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Noether:  A continuous global symmetry gives a current 

 with , and can define a charge  

 

This is conserved under time translations

Jμ ∂μJμ = ⃗∇ ⋅ ⃗J − ·J0 = 0

Q(ℳspace, t) = ∫ℳspace

J0dx1dx2dx3

But what about rela]vity?  
We want something more covariant that treats ]me and space on even foo]ng

We can develop a covariant way of talking about 
symmetries using ideas from topology.
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Symmetry detecting operators

Generalized Noether surfaces detect symmetry 

charges of local operators Q(Σ3) = ∫Σ3

Jμ ̂nμd3x

Q(Σ3) − Q(Σ′ 3) = ∫Σ3

Jμ ̂nμd3x − ∫Σ′ 3

Jμ ̂nμd3x = ∫Σ4

∂μJμd4x = 0



Generalized Noether Charges
With charged objects around, acts by Ward identity 
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∂μJμd4x) ψ(y) = qψψ(y)

(∂μJμ(x)) ψ(y) = qψψ(y)δ(x − y)

Simple: If you move the surface from enclosing  
 to not enclosing , the charge changesψ(y) ψ(y)



Generalized Noether Charges
With charged objects around, acts by Ward identity 

Q(Σ3)ψ(y) − Q(Σ′ 3)ψ(y) = (∫Σ4

∂μJμd4x) ψ(y) = qψψ(y)

(∂μJμ(x)) ψ(y) = qψψ(y)δ(x − y)

Symmetry Topological surface operator!∼

Simple: If you move the surface from enclosing  
 to not enclosing , the charge changesψ(y) ψ(y)
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You’re familiar with a topological 2-surface operator in Maxwell theory!

t = 0
d ⃗AΣ2 Q(Σ2) = ∫Σ2

⃗E ⋅ d ⃗A

Q(Σ2) − Q(Σ′ 2) = ∫Σ3

∂μFμν ̂nνd3x = 0

= ∫Σ2

Fμν ̂nμ ̂nνd2x

Higher-form symmetry
What about topological operators on -dimensional surfaces?d < 3

Gauss’ law is the existence of a topological 2-surface!
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Well what sort of operators could interact topologically with this 
2d surface? 

Link (Σp, Σd−p−1) ∈ ℤ
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What should be the charged object be now?  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A 0d point and a closed 3-surface  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What should be the charged object be now?  
Well what sort of operators could interact topologically with this 
2d surface? 

Gauss’ law comes from a 
symmetry of Wilson loops!


Wq(γ) = eiq ∫γ A

t = 0

Σ2

Wq(γ) = eiq ∫γ A

Q(Σ2) = ∫Σ2

εμνρσFμνdSρσ

In our 4d this means 
A 0d point and a closed 3-surface  
A 1d line and a closed 2-surface

Link (Σp, Σd−p−1) ∈ ℤ



Core conceptual point of generalized symmetries

Symmetries can be understood as the existence of 
some surface operators that are topologically invariant.

 topological surfaces∃
Noether 
charge

Gauss’ law

New notions of symmetry you can’t 
understand from the Lagrangian

Discrete 
symmetries

AB effect
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Generalized Symmetry Breaking

Higher-form symmetry-breaking is qualitatively different from zero-form breaking

-form 0

Explicit breaking from 
charged local operators in ℒ

Σ2

ψ(x)

ψ(y)
Wq(γ; x, y)

Higher-form

Explicit breaking when 
charged operators 
become ‘endable’

V(r) = −q2

4πr (1 + q2

16π3/2
e−2mer

(mer)3/2 + …), r ≫ me

This makes higher-form symmetries more robust 
E.g. Uehling potential 
with electric one-form 
symmetry breaking from 
the electron
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Electric and Magnetic Symmetry Breaking

Recall  at long distances has both Wilson and ’t Hooft line operatorsU(1)EM

Σ2

ψ(x)

ψ(y)
Wq(γ; x, y) electric one-form 

symmetry breaks when 
you see electrically 
charged matter

U(1)(1)
e

Σ2

M(x)

M(y)
Tq(γ; x, y) magnetic one-

form symmetry breaks 
when you see magnetic 
monopoles!

