Nuclear Astrophysics: a textbook case study

Francois De Oliveira Santos

Outline

The ${}^{18}F(p, \alpha){}^{15}O$ reaction is the most studied in nuclear astrophysics, with more than 50 studies published over the last two decades.

- Astrophysical motivation
- Reaction-rate measurement
- Direct cross-section measurement
- Indirect measurements
- Conclusion

Astrophysical motivation

It's really topical: T CrB

Novae observed in our Galaxy during the last 20 years

~2 600 ly

What is a nova?

Nova Persei 1901 remnant

 $10^{-3}-10^{-7}~M_{\odot}$ ejected

Nova outburst T ~ 200 MK

White dwarf star

A network of reactions

- Radioactive nuclei
 are produced
 - ¹⁸F is one of the best candidates for direct observation

 From the elemental abundance (Fluorine) to the isotopic abundance (¹⁸F)

 ${}^{18}F(p,\alpha){}^{15}O$ has the greatest impact on the ${}^{18}F$ yields in novae

Astrophysical motivation

Predicted y-flux

Goal

To predict the ¹⁸F production to within a factor of 2

Need the ${}^{18}F(p,\alpha){}^{15}O$ rate uncertainties < 30%

Mostly from the ¹⁸F β decay

Will be observe by COSI space telescope?

Astronomers

YZ Reticuli Nova Reticuli 2020

Discovered on July 15

Mag = 3.7

Distance = 2.53 kpc (8 000 light-years)

eROSITA

Fireball observed July 7, 16h47, 2020

Fig. 1|Sky images of all seven eROSITA cameras combined (0.2-0.6 keV). On $t_0 = 2020$ July 7, 16 h 47 min 20.64 s TT, during the second all-sky survey, eROSITA detected a bright, new, soft X-ray flash that was severely affected by pile-up. No source can be seen in the scans 4 h before and after the event.

> No X-ray source 4h before and after the event

Duration of the event < 8 h

Direct measurement of the reaction rate

Direct measurement of the reaction rate

d(d,n)³He

D. Lattuada et al, Phys. Rev. C 93 (2016) 045808

Texas Petawatt Laser (TPW)

 ${}^{18}{
m F}(p,\alpha){}^{15}{
m O}$

 $\int \sigma(E)\phi(v)vdv \approx 1 \text{ cm}^3 \text{mol}^{-1}\text{s}^{-1}$ at T=250 MK

e.g.

1 mm³ of hydrogen, 1 g cm⁻³, mixed with 10⁹ atoms of ¹⁸F

At 250 MK for 1 ns (the plasma disassembly time)

Only 1 atom of ¹⁵O would be produced

Not possible for the moment

Direct measurement of $\sigma(E)$

Direct measurements of $\sigma(E)$

 ${}^{18}{
m F}(p,\alpha){}^{15}{
m O}$

10 different experiments performed in 5 different laboratories

Table 1

List of all direct measurements of the ${}^{18}F(p, \alpha){}^{15}O$ reaction.

Laboratory	¹⁸ F beam	Purity
	Intensity (pps)	%
LLN	10 ⁶	100
ANL	5×10^{5}	0.4
HRIBF	2×10^{5}	20
TRIUMF	5×10^{6}	60–95
GANIL	2×10^{4}	97

Progress in Particle and Nuclear Physics 142 (2025) 104154

Direct measurements ${}^{18}\mathrm{F}(p,\alpha){}^{15}\mathrm{O}$

The green area corresponds to the Gamow window of novae explosions

Direct measurements

 ${}^{18}{
m F}(p,\alpha){}^{15}{
m O}$

Beer et al. PRC 2011 TRIUMF

Lowest measured energy

Direct measurements

Need 10⁷ pps to measure 1 reaction / week

The Astrophysical S-Factor

C. Rolfs & W. Rodney Cauldrons in the Cosmos

The Astrophysical S-Factor

F. de Oliveira Santos

Progress in Particle and Nuclear Physics 142 (2025) 104154

Better, but still a factor of 100

Nuclear reactions mechanisms

 ${}^{18}{
m F}(p,\alpha){}^{15}{
m O}$

Direct radiative capture reaction

¹⁸F(p, γ)¹⁹Ne^{*}(α)¹⁵O

 $^{19}Ne^{*}$

150

 \bigcirc

 $\sigma(E) \propto |\langle \psi_{B^*+\gamma} | M_{\lambda} | \psi_{A+x} \rangle|^2$

Negligible

Nuclear models for the resonances

The Breit-Wigner formula

$$\sigma(E) = \pi \lambda^2 \frac{2J_{^{19}\text{Ne}^*} + 1}{(2J_p + 1)(2J_{^{18}\text{F}} + 1)} \frac{\Gamma_p \Gamma_\alpha}{(E - E_r)^2 + (\Gamma/2)^2}$$

R-Matrix formalism (multichannel R-matrix code AZURE2)

