the maximal values of l for each point in the g vs ⇤ plane for the QCD relaxion
in the QbC II regime, with eternal inflation. l can take much larger values compared to the CbQ regime
(see Fig. 5) and below the grey shaded region also ✓QCD < 10�10 holds.
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Maximal values of l for the QCD relaxion in the QbC II regime, with eternal inflation 