U(1)(1)
m

Dynamical electric charges are easy, but magnetic monopoles only arise from 
ultraviolet theory which includes new topology. A drastic change!

Uα[Σ2] = eiα ∫Σ2
Fμν ̂nμ ̂nνd2x Uα[Σ2] = eiα ∫Σ2

ϵμνρσFρσ ̂nμ ̂nνd2x



Motivating non-invertible symmetries: 
The mystery of the missing instantons 

Recall a classical zero-form global symmetry  can be 
anomalous in quantum theory with  gauge group 

        

U(1)X
G

∂μJμ
X = 0 ⟶ ∂μJμ

X = 𝒜X

8π2 FμνF̃μν

Instanton configurations have  so ‘activate’ the anomaly∫ℳ
FF̃ ≠ 0



Motivating non-invertible symmetries: 
The mystery of the missing instantons 

Recall a classical zero-form global symmetry  can be 
anomalous in quantum theory with  gauge group 

        

U(1)X
G

∂μJμ
X = 0 ⟶ ∂μJμ

X = 𝒜X

8π2 FμνF̃μν

Old lesson:  is anomalous but -matrix preserves  anywayX S X

E.g. famously  and there are no Abelian instantons in , so π3 (U(1)) = 1 ℝ4 ∫ℝ4
FF̃ = 0

But what about when they don’t? 

Instanton configurations have  so ‘activate’ the anomaly∫ℳ
FF̃ ≠ 0



EFT philosophy: If there is ever a zero, there should be a symmetry!

Somehow despite  being anomalous there must remain a 
subtle sort of symmetry that demands the -matrix preserves 

X
S X

Fig. 1: A confused 
effective field 
theorist



EFT philosophy: If there is ever a zero, there should be a symmetry!

A hint:  can be violated 
around magnetic monopoles 

X

c.f. Callan-Rubakov

Dirac ’31 
Callan, Rubakov ‘80s 

Ongoing…

Somehow despite  being anomalous there must remain a 
subtle sort of symmetry that demands the -matrix preserves 

X
S X

Fig. 1: A confused 
effective field 
theorist
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Can’t do , not gauge invariant

Uα[Σ3] = eiαQ[Σ3] = eiα ∫Σ3
Jμ

X ̂nμd3x

̂Jμ
X = Jμ

X − 𝒜
4π2 ϵμνρσAν∂ρAσ



There’s a subtler notion of symmetry!
Choi, Lam, Shao 

2205.05086   
Córdova, Ohmori 

2205.06243 

Fig. 2: Another 
victory for 
naturalness

Can construct a topological, gauge invariant operator by including 
a Chern-Simons theory which talks to the bulk magnetic current. 

T(γ)
γ

⋅ ψ(x)

Σ3
D2π

N (Σ3) = ∫ Dc ei ∫Σ3
2π
N Jμ ̂nμ+ 1

2π ϵμνσcμ∂νAσ+ N
4π ϵμνσcμ∂νcσ

= ⋅ ψ(x)e2πiq/N

T(γ)W(γ)1/N

Can’t do , not conserved


Can’t do , not gauge invariant

Uα[Σ3] = eiαQ[Σ3] = eiα ∫Σ3
Jμ

X ̂nμd3x

̂Jμ
X = Jμ

X − 𝒜
4π2 ϵμνρσAν∂ρAσ



Non-invertible Naturalness 



T(γ)
γ

⋅ ψ(x)

Σ3
D2π

N (Σ3) = ∫ Dc ei ∫Σ3
2π
N ⋆J(1)

chiral+ 1
2π c∧⋆J(2)

mag+ N
4π c∧dc

= ⋅ ψ(x)e2πiq/N

T(γ)W(γ)1/N

Non-invertible Naturalness 

This is a symmetry structure which acts on 
both local operators and ’t Hooft lines.
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monopoles appear! Operators protected by this symmetry must be generated!
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T(γ)
γ

⋅ ψ(x)

Σ3
D2π

N (Σ3) = ∫ Dc ei ∫Σ3
2π
N ⋆J(1)

chiral+ 1
2π c∧⋆J(2)

mag+ N
4π c∧dc

= ⋅ ψ(x)e2πiq/N

T(γ)W(γ)1/N

Non-invertible Naturalness 

A spurion for a zero-form noninvertible symmetry of an IR theory will be 
generated by nonperturbative gauge theory effects in a UV theory that 
includes the appropriate magnetic monopoles

Then both controls the form of the Lagrangian and breaks when magnetic 
monopoles appear! Operators protected by this symmetry must be generated!