Needed Parameters:

$$\Gamma_p, \Gamma_\alpha, E_r, J^\pi, (+++)$$

Two resonances in the compound nucleus

Indirect methods

Resonant Elastic Scattering

Resonant Elastic Scattering

¹⁴N (p,p)¹⁴N

(thesis of Iulian Stefan GANIL 2007)

 $Z_1 Z_2 e^2$ $d\sigma$ _ $d\Omega_{Rutherford}$ 4 $E \sin^2$

Scattering

Spin $\sigma(E) = \frac{\pi}{k^2} \qquad 2 \sin(ka)e^{ika} - \frac{\Gamma}{(E_{\lambda} - E) - i\frac{\Gamma}{2}}$ **Breit-Wigner** Other terms (Rutherford, hard sphere...) Interference effect da/dΩ_{cm} (mb/sr) 450 3/2⁺ 180 deg 400 350 300 350 mb 250 200 $d\sigma/d\Omega_{cm}$ (mb/sr) 450 5/2⁺ 180 deg 400 350 300 250 200 1.1 E_{Lab}(0.7 0.75 E_{lab} (MeV) 0.65 0.5 0.55 0.6

Direct measurements of $\sigma(E)$

Bardayan et al, Holifield Radioactive Ion Beam Facility

This 665 keV peak is the 3/2+ resonance

Inelastic scattering

Experimental setup

¹⁹Ne

Excitation energy and total width

Missing mass technique

¹⁹Ne(p,p')¹⁹Ne*

Excitation Energy Total width (if broad enough)

Branching ratios and partial widths

H(¹⁹Ne,p')¹⁹Ne*(α or p")

Branching ratios Partial widths

$$BR_p = \frac{N_p}{N_p + N_\alpha}$$
$$\Gamma_p = BR_p \times \Gamma_{tot}$$

Spin

Particle-particle angular distribution is a function of J^{π}

Model-independent J^T determination

$$\left(\frac{d\sigma}{d\Omega}\right)_{\frac{5}{2}} = N(a_0 + a_1 \cos^2(\theta_{CM}) + a_2 \cos^4(\theta_{CM}))$$

p'-p" angular correlation

J.C. Dalouzy et al, Physical Review Letters 102, 162503 (2009)

Transfer reactions

Definition / Theory

One or several nucleons are transferred from one nucleus to another one

ex: ¹⁸F(d,n)¹⁹Ne^{*} ²⁰Ne(p,d)¹⁹Ne^{*} ¹⁹F(p,n)¹⁹Ne^{*}

Theoretical Models: DWBA, CC, CCBA, CDCC, CRS, ADWA, PWAI, THM, ANC...

 $\left(\frac{d\sigma}{d\Omega}\right)_{^{18}\mathrm{F}(d,n)^{19}\mathrm{Ne}^*}^{DWBA} = \frac{\mu\mu^*}{4\pi^2\hbar^4} \frac{k_n}{k_d} \left|T_{^{18}\mathrm{F}(d,n)^{19}\mathrm{Ne}^*}^{DWBA}\right|^2$ ¹⁸F(d,n)¹⁹Ne^{*} $T_{^{18}\mathrm{F}(d,n)^{19}\mathrm{Ne}^*}^{DWBA} = \int \chi_2^{(-)} \Psi_n^* \Psi_1^{*} \Psi_{^{19}\mathrm{Ne}^*} V_2 \Psi_d \Psi_{^{18}\mathrm{F}} \chi_1^{(+)} d^3 w_1 d^3 w_2$ **Direct transfer** ¹⁸F+d ¹⁹Ne+n Nuclear potential Codes: DWUCK, PTOLEMY, FRESCO...

Which reaction?

(d, n) reaction (Q = -1 MeV/u) (⁴He, t) reaction (Q = -4.9 MeV/u)

Which beam energy?

L=0, low energy is better

Which beam energy?

L=0, the lower the better BUT polluted by compound nucleus formation (not direct transfer mechanism) Better at ~17 MeV **Excitation energy**

From Utku et al. PRC 1998

330 keV New resonances here

Spin assignment

J=3/2+ confirmed

Partial Widths

To measure the proton width, a proton transfer has to be measured

¹⁸F(d,n)¹⁹Ne*

Trojan Horse

Trojan Horse Method

Low energy resonance(s) confirmed

La Cognata et al Astrophys. J. 846 (1) (2017) 65 Cherubini et al PRC 92, 015805 (2015)

Conclusion

Conclusion

Reaction rate at 200 MK

Factor ~3 uncertainty

Mainly due to unknown 3/2+ states at low energy

This reaction illustrates the current challenges of nuclear astrophysics, linked in particular to the new radioactive beams recently produced in various facilities around the world. Next experiment: ¹⁵O(⁴He,⁴He)¹⁵O

Resolution ~ 5 keV

Thank you

oliveira@ganil.fr