This is a symmetry structure which acts on 
both local operators and ’t Hooft lines.



Non-invertible symmetry in lepton flavor gauge theory
2211.07639/PRX Clay Córdova, Sungwoo Hong, SK, Kantaro Ohmori

Gauged  gives 
non-invertible symmetry 
protecting neutrino masses!

U(1)Lμ−Lτ

Instantons produce 
Majorana neutrinos

ℒ ∼
yμyτ

vΦ
e

− 8π2
g2

H (H̃L)(H̃L)U(1)Lμ−Lτ
⊂ SU(2) × U(1)



Non-invertible symmetry in lepton flavor gauge theory
2211.07639/PRX Clay Córdova, Sungwoo Hong, SK, Kantaro Ohmori

Gauged  gives 
non-invertible symmetry 
protecting neutrino masses!

U(1)Lμ−Lτ

Instantons produce 
Majorana neutrinos

ℒ ∼
yμyτ

vΦ
e

− 8π2
g2

H (H̃L)(H̃L)U(1)Lμ−Lτ
⊂ SU(2) × U(1)

Instantons produce 
Dirac neutrinos

ℒ ∼ yτe
− 8π2

g2
H H̃Lν̄

3ν̄ + U(1)Lμ−Lτ ⊂ SU(3)



Non-invertible PQ Symmetry in quark flavor gauge theory

Since , can gauge 
 

and get non-invertible 
symmetry! 
Breaking in e.g.  
quark color-flavor 
unification.

Nc = Ng

(SU(3)C × U(1)B1+B2−2B3)/ℤ3

SU(9)

Massless quark solution 
from yb ∼ yte−8π2/g2

9

SM matter
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Non-invertible PQ Symmetry in quark flavor gauge theory

Since , can gauge 
 

and get non-invertible 
symmetry! 
Breaking in e.g.  
quark color-flavor 
unification.

Nc = Ng

(SU(3)C × U(1)B1+B2−2B3)/ℤ3

SU(9)

Massless quark solution 
from yb ∼ yte−8π2/g2

9

SM matter

2402.12453/PRX Córdova, Hong, SK

2HDM Alignment with 
Visible Axion
m2

12 ∼ ytybv2
9e−8π2/g2

9

SM+Hu

2412.05362/JHEP Antonio Delgado, SK

Solve DFSZ DW prob
δV(a) ∼ fav3

9e−8π2/g2
9 cos a

SM +Hu + ϕ

25XX Gongjun Choi, Hong, SK



The ‘non-invertible naturalness’ program so far



Naturalness  Robustness≈
Structures which rely on some integer invariants of the SM particles 
are among the most robust.

SU(3)C

SU(3)C

U(1)PQ

SU(2)L

SU(2)L

U(1)B+L

Existence of Peccei-Quinn-based 
explanations for strong CP ⇒

⇒ Existence of electroweak 
baryogenesis models

But  preserved! 

See my note on proton stability 
2204.01741/Universe 

ℤB+L
2Ng

β(1)
3 = 1

3 (4Ng − 11Nc) < 0 ⇒ Explanation for mp ≪ Mpl
β(1)

2 = 1
3 (4Ng + 1

2 − 22)
β(1)

2 = 1
3 ( 20

3 Ng + 1
2 ) ⇒ Vertical unification possible

 allows symmetry-based 
solution to lithium problem 

2204.01750/PRL 

Ng = 3 +Ng ≥ 3



There’s more there to understand!

⇒
SU(3)F

SU(3)F

U(1)Y Flavor symmetries intertwined with 
hypercharge  in 2-group  
2212.13193/Annalen Phys. w/C. Córdova

U(1)(1)
m

U(1)Lμ−Lτ

U(1)Lμ−Lτ

U(1)Le−Lμ ⇒ Automatically exponentially 
suppressed neutrino masses

U(1)B1+B2−2B3 U(1)PQ ⇒U(1)B1+B2−2B3
SU(3)C

SU(3)C

U(1)PQ

(
)+ /ℤNc=Ng

Revive the simplest PQ-based 
solutions to strong CP

SM ∈ Rep ((SU(3)C × SU(2)L × U(1)Y)/ℤ1,2,3,6)⇒ One-form symmetry probed by searching for  
fractionally charged species 
2406.17850/SciPost Phys. w/A. Martin

e/6
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Seth’s conclusions
Symmetries provide our best handle on finding 
natural ultraviolet theories. 

Fig. 3: A primate pleased they 
newly uncovered some 
simple, reductionist          
BSM models 

Indeed, already we have located new unified 
theories of the SM fermions with instanton 
effects which can solve SM naturalness 
issues! Both technically natural, and not.

An obvious expectation is if we learn 
about new notions of symmetry in QFTs, 
we should gain model building insight. 



Dirac masses: 
 
 

ℒ ∼ yτHLē

Classical  symmetry 
protects the Dirac neutrino 
mass 

U(1)N

H̃Lν̄

Write down charged lepton mass

Now turn on 
quantum mechanics

ℒ ∼ y⋆
τ e

− 8π2
g2
H H̃Lν̄

ν̄



Generating CKM very briefly
Idea: Communicating flavor-breaking  
through gauged flavor symmetry lets you 
generate hermitian yukawas 

 automatically real

→Σa
b⟨

M = det(yuyd)

𝐸
SU(9)

⟩9

⟩3

(SU(3)C × SU(3)H)/ℤ3

SU(3)C

Vℤ4
(Σ) = η1Tr (Σ4) + η2Tr (Σ2)2 +  h.c.

(yu)a
b ∼ yt (Λa

b + α9
(4π)

η†
1(Σ†4)a

b + η†
2Tr(Σ†2)(Σ†2)a

b

⟩4
9

+ α9
(4π)

η1(Σ4)a
b + η2Tr(Σ2)(Σ2)a

b

⟩4
9

+ …)



Generating CKM
Yukawas stay hermitian yet  breaks CP 
explicitly and/or spontaneously so can generate 

V(Σ)
𝐸

SU(9)
⟩9

⟩3

(SU(3)C × SU(3)H)/ℤ3

SU(3)C

δCKM 𝕀 arg det ([y†
uyu, y†

d yd]) ≠ 0

Another wrinkle: Must treat  differently so they 
don’t commute in flavor space.

ū, d̄



Quality control
All solutions rely on good quality Peccei-Quinn symmetries, but only the 
invisible axion has a quality ‘problem’

Massless quark admits PQ-violating  but as long as   

you’re guaranteed . Quark flavor physics is not too far away!

ℒ ∝ cΣH̃QΣd̄/MPl →Σ⟨/Mpl ⊃ θ̄
Im(y) ⊃ θ̄ Re(y)

Heavy visible axion admits PQ-violating  but does not 
perturb minimum as long as 

ℒ ∝ cH(HuHd) |≲ |4 /M2
Pl

v4
9 ⊃ θ̄v2

EWM2
pl Ξ v9 ⊃ 10−11Mpl

Invisible axion admits PQ-violating  and has the normal quality 

problem 

ℒ ∝ cnϕn/Mn−4
Pl

f 4
a (fa/Mpl)

n−4
⊃ θ̄⟩4

QCD



Lots more pheno to do 
Towards the UV, the quark and lepton gauge symmetries may be unified in 

 which has all SM fermions in one irrepSU(12) × SU(2)L × SU(2)R

Cosmology of these models totally unexplored—flavored topological defects, 
flavor-breaking phase transitions, UV-motivated flavored dark matter

Need beautiful flavor schemes

Quark-lepton unification but separate intermediate gauged quark and lepton 
flavor symmetries  natural to get different flavor patternsΞ

Also the proton can be stabilized by a discrete flavored gauge symmetry!


